home *** CD-ROM | disk | FTP | other *** search
- # Originally contributed by Sjoerd Mullender.
- # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
-
- """Rational, infinite-precision, real numbers."""
-
- from __future__ import division
- import math
- import numbers
- import operator
- import re
-
- __all__ = ['Fraction', 'gcd']
-
- Rational = numbers.Rational
-
-
- def gcd(a, b):
- """Calculate the Greatest Common Divisor of a and b.
-
- Unless b==0, the result will have the same sign as b (so that when
- b is divided by it, the result comes out positive).
- """
- while b:
- a, b = b, a%b
- return a
-
-
- _RATIONAL_FORMAT = re.compile(r"""
- \A\s* # optional whitespace at the start, then
- (?P<sign>[-+]?) # an optional sign, then
- (?=\d|\.\d) # lookahead for digit or .digit
- (?P<num>\d*) # numerator (possibly empty)
- (?: # followed by an optional
- /(?P<denom>\d+) # / and denominator
- | # or
- \.(?P<decimal>\d*) # decimal point and fractional part
- )?
- \s*\Z # and optional whitespace to finish
- """, re.VERBOSE)
-
-
- class Fraction(Rational):
- """This class implements rational numbers.
-
- Fraction(8, 6) will produce a rational number equivalent to
- 4/3. Both arguments must be Integral. The numerator defaults to 0
- and the denominator defaults to 1 so that Fraction(3) == 3 and
- Fraction() == 0.
-
- Fractions can also be constructed from strings of the form
- '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
-
- """
-
- __slots__ = ('_numerator', '_denominator')
-
- # We're immutable, so use __new__ not __init__
- def __new__(cls, numerator=0, denominator=1):
- """Constructs a Fraction.
-
- Takes a string like '3/2' or '1.5', another Fraction, or a
- numerator/denominator pair.
-
- """
- self = super(Fraction, cls).__new__(cls)
-
- if type(numerator) not in (int, long) and denominator == 1:
- if isinstance(numerator, basestring):
- # Handle construction from strings.
- input = numerator
- m = _RATIONAL_FORMAT.match(input)
- if m is None:
- raise ValueError('Invalid literal for Fraction: %r' % input)
- numerator = m.group('num')
- decimal = m.group('decimal')
- if decimal:
- # The literal is a decimal number.
- numerator = int(numerator + decimal)
- denominator = 10**len(decimal)
- else:
- # The literal is an integer or fraction.
- numerator = int(numerator)
- # Default denominator to 1.
- denominator = int(m.group('denom') or 1)
-
- if m.group('sign') == '-':
- numerator = -numerator
-
- elif isinstance(numerator, Rational):
- # Handle copies from other rationals. Integrals get
- # caught here too, but it doesn't matter because
- # denominator is already 1.
- other_rational = numerator
- numerator = other_rational.numerator
- denominator = other_rational.denominator
-
- if denominator == 0:
- raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
- numerator = operator.index(numerator)
- denominator = operator.index(denominator)
- g = gcd(numerator, denominator)
- self._numerator = numerator // g
- self._denominator = denominator // g
- return self
-
- @classmethod
- def from_float(cls, f):
- """Converts a finite float to a rational number, exactly.
-
- Beware that Fraction.from_float(0.3) != Fraction(3, 10).
-
- """
- if isinstance(f, numbers.Integral):
- return cls(f)
- elif not isinstance(f, float):
- raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
- (cls.__name__, f, type(f).__name__))
- if math.isnan(f) or math.isinf(f):
- raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
- return cls(*f.as_integer_ratio())
-
- @classmethod
- def from_decimal(cls, dec):
- """Converts a finite Decimal instance to a rational number, exactly."""
- from decimal import Decimal
- if isinstance(dec, numbers.Integral):
- dec = Decimal(int(dec))
- elif not isinstance(dec, Decimal):
- raise TypeError(
- "%s.from_decimal() only takes Decimals, not %r (%s)" %
- (cls.__name__, dec, type(dec).__name__))
- if not dec.is_finite():
- # Catches infinities and nans.
- raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
- sign, digits, exp = dec.as_tuple()
- digits = int(''.join(map(str, digits)))
- if sign:
- digits = -digits
- if exp >= 0:
- return cls(digits * 10 ** exp)
- else:
- return cls(digits, 10 ** -exp)
-
- def limit_denominator(self, max_denominator=1000000):
- """Closest Fraction to self with denominator at most max_denominator.
-
- >>> Fraction('3.141592653589793').limit_denominator(10)
- Fraction(22, 7)
- >>> Fraction('3.141592653589793').limit_denominator(100)
- Fraction(311, 99)
- >>> Fraction(4321, 8765).limit_denominator(10000)
- Fraction(4321, 8765)
-
- """
- # Algorithm notes: For any real number x, define a *best upper
- # approximation* to x to be a rational number p/q such that:
- #
- # (1) p/q >= x, and
- # (2) if p/q > r/s >= x then s > q, for any rational r/s.
- #
- # Define *best lower approximation* similarly. Then it can be
- # proved that a rational number is a best upper or lower
- # approximation to x if, and only if, it is a convergent or
- # semiconvergent of the (unique shortest) continued fraction
- # associated to x.
- #
- # To find a best rational approximation with denominator <= M,
- # we find the best upper and lower approximations with
- # denominator <= M and take whichever of these is closer to x.
- # In the event of a tie, the bound with smaller denominator is
- # chosen. If both denominators are equal (which can happen
- # only when max_denominator == 1 and self is midway between
- # two integers) the lower bound---i.e., the floor of self, is
- # taken.
-
- if max_denominator < 1:
- raise ValueError("max_denominator should be at least 1")
- if self._denominator <= max_denominator:
- return Fraction(self)
-
- p0, q0, p1, q1 = 0, 1, 1, 0
- n, d = self._numerator, self._denominator
- while True:
- a = n//d
- q2 = q0+a*q1
- if q2 > max_denominator:
- break
- p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
- n, d = d, n-a*d
-
- k = (max_denominator-q0)//q1
- bound1 = Fraction(p0+k*p1, q0+k*q1)
- bound2 = Fraction(p1, q1)
- if abs(bound2 - self) <= abs(bound1-self):
- return bound2
- else:
- return bound1
-
- @property
- def numerator(a):
- return a._numerator
-
- @property
- def denominator(a):
- return a._denominator
-
- def __repr__(self):
- """repr(self)"""
- return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
-
- def __str__(self):
- """str(self)"""
- if self._denominator == 1:
- return str(self._numerator)
- else:
- return '%s/%s' % (self._numerator, self._denominator)
-
- def _operator_fallbacks(monomorphic_operator, fallback_operator):
- """Generates forward and reverse operators given a purely-rational
- operator and a function from the operator module.
-
- Use this like:
- __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
-
- In general, we want to implement the arithmetic operations so
- that mixed-mode operations either call an implementation whose
- author knew about the types of both arguments, or convert both
- to the nearest built in type and do the operation there. In
- Fraction, that means that we define __add__ and __radd__ as:
-
- def __add__(self, other):
- # Both types have numerators/denominator attributes,
- # so do the operation directly
- if isinstance(other, (int, long, Fraction)):
- return Fraction(self.numerator * other.denominator +
- other.numerator * self.denominator,
- self.denominator * other.denominator)
- # float and complex don't have those operations, but we
- # know about those types, so special case them.
- elif isinstance(other, float):
- return float(self) + other
- elif isinstance(other, complex):
- return complex(self) + other
- # Let the other type take over.
- return NotImplemented
-
- def __radd__(self, other):
- # radd handles more types than add because there's
- # nothing left to fall back to.
- if isinstance(other, Rational):
- return Fraction(self.numerator * other.denominator +
- other.numerator * self.denominator,
- self.denominator * other.denominator)
- elif isinstance(other, Real):
- return float(other) + float(self)
- elif isinstance(other, Complex):
- return complex(other) + complex(self)
- return NotImplemented
-
-
- There are 5 different cases for a mixed-type addition on
- Fraction. I'll refer to all of the above code that doesn't
- refer to Fraction, float, or complex as "boilerplate". 'r'
- will be an instance of Fraction, which is a subtype of
- Rational (r : Fraction <: Rational), and b : B <:
- Complex. The first three involve 'r + b':
-
- 1. If B <: Fraction, int, float, or complex, we handle
- that specially, and all is well.
- 2. If Fraction falls back to the boilerplate code, and it
- were to return a value from __add__, we'd miss the
- possibility that B defines a more intelligent __radd__,
- so the boilerplate should return NotImplemented from
- __add__. In particular, we don't handle Rational
- here, even though we could get an exact answer, in case
- the other type wants to do something special.
- 3. If B <: Fraction, Python tries B.__radd__ before
- Fraction.__add__. This is ok, because it was
- implemented with knowledge of Fraction, so it can
- handle those instances before delegating to Real or
- Complex.
-
- The next two situations describe 'b + r'. We assume that b
- didn't know about Fraction in its implementation, and that it
- uses similar boilerplate code:
-
- 4. If B <: Rational, then __radd_ converts both to the
- builtin rational type (hey look, that's us) and
- proceeds.
- 5. Otherwise, __radd__ tries to find the nearest common
- base ABC, and fall back to its builtin type. Since this
- class doesn't subclass a concrete type, there's no
- implementation to fall back to, so we need to try as
- hard as possible to return an actual value, or the user
- will get a TypeError.
-
- """
- def forward(a, b):
- if isinstance(b, (int, long, Fraction)):
- return monomorphic_operator(a, b)
- elif isinstance(b, float):
- return fallback_operator(float(a), b)
- elif isinstance(b, complex):
- return fallback_operator(complex(a), b)
- else:
- return NotImplemented
- forward.__name__ = '__' + fallback_operator.__name__ + '__'
- forward.__doc__ = monomorphic_operator.__doc__
-
- def reverse(b, a):
- if isinstance(a, Rational):
- # Includes ints.
- return monomorphic_operator(a, b)
- elif isinstance(a, numbers.Real):
- return fallback_operator(float(a), float(b))
- elif isinstance(a, numbers.Complex):
- return fallback_operator(complex(a), complex(b))
- else:
- return NotImplemented
- reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
- reverse.__doc__ = monomorphic_operator.__doc__
-
- return forward, reverse
-
- def _add(a, b):
- """a + b"""
- return Fraction(a.numerator * b.denominator +
- b.numerator * a.denominator,
- a.denominator * b.denominator)
-
- __add__, __radd__ = _operator_fallbacks(_add, operator.add)
-
- def _sub(a, b):
- """a - b"""
- return Fraction(a.numerator * b.denominator -
- b.numerator * a.denominator,
- a.denominator * b.denominator)
-
- __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
-
- def _mul(a, b):
- """a * b"""
- return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
-
- __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
-
- def _div(a, b):
- """a / b"""
- return Fraction(a.numerator * b.denominator,
- a.denominator * b.numerator)
-
- __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
- __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
-
- def __floordiv__(a, b):
- """a // b"""
- # Will be math.floor(a / b) in 3.0.
- div = a / b
- if isinstance(div, Rational):
- # trunc(math.floor(div)) doesn't work if the rational is
- # more precise than a float because the intermediate
- # rounding may cross an integer boundary.
- return div.numerator // div.denominator
- else:
- return math.floor(div)
-
- def __rfloordiv__(b, a):
- """a // b"""
- # Will be math.floor(a / b) in 3.0.
- div = a / b
- if isinstance(div, Rational):
- # trunc(math.floor(div)) doesn't work if the rational is
- # more precise than a float because the intermediate
- # rounding may cross an integer boundary.
- return div.numerator // div.denominator
- else:
- return math.floor(div)
-
- def __mod__(a, b):
- """a % b"""
- div = a // b
- return a - b * div
-
- def __rmod__(b, a):
- """a % b"""
- div = a // b
- return a - b * div
-
- def __pow__(a, b):
- """a ** b
-
- If b is not an integer, the result will be a float or complex
- since roots are generally irrational. If b is an integer, the
- result will be rational.
-
- """
- if isinstance(b, Rational):
- if b.denominator == 1:
- power = b.numerator
- if power >= 0:
- return Fraction(a._numerator ** power,
- a._denominator ** power)
- else:
- return Fraction(a._denominator ** -power,
- a._numerator ** -power)
- else:
- # A fractional power will generally produce an
- # irrational number.
- return float(a) ** float(b)
- else:
- return float(a) ** b
-
- def __rpow__(b, a):
- """a ** b"""
- if b._denominator == 1 and b._numerator >= 0:
- # If a is an int, keep it that way if possible.
- return a ** b._numerator
-
- if isinstance(a, Rational):
- return Fraction(a.numerator, a.denominator) ** b
-
- if b._denominator == 1:
- return a ** b._numerator
-
- return a ** float(b)
-
- def __pos__(a):
- """+a: Coerces a subclass instance to Fraction"""
- return Fraction(a._numerator, a._denominator)
-
- def __neg__(a):
- """-a"""
- return Fraction(-a._numerator, a._denominator)
-
- def __abs__(a):
- """abs(a)"""
- return Fraction(abs(a._numerator), a._denominator)
-
- def __trunc__(a):
- """trunc(a)"""
- if a._numerator < 0:
- return -(-a._numerator // a._denominator)
- else:
- return a._numerator // a._denominator
-
- def __hash__(self):
- """hash(self)
-
- Tricky because values that are exactly representable as a
- float must have the same hash as that float.
-
- """
- # XXX since this method is expensive, consider caching the result
- if self._denominator == 1:
- # Get integers right.
- return hash(self._numerator)
- # Expensive check, but definitely correct.
- if self == float(self):
- return hash(float(self))
- else:
- # Use tuple's hash to avoid a high collision rate on
- # simple fractions.
- return hash((self._numerator, self._denominator))
-
- def __eq__(a, b):
- """a == b"""
- if isinstance(b, Rational):
- return (a._numerator == b.numerator and
- a._denominator == b.denominator)
- if isinstance(b, numbers.Complex) and b.imag == 0:
- b = b.real
- if isinstance(b, float):
- return a == a.from_float(b)
- else:
- # XXX: If b.__eq__ is implemented like this method, it may
- # give the wrong answer after float(a) changes a's
- # value. Better ways of doing this are welcome.
- return float(a) == b
-
- def _subtractAndCompareToZero(a, b, op):
- """Helper function for comparison operators.
-
- Subtracts b from a, exactly if possible, and compares the
- result with 0 using op, in such a way that the comparison
- won't recurse. If the difference raises a TypeError, returns
- NotImplemented instead.
-
- """
- if isinstance(b, numbers.Complex) and b.imag == 0:
- b = b.real
- if isinstance(b, float):
- b = a.from_float(b)
- try:
- # XXX: If b <: Real but not <: Rational, this is likely
- # to fall back to a float. If the actual values differ by
- # less than MIN_FLOAT, this could falsely call them equal,
- # which would make <= inconsistent with ==. Better ways of
- # doing this are welcome.
- diff = a - b
- except TypeError:
- return NotImplemented
- if isinstance(diff, Rational):
- return op(diff.numerator, 0)
- return op(diff, 0)
-
- def __lt__(a, b):
- """a < b"""
- return a._subtractAndCompareToZero(b, operator.lt)
-
- def __gt__(a, b):
- """a > b"""
- return a._subtractAndCompareToZero(b, operator.gt)
-
- def __le__(a, b):
- """a <= b"""
- return a._subtractAndCompareToZero(b, operator.le)
-
- def __ge__(a, b):
- """a >= b"""
- return a._subtractAndCompareToZero(b, operator.ge)
-
- def __nonzero__(a):
- """a != 0"""
- return a._numerator != 0
-
- # support for pickling, copy, and deepcopy
-
- def __reduce__(self):
- return (self.__class__, (str(self),))
-
- def __copy__(self):
- if type(self) == Fraction:
- return self # I'm immutable; therefore I am my own clone
- return self.__class__(self._numerator, self._denominator)
-
- def __deepcopy__(self, memo):
- if type(self) == Fraction:
- return self # My components are also immutable
- return self.__class__(self._numerator, self._denominator)
-