home *** CD-ROM | disk | FTP | other *** search
- # Source Generated with Decompyle++
- # File: in.pyo (Python 2.7)
-
- from __future__ import division
- from warnings import warn as _warn
- from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
- from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
- from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
- from os import urandom as _urandom
- from binascii import hexlify as _hexlify
- import hashlib as _hashlib
- __all__ = [
- 'Random',
- 'seed',
- 'random',
- 'uniform',
- 'randint',
- 'choice',
- 'sample',
- 'randrange',
- 'shuffle',
- 'normalvariate',
- 'lognormvariate',
- 'expovariate',
- 'vonmisesvariate',
- 'gammavariate',
- 'triangular',
- 'gauss',
- 'betavariate',
- 'paretovariate',
- 'weibullvariate',
- 'getstate',
- 'setstate',
- 'jumpahead',
- 'WichmannHill',
- 'getrandbits',
- 'SystemRandom']
- NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2)
- TWOPI = 2 * _pi
- LOG4 = _log(4)
- SG_MAGICCONST = 1 + _log(4.5)
- BPF = 53
- RECIP_BPF = 2 ** (-BPF)
- import _random
-
- class Random(_random.Random):
- VERSION = 3
-
- def __init__(self, x = None):
- self.seed(x)
- self.gauss_next = None
-
-
- def seed(self, a = None):
- if a is None:
-
- try:
- a = long(_hexlify(_urandom(16)), 16)
- except NotImplementedError:
- import time
- a = long(time.time() * 256)
-
-
- super(Random, self).seed(a)
- self.gauss_next = None
-
-
- def getstate(self):
- return (self.VERSION, super(Random, self).getstate(), self.gauss_next)
-
-
- def setstate(self, state):
- version = state[0]
- if version == 3:
- (version, internalstate, self.gauss_next) = state
- super(Random, self).setstate(internalstate)
- elif version == 2:
- (version, internalstate, self.gauss_next) = state
-
- try:
- internalstate = tuple((lambda .0: pass)(internalstate))
- except ValueError:
- e = None
- raise TypeError, e
-
- super(Random, self).setstate(internalstate)
- else:
- raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
-
-
- def jumpahead(self, n):
- s = repr(n) + repr(self.getstate())
- n = int(_hashlib.new('sha512', s).hexdigest(), 16)
- super(Random, self).jumpahead(n)
-
-
- def __getstate__(self):
- return self.getstate()
-
-
- def __setstate__(self, state):
- self.setstate(state)
-
-
- def __reduce__(self):
- return (self.__class__, (), self.getstate())
-
-
- def randrange(self, start, stop = None, step = 1, int = int, default = None, maxwidth = 0x1L << BPF):
- istart = int(start)
- if istart != start:
- raise ValueError, 'non-integer arg 1 for randrange()'
- if stop is default:
- if istart > 0:
- if istart >= maxwidth:
- return self._randbelow(istart)
- return None(self.random() * istart)
- raise None, 'empty range for randrange()'
- istop = int(stop)
- if istop != stop:
- raise ValueError, 'non-integer stop for randrange()'
- width = istop - istart
- if step == 1 and width > 0:
- if width >= maxwidth:
- return int(istart + self._randbelow(width))
- return None(istart + int(self.random() * width))
- if None == 1:
- raise ValueError, 'empty range for randrange() (%d,%d, %d)' % (istart, istop, width)
- istep = int(step)
- if istep != step:
- raise ValueError, 'non-integer step for randrange()'
- if istep > 0:
- n = (width + istep - 1) // istep
- elif istep < 0:
- n = (width + istep + 1) // istep
- else:
- raise ValueError, 'zero step for randrange()'
- if None <= 0:
- raise ValueError, 'empty range for randrange()'
- if n >= maxwidth:
- return istart + istep * self._randbelow(n)
- return None + istep * int(self.random() * n)
-
-
- def randint(self, a, b):
- return self.randrange(a, b + 1)
-
-
- def _randbelow(self, n, _log = _log, int = int, _maxwidth = 0x1L << BPF, _Method = _MethodType, _BuiltinMethod = _BuiltinMethodType):
-
- try:
- getrandbits = self.getrandbits
- except AttributeError:
- pass
-
- if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
- k = int(1.00001 + _log(n - 1, 2))
- r = getrandbits(k)
- while r >= n:
- r = getrandbits(k)
- return r
- if None >= _maxwidth:
- _warn('Underlying random() generator does not supply \nenough bits to choose from a population range this large')
- return int(self.random() * n)
-
-
- def choice(self, seq):
- return seq[int(self.random() * len(seq))]
-
-
- def shuffle(self, x, random = None, int = int):
- if random is None:
- random = self.random
- for i in reversed(xrange(1, len(x))):
- j = int(random() * (i + 1))
- x[i] = x[j]
- x[j] = x[i]
-
-
-
- def sample(self, population, k):
- n = len(population)
- if k <= k:
- pass
- elif not k <= n:
- raise ValueError, 'sample larger than population'
- random = self.random
- _int = int
- result = [
- None] * k
- setsize = 21
- if k > 5:
- setsize += 4 ** _ceil(_log(k * 3, 4))
- return result
-
-
- def uniform(self, a, b):
- return a + (b - a) * self.random()
-
-
- def triangular(self, low = 0, high = 1, mode = None):
- u = self.random()
- c = 0.5 if mode is None else (mode - low) / (high - low)
- if u > c:
- u = 1 - u
- c = 1 - c
- low = high
- high = low
- return low + (high - low) * (u * c) ** 0.5
-
-
- def normalvariate(self, mu, sigma):
- random = self.random
- while None:
- u1 = random()
- u2 = 1 - random()
- z = NV_MAGICCONST * (u1 - 0.5) / u2
- zz = z * z / 4
- if zz <= -_log(u2):
- break
- continue
- continue
- return mu + z * sigma
-
-
- def lognormvariate(self, mu, sigma):
- return _exp(self.normalvariate(mu, sigma))
-
-
- def expovariate(self, lambd):
- random = self.random
- u = random()
- while u <= 1e-07:
- u = random()
- return -_log(u) / lambd
-
-
- def vonmisesvariate(self, mu, kappa):
- random = self.random
- if kappa <= 1e-06:
- return TWOPI * random()
- a = None + _sqrt(1 + 4 * kappa * kappa)
- b = (a - _sqrt(2 * a)) / (2 * kappa)
- r = (1 + b * b) / (2 * b)
- while None:
- u1 = random()
- z = _cos(_pi * u1)
- f = (1 + r * z) / (r + z)
- c = kappa * (r - f)
- u2 = random()
- if not u2 < c * (2 - c):
- if u2 <= c * _exp(1 - c):
- break
- continue
- continue
- u3 = random()
- if u3 > 0.5:
- theta = mu % TWOPI + _acos(f)
- else:
- theta = mu % TWOPI - _acos(f)
- return theta
-
-
- def gammavariate(self, alpha, beta):
- if alpha <= 0 or beta <= 0:
- raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
- random = self.random
- if alpha > 1:
- ainv = _sqrt(2 * alpha - 1)
- bbb = alpha - LOG4
- ccc = alpha + ainv
- while None:
- u1 = random()
- if u1 < u1:
- pass
- elif not u1 < 1:
- continue
- u2 = 1 - random()
- v = _log(u1 / (1 - u1)) / ainv
- x = alpha * _exp(v)
- z = u1 * u1 * u2
- r = bbb + ccc * v - x
- if not r + SG_MAGICCONST - 4.5 * z >= 0:
- if r >= _log(z):
- return x * beta
- elif alpha == 1:
- u = random()
- while u <= 1e-07:
- u = random()
- return -_log(u) * beta
- while None:
- u = random()
- b = (_e + alpha) / _e
- p = b * u
- u1 = random()
- if p > 1 or u1 <= x ** (alpha - 1):
- break
-
- if u1 <= _exp(-x):
- break
- continue
- continue
- return x * beta
- return 1e-07 if p <= 1 else u1 < 1
-
-
- def gauss(self, mu, sigma):
- random = self.random
- z = self.gauss_next
- self.gauss_next = None
- if z is None:
- x2pi = random() * TWOPI
- g2rad = _sqrt(-2 * _log(1 - random()))
- z = _cos(x2pi) * g2rad
- self.gauss_next = _sin(x2pi) * g2rad
- return mu + z * sigma
-
-
- def betavariate(self, alpha, beta):
- y = self.gammavariate(alpha, 1)
- if y == 0:
- return 0
- return None / (y + self.gammavariate(beta, 1))
-
-
- def paretovariate(self, alpha):
- u = 1 - self.random()
- return 1 / pow(u, 1 / alpha)
-
-
- def weibullvariate(self, alpha, beta):
- u = 1 - self.random()
- return alpha * pow(-_log(u), 1 / beta)
-
-
-
- class WichmannHill(Random):
- VERSION = 1
-
- def seed(self, a = None):
- if a is None:
-
- try:
- a = long(_hexlify(_urandom(16)), 16)
- except NotImplementedError:
- import time
- a = long(time.time() * 256)
-
-
- if not isinstance(a, (int, long)):
- a = hash(a)
- (a, x) = divmod(a, 30268)
- (a, y) = divmod(a, 30306)
- (a, z) = divmod(a, 30322)
- self._seed = (int(x) + 1, int(y) + 1, int(z) + 1)
- self.gauss_next = None
-
-
- def random(self):
- (x, y, z) = self._seed
- x = 171 * x % 30269
- y = 172 * y % 30307
- z = 170 * z % 30323
- self._seed = (x, y, z)
- return (x / 30269 + y / 30307 + z / 30323) % 1
-
-
- def getstate(self):
- return (self.VERSION, self._seed, self.gauss_next)
-
-
- def setstate(self, state):
- version = state[0]
- if version == 1:
- (version, self._seed, self.gauss_next) = state
- else:
- raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
-
-
- def jumpahead(self, n):
- if not n >= 0:
- raise ValueError('n must be >= 0')
- (x, y, z) = self._seed
- x = int(x * pow(171, n, 30269)) % 30269
- y = int(y * pow(172, n, 30307)) % 30307
- z = int(z * pow(170, n, 30323)) % 30323
- self._seed = (x, y, z)
-
-
- def __whseed(self, x = 0, y = 0, z = 0):
- if type(y) == type(y) and type(z) == type(z):
- pass
- elif not type(z) == int:
- raise TypeError('seeds must be integers')
- if x <= x:
- pass
- elif x < 256:
- if y <= y:
- pass
- elif y < 256:
- if z <= z:
- pass
- elif not z < 256:
- raise ValueError('seeds must be in range(0, 256)')
- if x == x and y == y:
- pass
- elif y == z:
- import time
- t = long(time.time() * 256)
- t = int(t & 16777215 ^ t >> 24)
- (t, x) = divmod(t, 256)
- (t, y) = divmod(t, 256)
- (t, z) = divmod(t, 256)
- if not x:
- pass
- if not y:
- pass
- if not z:
- pass
- self._seed = (1, 1, 1)
- self.gauss_next = None
-
-
- def whseed(self, a = None):
- if a is None:
- self._WichmannHill__whseed()
- return None
- a = None(a)
- (a, x) = divmod(a, 256)
- (a, y) = divmod(a, 256)
- (a, z) = divmod(a, 256)
- if not (x + a) % 256:
- pass
- x = 1
- if not (y + a) % 256:
- pass
- y = 1
- if not (z + a) % 256:
- pass
- z = 1
- self._WichmannHill__whseed(x, y, z)
-
-
-
- class SystemRandom(Random):
-
- def random(self):
- return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
-
-
- def getrandbits(self, k):
- if k <= 0:
- raise ValueError('number of bits must be greater than zero')
- if k != int(k):
- raise TypeError('number of bits should be an integer')
- bytes = (k + 7) // 8
- x = long(_hexlify(_urandom(bytes)), 16)
- return x >> bytes * 8 - k
-
-
- def _stub(self, *args, **kwds):
- pass
-
- seed = jumpahead = _stub
-
- def _notimplemented(self, *args, **kwds):
- raise NotImplementedError('System entropy source does not have state.')
-
- getstate = setstate = _notimplemented
-
-
- def _test_generator(n, func, args):
- import time
- print n, 'times', func.__name__
- total = 0
- sqsum = 0
- smallest = 1e+10
- largest = -1e+10
- t0 = time.time()
- for i in range(n):
- x = func(*args)
- total += x
- sqsum = sqsum + x * x
- smallest = min(x, smallest)
- largest = max(x, largest)
-
- t1 = time.time()
- print round(t1 - t0, 3), 'sec,',
- avg = total / n
- stddev = _sqrt(sqsum / n - avg * avg)
- print 'avg %g, stddev %g, min %g, max %g' % (avg, stddev, smallest, largest)
-
-
- def _test(N = 2000):
- _test_generator(N, random, ())
- _test_generator(N, normalvariate, (0, 1))
- _test_generator(N, lognormvariate, (0, 1))
- _test_generator(N, vonmisesvariate, (0, 1))
- _test_generator(N, gammavariate, (0.01, 1))
- _test_generator(N, gammavariate, (0.1, 1))
- _test_generator(N, gammavariate, (0.1, 2))
- _test_generator(N, gammavariate, (0.5, 1))
- _test_generator(N, gammavariate, (0.9, 1))
- _test_generator(N, gammavariate, (1, 1))
- _test_generator(N, gammavariate, (2, 1))
- _test_generator(N, gammavariate, (20, 1))
- _test_generator(N, gammavariate, (200, 1))
- _test_generator(N, gauss, (0, 1))
- _test_generator(N, betavariate, (3, 3))
- _test_generator(N, triangular, (0, 1, 0.333333))
-
- _inst = Random()
- seed = _inst.seed
- random = _inst.random
- uniform = _inst.uniform
- triangular = _inst.triangular
- randint = _inst.randint
- choice = _inst.choice
- randrange = _inst.randrange
- sample = _inst.sample
- shuffle = _inst.shuffle
- normalvariate = _inst.normalvariate
- lognormvariate = _inst.lognormvariate
- expovariate = _inst.expovariate
- vonmisesvariate = _inst.vonmisesvariate
- gammavariate = _inst.gammavariate
- gauss = _inst.gauss
- betavariate = _inst.betavariate
- paretovariate = _inst.paretovariate
- weibullvariate = _inst.weibullvariate
- getstate = _inst.getstate
- setstate = _inst.setstate
- jumpahead = _inst.jumpahead
- getrandbits = _inst.getrandbits
- if __name__ == '__main__':
- _test()
-