home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Computerworld 1996 March
/
Computerworld_1996-03_cd.bin
/
idg_cd3
/
grafika
/
fraktaly
/
frasr192
/
fractals.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-02-15
|
77KB
|
2,887 lines
/*
FRACTALS.C, FRACTALP.C and CALCFRAC.C actually calculate the fractal
images (well, SOMEBODY had to do it!). The modules are set up so that
all logic that is independent of any fractal-specific code is in
CALCFRAC.C, the code that IS fractal-specific is in FRACTALS.C, and the
structure that ties (we hope!) everything together is in FRACTALP.C.
Original author Tim Wegner, but just about ALL the authors have
contributed SOME code to this routine at one time or another, or
contributed to one of the many massive restructurings.
The Fractal-specific routines are divided into three categories:
1. Routines that are called once-per-orbit to calculate the orbit
value. These have names like "XxxxFractal", and their function
pointers are stored in fractalspecific[fractype].orbitcalc. EVERY
new fractal type needs one of these. Return 0 to continue iterations,
1 if we're done. Results for integer fractals are left in 'lnew.x' and
'lnew.y', for floating point fractals in 'new.x' and 'new.y'.
2. Routines that are called once per pixel to set various variables
prior to the orbit calculation. These have names like xxx_per_pixel
and are fairly generic - chances are one is right for your new type.
They are stored in fractalspecific[fractype].per_pixel.
3. Routines that are called once per screen to set various variables.
These have names like XxxxSetup, and are stored in
fractalspecific[fractype].per_image.
4. The main fractal routine. Usually this will be StandardFractal(),
but if you have written a stand-alone fractal routine independent
of the StandardFractal mechanisms, your routine name goes here,
stored in fractalspecific[fractype].calctype.per_image.
Adding a new fractal type should be simply a matter of adding an item
to the 'fractalspecific' structure, writing (or re-using one of the existing)
an appropriate setup, per_image, per_pixel, and orbit routines.
-------------------------------------------------------------------- */
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <limits.h>
#include <string.h>
#ifdef __TURBOC__
#include <alloc.h>
#elif !defined(__386BSD__)
#include <malloc.h>
#endif
#include "fractint.h"
#include "mpmath.h"
#include "helpdefs.h"
#include "fractype.h"
#include "prototyp.h"
#define NEWTONDEGREELIMIT 100
#define CMPLXsqr_old(out) \
(out).y = (old.x+old.x) * old.y;\
(out).x = tempsqrx - tempsqry
#define CMPLXpwr(arg1,arg2,out) (out)= ComplexPower((arg1), (arg2))
#define CMPLXmult1(arg1,arg2,out) Arg2->d = (arg1); Arg1->d = (arg2);\
dStkMul(); Arg1++; Arg2++; (out) = Arg2->d
#define CMPLXmult(arg1,arg2,out) \
{\
_CMPLX TmP;\
TmP.x = (arg1).x*(arg2).x - (arg1).y*(arg2).y;\
TmP.y = (arg1).x*(arg2).y + (arg1).y*(arg2).x;\
(out) = TmP;\
}
#define CMPLXadd(arg1,arg2,out) \
(out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
#define CMPLXsub(arg1,arg2,out) \
(out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y
#define CMPLXtimesreal(arg,real,out) \
(out).x = (arg).x*(real);\
(out).y = (arg).y*(real)
#define CMPLXrecip(arg,out) \
{ double denom; denom = sqr((arg).x) + sqr((arg).y);\
if(denom==0.0) {(out).x = 1.0e10;(out).y = 1.0e10;}else\
{ (out).x = (arg).x/denom;\
(out).y = -(arg).y/denom;}}
_LCMPLX lcoefficient,lold,lnew,lparm, linit,ltmp,ltmp2,lparm2;
long ltempsqrx,ltempsqry;
int maxcolor;
int root, degree,basin;
double floatmin,floatmax;
double roverd, d1overd, threshold;
_CMPLX tmp2;
_CMPLX coefficient;
_CMPLX staticroots[16]; /* roots array for degree 16 or less */
_CMPLX *roots = staticroots;
struct MPC *MPCroots;
long FgHalf;
_CMPLX pwr;
int bitshiftless1; /* bit shift less 1 */
#ifndef sqr
#define sqr(x) ((x)*(x))
#endif
#ifndef lsqr
#define lsqr(x) (multiply((x),(x),bitshift))
#endif
#define modulus(z) (sqr((z).x)+sqr((z).y))
#define conjugate(pz) ((pz)->y = 0.0 - (pz)->y)
#define distance(z1,z2) (sqr((z1).x-(z2).x)+sqr((z1).y-(z2).y))
#define pMPsqr(z) (*pMPmul((z),(z)))
#define MPdistance(z1,z2) (*pMPadd(pMPsqr(*pMPsub((z1).x,(z2).x)),pMPsqr(*pMPsub((z1).y,(z2).y))))
double twopi = PI*2.0;
int c_exp;
/* These are local but I don't want to pass them as parameters */
_CMPLX parm,parm2;
_CMPLX *floatparm;
_LCMPLX *longparm; /* used here and in jb.c */
/* -------------------------------------------------------------------- */
/* These variables are external for speed's sake only */
/* -------------------------------------------------------------------- */
double sinx,cosx;
double siny,cosy;
double tmpexp;
double tempsqrx,tempsqry;
double foldxinitx,foldyinity,foldxinity,foldyinitx;
long oldxinitx,oldyinity,oldxinity,oldyinitx;
long longtmp;
/* These are for quaternions */
double qc,qci,qcj,qck;
/* temporary variables for trig use */
long lcosx, lsinx;
long lcosy, lsiny;
/*
** details of finite attractors (required for Magnet Fractals)
** (can also be used in "coloring in" the lakes of Julia types)
*/
/*
** pre-calculated values for fractal types Magnet2M & Magnet2J
*/
_CMPLX T_Cm1; /* 3 * (floatparm - 1) */
_CMPLX T_Cm2; /* 3 * (floatparm - 2) */
_CMPLX T_Cm1Cm2; /* (floatparm - 1) * (floatparm - 2) */
void FloatPreCalcMagnet2() /* precalculation for Magnet2 (M & J) for speed */
{
T_Cm1.x = floatparm->x - 1.0; T_Cm1.y = floatparm->y;
T_Cm2.x = floatparm->x - 2.0; T_Cm2.y = floatparm->y;
T_Cm1Cm2.x = (T_Cm1.x * T_Cm2.x) - (T_Cm1.y * T_Cm2.y);
T_Cm1Cm2.y = (T_Cm1.x * T_Cm2.y) + (T_Cm1.y * T_Cm2.x);
T_Cm1.x += T_Cm1.x + T_Cm1.x; T_Cm1.y += T_Cm1.y + T_Cm1.y;
T_Cm2.x += T_Cm2.x + T_Cm2.x; T_Cm2.y += T_Cm2.y + T_Cm2.y;
}
/* -------------------------------------------------------------------- */
/* Bailout Routines Macros */
/* -------------------------------------------------------------------- */
int (near *floatbailout)(void);
int (near *longbailout)(void);
int (near *bignumbailout)(void);
int (near *bigfltbailout)(void);
int near fpMODbailout()
{
if ( ( magnitude = ( tempsqrx=sqr(new.x) )
+ ( tempsqry=sqr(new.y) ) ) >= rqlim ) return(1);
old = new;
return(0);
}
int near fpREALbailout()
{
tempsqrx=sqr(new.x);
tempsqry=sqr(new.y);
magnitude = tempsqrx + tempsqry;
if(tempsqrx >= rqlim) return(1);
old = new;
return(0);
}
int near fpIMAGbailout()
{
tempsqrx=sqr(new.x);
tempsqry=sqr(new.y);
magnitude = tempsqrx + tempsqry;
if(tempsqry >= rqlim) return(1);
old = new;
return(0);
}
int near fpORbailout()
{
tempsqrx=sqr(new.x);
tempsqry=sqr(new.y);
magnitude = tempsqrx + tempsqry;
if(tempsqrx >= rqlim || tempsqry >= rqlim) return(1);
old = new;
return(0);
}
int near fpANDbailout()
{
tempsqrx=sqr(new.x);
tempsqry=sqr(new.y);
magnitude = tempsqrx + tempsqry;
if(tempsqrx >= rqlim && tempsqry >= rqlim) return(1);
old = new;
return(0);
}
/* longbailout() is equivalent to next */
#define LONGBAILOUT() \
ltempsqrx = lsqr(lnew.x); ltempsqry = lsqr(lnew.y);\
lmagnitud = ltempsqrx + ltempsqry;\
if (lmagnitud >= llimit || lmagnitud < 0 || labs(lnew.x) > llimit2\
|| labs(lnew.y) > llimit2) \
{ return(1);}\
lold = lnew;
#define FLOATTRIGBAILOUT() \
if (fabs(old.y) >= rqlim2) return(1);
#define LONGTRIGBAILOUT() \
if(labs(lold.y) >= llimit2) { return(1);}
#define LONGXYTRIGBAILOUT() \
if(labs(lold.x) >= llimit2 || labs(lold.y) >= llimit2)\
{ return(1);}
#define FLOATXYTRIGBAILOUT() \
if (fabs(old.x) >= rqlim2 || fabs(old.y) >= rqlim2) return(1);
#define FLOATHTRIGBAILOUT() \
if (fabs(old.x) >= rqlim2) return(1);
#define LONGHTRIGBAILOUT() \
if(labs(lold.x) >= llimit2) { return(1);}
#define TRIG16CHECK(X) \
if(labs((X)) > l16triglim) { return(1);}
#define FLOATEXPBAILOUT() \
if (fabs(old.y) >= 1.0e8) return(1);\
if (fabs(old.x) >= 6.4e2) return(1);
#define LONGEXPBAILOUT() \
if (labs(lold.y) >= (1000L<<bitshift)) return(1);\
if (labs(lold.x) >= (8L<<bitshift)) return(1);
#if 0
/* this define uses usual trig instead of fast trig */
#define FPUsincos(px,psinx,pcosx) \
*(psinx) = sin(*(px));\
*(pcosx) = cos(*(px));
#define FPUsinhcosh(px,psinhx,pcoshx) \
*(psinhx) = sinh(*(px));\
*(pcoshx) = cosh(*(px));
#endif
#define LTRIGARG(X) \
if(labs((X)) > l16triglim)\
{\
double tmp;\
tmp = (X);\
tmp /= fudge;\
tmp = fmod(tmp,twopi);\
tmp *= fudge;\
(X) = (long)tmp;\
}\
static int near Halleybailout(void)
{
if ( fabs(modulus(new)-modulus(old)) < parm2.x)
return(1);
old = new;
return(0);
}
#ifndef XFRACT
#define MPCmod(m) (*pMPadd(*pMPmul((m).x, (m).x), *pMPmul((m).y, (m).y)))
struct MPC mpcold, mpcnew, mpctmp, mpctmp1;
struct MP mptmpparm2x;
static int near MPCHalleybailout(void)
{
static struct MP mptmpbailout;
mptmpbailout = *MPabs(*pMPsub(MPCmod(mpcnew), MPCmod(mpcold)));
if (pMPcmp(mptmpbailout, mptmpparm2x) < 0)
return(1);
mpcold = mpcnew;
return(0);
}
#endif
#ifdef XFRACT
int asmlMODbailout() { return 0;}
int asmlREALbailout() { return 0;}
int asmlIMAGbailout() { return 0;}
int asmlORbailout() { return 0;}
int asmlANDbailout() { return 0;}
int asm386lMODbailout() { return 0;}
int asm386lREALbailout() { return 0;}
int asm386lIMAGbailout() { return 0;}
int asm386lORbailout() { return 0;}
int asm386lANDbailout() { return 0;}
int asmfpMODbailout() { return 0;}
int asmfpREALbailout() { return 0;}
int asmfpIMAGbailout() { return 0;}
int asmfpORbailout() { return 0;}
int asmfpANDbailout() { return 0;}
#endif
/* -------------------------------------------------------------------- */
/* Fractal (once per iteration) routines */
/* -------------------------------------------------------------------- */
static double xt, yt, t2;
/* Raise complex number (base) to the (exp) power, storing the result
** in complex (result).
*/
void cpower(_CMPLX *base, int exp, _CMPLX *result)
{
if (exp<0) {
cpower(base,-exp,result);
CMPLXrecip(*result,*result);
return;
}
xt = base->x; yt = base->y;
if (exp & 1)
{
result->x = xt;
result->y = yt;
}
else
{
result->x = 1.0;
result->y = 0.0;
}
exp >>= 1;
while (exp)
{
t2 = xt * xt - yt * yt;
yt = 2 * xt * yt;
xt = t2;
if (exp & 1)
{
t2 = xt * result->x - yt * result->y;
result->y = result->y * xt + yt * result->x;
result->x = t2;
}
exp >>= 1;
}
}
/* long version */
static long lxt, lyt, lt2;
lcpower(_LCMPLX *base, int exp, _LCMPLX *result, int bitshift)
{
static long maxarg;
maxarg = 64L<<bitshift;
if (exp<0) {
overflow = lcpower(base,-exp,result,bitshift);
LCMPLXrecip(*result,*result);
return(overflow);
}
overflow = 0;
lxt = base->x; lyt = base->y;
if (exp & 1)
{
result->x = lxt;
result->y = lyt;
}
else
{
result->x = 1L<<bitshift;
result->y = 0L;
}
exp >>= 1;
while (exp)
{
/*
if(labs(lxt) >= maxarg || labs(lyt) >= maxarg)
return(-1);
*/
lt2 = multiply(lxt, lxt, bitshift) - multiply(lyt,lyt,bitshift);
lyt = multiply(lxt,lyt,bitshiftless1);
if(overflow)
return(overflow);
lxt = lt2;
if (exp & 1)
{
lt2 = multiply(lxt,result->x, bitshift) - multiply(lyt,result->y,bitshift);
result->y = multiply(result->y,lxt,bitshift) + multiply(lyt,result->x,bitshift);
result->x = lt2;
}
exp >>= 1;
}
if(result->x == 0 && result->y == 0)
overflow = 1;
return(overflow);
}
#if 0
z_to_the_z(_CMPLX *z, _CMPLX *out)
{
static _CMPLX tmp1,tmp2;
/* raises complex z to the z power */
int errno_xxx;
errno_xxx = 0;
if(fabs(z->x) < DBL_EPSILON) return(-1);
/* log(x + iy) = 1/2(log(x*x + y*y) + i(arc_tan(y/x)) */
tmp1.x = .5*log(sqr(z->x)+sqr(z->y));
/* the fabs in next line added to prevent discontinuity in image */
tmp1.y = atan(fabs(z->y/z->x));
/* log(z)*z */
tmp2.x = tmp1.x * z->x - tmp1.y * z->y;
tmp2.y = tmp1.x * z->y + tmp1.y * z->x;
/* z*z = e**(log(z)*z) */
/* e**(x + iy) = e**x * (cos(y) + isin(y)) */
tmpexp = exp(tmp2.x);
FPUsincos(&tmp2.y,&siny,&cosy);
out->x = tmpexp*cosy;
out->y = tmpexp*siny;
return(errno_xxx);
}
#endif
#ifdef XFRACT /* fractint uses the NewtonFractal2 code in newton.asm */
int complex_div(_CMPLX arg1,_CMPLX arg2,_CMPLX *pz);
int complex_mult(_CMPLX arg1,_CMPLX arg2,_CMPLX *pz);
/* Distance of complex z from unit circle */
#define DIST1(z) (((z).x-1.0)*((z).x-1.0)+((z).y)*((z).y))
#define LDIST1(z) (lsqr((((z).x)-fudge)) + lsqr(((z).y)))
int NewtonFractal2()
{
static char start=1;
if(start)
{
start = 0;
}
cpower(&old, degree-1, &tmp);
complex_mult(tmp, old, &new);
if (DIST1(new) < threshold)
{
if(fractype==NEWTBASIN || fractype==MPNEWTBASIN)
{
long tmpcolor;
int i;
tmpcolor = -1;
/* this code determines which degree-th root of root the
Newton formula converges to. The roots of a 1 are
distributed on a circle of radius 1 about the origin. */
for(i=0;i<degree;i++)
/* color in alternating shades with iteration according to
which root of 1 it converged to */
if(distance(roots[i],old) < threshold)
{
if (basin==2) {
tmpcolor = 1+(i&7)+((coloriter&1)<<3);
} else {
tmpcolor = 1+i;
}
break;
}
if(tmpcolor == -1)
coloriter = maxcolor;
else
coloriter = tmpcolor;
}
return(1);
}
new.x = d1overd * new.x + roverd;
new.y *= d1overd;
/* Watch for divide underflow */
if ((t2 = tmp.x * tmp.x + tmp.y * tmp.y) < FLT_MIN)
return(1);
else
{
t2 = 1.0 / t2;
old.x = t2 * (new.x * tmp.x + new.y * tmp.y);
old.y = t2 * (new.y * tmp.x - new.x * tmp.y);
}
return(0);
}
complex_mult(_CMPLX arg1,_CMPLX arg2,_CMPLX *pz)
{
pz->x = arg1.x*arg2.x - arg1.y*arg2.y;
pz->y = arg1.x*arg2.y+arg1.y*arg2.x;
return(0);
}
complex_div(_CMPLX numerator,_CMPLX denominator,_CMPLX *pout)
{
double mod;
if((mod = modulus(denominator)) < FLT_MIN)
return(1);
conjugate(&denominator);
complex_mult(numerator,denominator,pout);
pout->x = pout->x/mod;
pout->y = pout->y/mod;
return(0);
}
#endif /* newton code only used by xfractint */
#ifndef XFRACT
struct MP mproverd, mpd1overd, mpthreshold;
struct MP mpt2;
struct MP mpone;
#endif
int MPCNewtonFractal()
{
#ifndef XFRACT
MPOverflow = 0;
mpctmp = MPCpow(mpcold,degree-1);
mpcnew.x = *pMPsub(*pMPmul(mpctmp.x,mpcold.x),*pMPmul(mpctmp.y,mpcold.y));
mpcnew.y = *pMPadd(*pMPmul(mpctmp.x,mpcold.y),*pMPmul(mpctmp.y,mpcold.x));
mpctmp1.x = *pMPsub(mpcnew.x, MPCone.x);
mpctmp1.y = *pMPsub(mpcnew.y, MPCone.y);
if(pMPcmp(MPCmod(mpctmp1),mpthreshold)< 0)
{
if(fractype==MPNEWTBASIN)
{
long tmpcolor;
int i;
tmpcolor = -1;
for(i=0;i<degree;i++)
if(pMPcmp(MPdistance(MPCroots[i],mpcold),mpthreshold) < 0)
{
if(basin==2)
tmpcolor = 1+(i&7) + ((coloriter&1)<<3);
else
tmpcolor = 1+i;
break;
}
if(tmpcolor == -1)
coloriter = maxcolor;
else
coloriter = tmpcolor;
}
return(1);
}
mpcnew.x = *pMPadd(*pMPmul(mpd1overd,mpcnew.x),mproverd);
mpcnew.y = *pMPmul(mpcnew.y,mpd1overd);
mpt2 = MPCmod(mpctmp);
mpt2 = *pMPdiv(mpone,mpt2);
mpcold.x = *pMPmul(mpt2,(*pMPadd(*pMPmul(mpcnew.x,mpctmp.x),*pMPmul(mpcnew.y,mpctmp.y))));
mpcold.y = *pMPmul(mpt2,(*pMPsub(*pMPmul(mpcnew.y,mpctmp.x),*pMPmul(mpcnew.x,mpctmp.y))));
new.x = *pMP2d(mpcold.x);
new.y = *pMP2d(mpcold.y);
return(MPOverflow);
#endif
}
Barnsley1Fractal()
{
#ifndef XFRACT
/* Barnsley's Mandelbrot type M1 from "Fractals
Everywhere" by Michael Barnsley, p. 322 */
/* calculate intermediate products */
oldxinitx = multiply(lold.x, longparm->x, bitshift);
oldyinity = multiply(lold.y, longparm->y, bitshift);
oldxinity = multiply(lold.x, longparm->y, bitshift);
oldyinitx = multiply(lold.y, longparm->x, bitshift);
/* orbit calculation */
if(lold.x >= 0)
{
lnew.x = (oldxinitx - longparm->x - oldyinity);
lnew.y = (oldyinitx - longparm->y + oldxinity);
}
else
{
lnew.x = (oldxinitx + longparm->x - oldyinity);
lnew.y = (oldyinitx + longparm->y + oldxinity);
}
return(longbailout());
#endif
}
Barnsley1FPFractal()
{
/* Barnsley's Mandelbrot type M1 from "Fractals
Everywhere" by Michael Barnsley, p. 322 */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
/* calculate intermediate products */
foldxinitx = old.x * floatparm->x;
foldyinity = old.y * floatparm->y;
foldxinity = old.x * floatparm->y;
foldyinitx = old.y * floatparm->x;
/* orbit calculation */
if(old.x >= 0)
{
new.x = (foldxinitx - floatparm->x - foldyinity);
new.y = (foldyinitx - floatparm->y + foldxinity);
}
else
{
new.x = (foldxinitx + floatparm->x - foldyinity);
new.y = (foldyinitx + floatparm->y + foldxinity);
}
return(floatbailout());
}
Barnsley2Fractal()
{
#ifndef XFRACT
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 331, example 4.2 */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
/* calculate intermediate products */
oldxinitx = multiply(lold.x, longparm->x, bitshift);
oldyinity = multiply(lold.y, longparm->y, bitshift);
oldxinity = multiply(lold.x, longparm->y, bitshift);
oldyinitx = multiply(lold.y, longparm->x, bitshift);
/* orbit calculation */
if(oldxinity + oldyinitx >= 0)
{
lnew.x = oldxinitx - longparm->x - oldyinity;
lnew.y = oldyinitx - longparm->y + oldxinity;
}
else
{
lnew.x = oldxinitx + longparm->x - oldyinity;
lnew.y = oldyinitx + longparm->y + oldxinity;
}
return(longbailout());
#endif
}
Barnsley2FPFractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 331, example 4.2 */
/* calculate intermediate products */
foldxinitx = old.x * floatparm->x;
foldyinity = old.y * floatparm->y;
foldxinity = old.x * floatparm->y;
foldyinitx = old.y * floatparm->x;
/* orbit calculation */
if(foldxinity + foldyinitx >= 0)
{
new.x = foldxinitx - floatparm->x - foldyinity;
new.y = foldyinitx - floatparm->y + foldxinity;
}
else
{
new.x = foldxinitx + floatparm->x - foldyinity;
new.y = foldyinitx + floatparm->y + foldxinity;
}
return(floatbailout());
}
JuliaFractal()
{
#ifndef XFRACT
/* used for C prototype of fast integer math routines for classic
Mandelbrot and Julia */
lnew.x = ltempsqrx - ltempsqry + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
#elif !defined(__386BSD__)
fprintf(stderr,"JuliaFractal called\n");
exit(-1);
#endif
}
JuliafpFractal()
{
/* floating point version of classical Mandelbrot/Julia */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
new.x = tempsqrx - tempsqry + floatparm->x;
new.y = 2.0 * old.x * old.y + floatparm->y;
return(floatbailout());
}
LambdaFPFractal()
{
/* variation of classical Mandelbrot/Julia */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
tempsqrx = old.x - tempsqrx + tempsqry;
tempsqry = -(old.y * old.x);
tempsqry += tempsqry + old.y;
new.x = floatparm->x * tempsqrx - floatparm->y * tempsqry;
new.y = floatparm->x * tempsqry + floatparm->y * tempsqrx;
return(floatbailout());
}
LambdaFractal()
{
#ifndef XFRACT
/* variation of classical Mandelbrot/Julia */
/* in complex math) temp = Z * (1-Z) */
ltempsqrx = lold.x - ltempsqrx + ltempsqry;
ltempsqry = lold.y
- multiply(lold.y, lold.x, bitshiftless1);
/* (in complex math) Z = Lambda * Z */
lnew.x = multiply(longparm->x, ltempsqrx, bitshift)
- multiply(longparm->y, ltempsqry, bitshift);
lnew.y = multiply(longparm->x, ltempsqry, bitshift)
+ multiply(longparm->y, ltempsqrx, bitshift);
return(longbailout());
#endif
}
SierpinskiFractal()
{
#ifndef XFRACT
/* following code translated from basic - see "Fractals
Everywhere" by Michael Barnsley, p. 251, Program 7.1.1 */
lnew.x = (lold.x << 1); /* new.x = 2 * old.x */
lnew.y = (lold.y << 1); /* new.y = 2 * old.y */
if(lold.y > ltmp.y) /* if old.y > .5 */
lnew.y = lnew.y - ltmp.x; /* new.y = 2 * old.y - 1 */
else if(lold.x > ltmp.y) /* if old.x > .5 */
lnew.x = lnew.x - ltmp.x; /* new.x = 2 * old.x - 1 */
/* end barnsley code */
return(longbailout());
#endif
}
SierpinskiFPFractal()
{
/* following code translated from basic - see "Fractals
Everywhere" by Michael Barnsley, p. 251, Program 7.1.1 */
new.x = old.x + old.x;
new.y = old.y + old.y;
if(old.y > .5)
new.y = new.y - 1;
else if (old.x > .5)
new.x = new.x - 1;
/* end barnsley code */
return(floatbailout());
}
LambdaexponentFractal()
{
/* found this in "Science of Fractal Images" */
FLOATEXPBAILOUT();
FPUsincos (&old.y,&siny,&cosy);
if (old.x >= rqlim && cosy >= 0.0) return(1);
tmpexp = exp(old.x);
tmp.x = tmpexp*cosy;
tmp.y = tmpexp*siny;
/*multiply by lamda */
new.x = floatparm->x*tmp.x - floatparm->y*tmp.y;
new.y = floatparm->y*tmp.x + floatparm->x*tmp.y;
old = new;
return(0);
}
LongLambdaexponentFractal()
{
#ifndef XFRACT
/* found this in "Science of Fractal Images" */
LONGEXPBAILOUT();
SinCos086 (lold.y, &lsiny, &lcosy);
if (lold.x >= llimit && lcosy >= 0L) return(1);
longtmp = Exp086(lold.x);
ltmp.x = multiply(longtmp, lcosy, bitshift);
ltmp.y = multiply(longtmp, lsiny, bitshift);
lnew.x = multiply(longparm->x, ltmp.x, bitshift)
- multiply(longparm->y, ltmp.y, bitshift);
lnew.y = multiply(longparm->x, ltmp.y, bitshift)
+ multiply(longparm->y, ltmp.x, bitshift);
lold = lnew;
return(0);
#endif
}
FloatTrigPlusExponentFractal()
{
/* another Scientific American biomorph type */
/* z(n+1) = e**z(n) + trig(z(n)) + C */
if (fabs(old.x) >= 6.4e2) return(1); /* DOMAIN errors */
tmpexp = exp(old.x);
FPUsincos (&old.y,&siny,&cosy);
CMPLXtrig0(old,new);
/*new = trig(old) + e**old + C */
new.x += tmpexp*cosy + floatparm->x;
new.y += tmpexp*siny + floatparm->y;
return(floatbailout());
}
LongTrigPlusExponentFractal()
{
#ifndef XFRACT
/* calculate exp(z) */
/* domain check for fast transcendental functions */
TRIG16CHECK(lold.x);
TRIG16CHECK(lold.y);
longtmp = Exp086(lold.x);
SinCos086 (lold.y, &lsiny, &lcosy);
LCMPLXtrig0(lold,lnew);
lnew.x += multiply(longtmp, lcosy, bitshift) + longparm->x;
lnew.y += multiply(longtmp, lsiny, bitshift) + longparm->y;
return(longbailout());
#endif
}
MarksLambdaFractal()
{
/* Mark Peterson's variation of "lambda" function */
/* Z1 = (C^(exp-1) * Z**2) + C */
ltmp.x = ltempsqrx - ltempsqry;
ltmp.y = multiply(lold.x ,lold.y ,bitshiftless1);
lnew.x = multiply(lcoefficient.x, ltmp.x, bitshift)
- multiply(lcoefficient.y, ltmp.y, bitshift) + longparm->x;
lnew.y = multiply(lcoefficient.x, ltmp.y, bitshift)
+ multiply(lcoefficient.y, ltmp.x, bitshift) + longparm->y;
return(longbailout());
}
MarksLambdafpFractal()
{
/* Mark Peterson's variation of "lambda" function */
/* Z1 = (C^(exp-1) * Z**2) + C */
tmp.x = tempsqrx - tempsqry;
tmp.y = old.x * old.y *2;
new.x = coefficient.x * tmp.x - coefficient.y * tmp.y + floatparm->x;
new.y = coefficient.x * tmp.y + coefficient.y * tmp.x + floatparm->y;
return(floatbailout());
}
long XXOne, FgOne, FgTwo;
UnityFractal()
{
#ifndef XFRACT
/* brought to you by Mark Peterson - you won't find this in any fractal
books unless they saw it here first - Mark invented it! */
XXOne = multiply(lold.x, lold.x, bitshift) + multiply(lold.y, lold.y, bitshift);
if((XXOne > FgTwo) || (labs(XXOne - FgOne) < delmin))
return(1);
lold.y = multiply(FgTwo - XXOne, lold.x, bitshift);
lold.x = multiply(FgTwo - XXOne, lold.y, bitshift);
lnew=lold; /* TW added this line */
return(0);
#endif
}
#define XXOne new.x
UnityfpFractal()
{
/* brought to you by Mark Peterson - you won't find this in any fractal
books unless they saw it here first - Mark invented it! */
XXOne = sqr(old.x) + sqr(old.y);
if((XXOne > 2.0) || (fabs(XXOne - 1.0) < ddelmin))
return(1);
old.y = (2.0 - XXOne)* old.x;
old.x = (2.0 - XXOne)* old.y;
new=old; /* TW added this line */
return(0);
}
#undef XXOne
Mandel4Fractal()
{
/* By writing this code, Bert has left behind the excuse "don't
know what a fractal is, just know how to make'em go fast".
Bert is hereby declared a bonafide fractal expert! Supposedly
this routine calculates the Mandelbrot/Julia set based on the
polynomial z**4 + lambda, but I wouldn't know -- can't follow
all that integer math speedup stuff - Tim */
/* first, compute (x + iy)**2 */
lnew.x = ltempsqrx - ltempsqry;
lnew.y = multiply(lold.x, lold.y, bitshiftless1);
if (longbailout()) return(1);
/* then, compute ((x + iy)**2)**2 + lambda */
lnew.x = ltempsqrx - ltempsqry + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
}
Mandel4fpFractal()
{
/* first, compute (x + iy)**2 */
new.x = tempsqrx - tempsqry;
new.y = old.x*old.y*2;
if (floatbailout()) return(1);
/* then, compute ((x + iy)**2)**2 + lambda */
new.x = tempsqrx - tempsqry + floatparm->x;
new.y = old.x*old.y*2 + floatparm->y;
return(floatbailout());
}
floatZtozPluszpwrFractal()
{
cpower(&old,(int)param[2],&new);
old = ComplexPower(old,old);
new.x = new.x + old.x +floatparm->x;
new.y = new.y + old.y +floatparm->y;
return(floatbailout());
}
longZpowerFractal()
{
#ifndef XFRACT
if(lcpower(&lold,c_exp,&lnew,bitshift))
lnew.x = lnew.y = 8L<<bitshift;
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
longCmplxZpowerFractal()
{
#ifndef XFRACT
_CMPLX x, y;
x.x = (double)lold.x / fudge;
x.y = (double)lold.y / fudge;
y.x = (double)lparm2.x / fudge;
y.y = (double)lparm2.y / fudge;
x = ComplexPower(x, y);
if(fabs(x.x) < fgLimit && fabs(x.y) < fgLimit) {
lnew.x = (long)(x.x * fudge);
lnew.y = (long)(x.y * fudge);
}
else
overflow = 1;
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
floatZpowerFractal()
{
cpower(&old,c_exp,&new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
floatCmplxZpowerFractal()
{
new = ComplexPower(old, parm2);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
Barnsley3Fractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 292, example 4.1 */
/* calculate intermediate products */
oldxinitx = multiply(lold.x, lold.x, bitshift);
oldyinity = multiply(lold.y, lold.y, bitshift);
oldxinity = multiply(lold.x, lold.y, bitshift);
/* orbit calculation */
if(lold.x > 0)
{
lnew.x = oldxinitx - oldyinity - fudge;
lnew.y = oldxinity << 1;
}
else
{
lnew.x = oldxinitx - oldyinity - fudge
+ multiply(longparm->x,lold.x,bitshift);
lnew.y = oldxinity <<1;
/* This term added by Tim Wegner to make dependent on the
imaginary part of the parameter. (Otherwise Mandelbrot
is uninteresting. */
lnew.y += multiply(longparm->y,lold.x,bitshift);
}
return(longbailout());
}
Barnsley3FPFractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 292, example 4.1 */
/* calculate intermediate products */
foldxinitx = old.x * old.x;
foldyinity = old.y * old.y;
foldxinity = old.x * old.y;
/* orbit calculation */
if(old.x > 0)
{
new.x = foldxinitx - foldyinity - 1.0;
new.y = foldxinity * 2;
}
else
{
new.x = foldxinitx - foldyinity -1.0 + floatparm->x * old.x;
new.y = foldxinity * 2;
/* This term added by Tim Wegner to make dependent on the
imaginary part of the parameter. (Otherwise Mandelbrot
is uninteresting. */
new.y += floatparm->y * old.x;
}
return(floatbailout());
}
TrigPlusZsquaredFractal()
{
#ifndef XFRACT
/* From Scientific American, July 1989 */
/* A Biomorph */
/* z(n+1) = trig(z(n))+z(n)**2+C */
LCMPLXtrig0(lold,lnew);
lnew.x += ltempsqrx - ltempsqry + longparm->x;
lnew.y += multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
#endif
}
TrigPlusZsquaredfpFractal()
{
/* From Scientific American, July 1989 */
/* A Biomorph */
/* z(n+1) = trig(z(n))+z(n)**2+C */
CMPLXtrig0(old,new);
new.x += tempsqrx - tempsqry + floatparm->x;
new.y += 2.0 * old.x * old.y + floatparm->y;
return(floatbailout());
}
Richard8fpFractal()
{
/* Richard8 {c = z = pixel: z=sin(z)+sin(pixel),|z|<=50} */
CMPLXtrig0(old,new);
/* CMPLXtrig1(*floatparm,tmp); */
new.x += tmp.x;
new.y += tmp.y;
return(floatbailout());
}
Richard8Fractal()
{
#ifndef XFRACT
/* Richard8 {c = z = pixel: z=sin(z)+sin(pixel),|z|<=50} */
LCMPLXtrig0(lold,lnew);
/* LCMPLXtrig1(*longparm,ltmp); */
lnew.x += ltmp.x;
lnew.y += ltmp.y;
return(longbailout());
#endif
}
PopcornFractal()
{
tmp = old;
tmp.x *= 3.0;
tmp.y *= 3.0;
FPUsincos(&tmp.x,&sinx,&cosx);
FPUsincos(&tmp.y,&siny,&cosy);
tmp.x = sinx/cosx + old.x;
tmp.y = siny/cosy + old.y;
FPUsincos(&tmp.x,&sinx,&cosx);
FPUsincos(&tmp.y,&siny,&cosy);
new.x = old.x - parm.x*siny;
new.y = old.y - parm.x*sinx;
/*
new.x = old.x - parm.x*sin(old.y+tan(3*old.y));
new.y = old.y - parm.x*sin(old.x+tan(3*old.x));
*/
if(plot == noplot)
{
plot_orbit(new.x,new.y,1+row%colors);
old = new;
}
else
/* FLOATBAILOUT(); */
/* PB The above line was weird, not what it seems to be! But, bracketing
it or always doing it (either of which seem more likely to be what
was intended) changes the image for the worse, so I'm not touching it.
Same applies to int form in next routine. */
/* PB later: recoded inline, still leaving it weird */
tempsqrx = sqr(new.x);
tempsqry = sqr(new.y);
if((magnitude = tempsqrx + tempsqry) >= rqlim) return(1);
old = new;
return(0);
}
LPopcornFractal()
{
#ifndef XFRACT
ltmp = lold;
ltmp.x *= 3L;
ltmp.y *= 3L;
LTRIGARG(ltmp.x);
LTRIGARG(ltmp.y);
SinCos086(ltmp.x,&lsinx,&lcosx);
SinCos086(ltmp.y,&lsiny,&lcosy);
ltmp.x = divide(lsinx,lcosx,bitshift) + lold.x;
ltmp.y = divide(lsiny,lcosy,bitshift) + lold.y;
LTRIGARG(ltmp.x);
LTRIGARG(ltmp.y);
SinCos086(ltmp.x,&lsinx,&lcosx);
SinCos086(ltmp.y,&lsiny,&lcosy);
lnew.x = lold.x - multiply(lparm.x,lsiny,bitshift);
lnew.y = lold.y - multiply(lparm.x,lsinx,bitshift);
if(plot == noplot)
{
iplot_orbit(lnew.x,lnew.y,1+row%colors);
lold = lnew;
}
else
LONGBAILOUT();
/* PB above still the old way, is weird, see notes in FP popcorn case */
return(0);
#endif
}
int MarksCplxMand(void)
{
tmp.x = tempsqrx - tempsqry;
tmp.y = 2*old.x*old.y;
FPUcplxmul(&tmp, &coefficient, &new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
int SpiderfpFractal(void)
{
/* Spider(XAXIS) { c=z=pixel: z=z*z+c; c=c/2+z, |z|<=4 } */
new.x = tempsqrx - tempsqry + tmp.x;
new.y = 2 * old.x * old.y + tmp.y;
tmp.x = tmp.x/2 + new.x;
tmp.y = tmp.y/2 + new.y;
return(floatbailout());
}
SpiderFractal(void)
{
#ifndef XFRACT
/* Spider(XAXIS) { c=z=pixel: z=z*z+c; c=c/2+z, |z|<=4 } */
lnew.x = ltempsqrx - ltempsqry + ltmp.x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + ltmp.y;
ltmp.x = (ltmp.x >> 1) + lnew.x;
ltmp.y = (ltmp.y >> 1) + lnew.y;
return(longbailout());
#endif
}
TetratefpFractal()
{
/* Tetrate(XAXIS) { c=z=pixel: z=c^z, |z|<=(P1+3) } */
new = ComplexPower(*floatparm,old);
return(floatbailout());
}
ZXTrigPlusZFractal()
{
#ifndef XFRACT
/* z = (p1*z*trig(z))+p2*z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lparm,ltmp,ltmp); /* ltmp = p1*trig(old) */
LCMPLXmult(lold,ltmp,ltmp2); /* ltmp2 = p1*old*trig(old) */
LCMPLXmult(lparm2,lold,ltmp); /* ltmp = p2*old */
LCMPLXadd(ltmp2,ltmp,lnew); /* lnew = p1*trig(old) + p2*old */
return(longbailout());
#endif
}
ScottZXTrigPlusZFractal()
{
#ifndef XFRACT
/* z = (z*trig(z))+z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lold,ltmp,lnew); /* lnew = old*trig(old) */
LCMPLXadd(lnew,lold,lnew); /* lnew = trig(old) + old */
return(longbailout());
#endif
}
SkinnerZXTrigSubZFractal()
{
#ifndef XFRACT
/* z = (z*trig(z))-z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lold,ltmp,lnew); /* lnew = old*trig(old) */
LCMPLXsub(lnew,lold,lnew); /* lnew = trig(old) - old */
return(longbailout());
#endif
}
ZXTrigPlusZfpFractal()
{
/* z = (p1*z*trig(z))+p2*z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(parm,tmp,tmp); /* tmp = p1*trig(old) */
CMPLXmult(old,tmp,tmp2); /* tmp2 = p1*old*trig(old) */
CMPLXmult(parm2,old,tmp); /* tmp = p2*old */
CMPLXadd(tmp2,tmp,new); /* new = p1*trig(old) + p2*old */
return(floatbailout());
}
ScottZXTrigPlusZfpFractal()
{
/* z = (z*trig(z))+z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(old,tmp,new); /* new = old*trig(old) */
CMPLXadd(new,old,new); /* new = trig(old) + old */
return(floatbailout());
}
SkinnerZXTrigSubZfpFractal()
{
/* z = (z*trig(z))-z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(old,tmp,new); /* new = old*trig(old) */
CMPLXsub(new,old,new); /* new = trig(old) - old */
return(floatbailout());
}
Sqr1overTrigFractal()
{
#ifndef XFRACT
/* z = sqr(1/trig(z)) */
LCMPLXtrig0(lold,lold);
LCMPLXrecip(lold,lold);
LCMPLXsqr(lold,lnew);
return(longbailout());
#endif
}
Sqr1overTrigfpFractal()
{
/* z = sqr(1/trig(z)) */
CMPLXtrig0(old,old);
CMPLXrecip(old,old);
CMPLXsqr(old,new);
return(floatbailout());
}
TrigPlusTrigFractal()
{
#ifndef XFRACT
/* z = trig(0,z)*p1+trig1(z)*p2 */
LCMPLXtrig0(lold,ltmp);
LCMPLXmult(lparm,ltmp,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXmult(lparm2,ltmp2,lold);
LCMPLXadd(ltmp,lold,lnew);
return(longbailout());
#endif
}
TrigPlusTrigfpFractal()
{
/* z = trig0(z)*p1+trig1(z)*p2 */
CMPLXtrig0(old,tmp);
CMPLXmult(parm,tmp,tmp);
CMPLXtrig1(old,old);
CMPLXmult(parm2,old,old);
CMPLXadd(tmp,old,new);
return(floatbailout());
}
/* The following four fractals are based on the idea of parallel
or alternate calculations. The shift is made when the mod
reaches a given value. JCO 5/6/92 */
LambdaTrigOrTrigFractal()
{
#ifndef XFRACT
/* z = trig0(z)*p1 if mod(old) < p2.x and
trig1(z)*p1 if mod(old) >= p2.x */
if ((LCMPLXmod(lold)) < lparm2.x){
LCMPLXtrig0(lold,ltmp);
LCMPLXmult(*longparm,ltmp,lnew);}
else{
LCMPLXtrig1(lold,ltmp);
LCMPLXmult(*longparm,ltmp,lnew);}
return(longbailout());
#endif
}
LambdaTrigOrTrigfpFractal()
{
/* z = trig0(z)*p1 if mod(old) < p2.x and
trig1(z)*p1 if mod(old) >= p2.x */
if (CMPLXmod(old) < parm2.x){
CMPLXtrig0(old,old);
FPUcplxmul(floatparm,&old,&new);}
else{
CMPLXtrig1(old,old);
FPUcplxmul(floatparm,&old,&new);}
return(floatbailout());
}
JuliaTrigOrTrigFractal()
{
#ifndef XFRACT
/* z = trig0(z)+p1 if mod(old) < p2.x and
trig1(z)+p1 if mod(old) >= p2.x */
if (LCMPLXmod(lold) < lparm2.x){
LCMPLXtrig0(lold,ltmp);
LCMPLXadd(*longparm,ltmp,lnew);}
else{
LCMPLXtrig1(lold,ltmp);
LCMPLXadd(*longparm,ltmp,lnew);}
return(longbailout());
#endif
}
JuliaTrigOrTrigfpFractal()
{
/* z = trig0(z)+p1 if mod(old) < p2.x and
trig1(z)+p1 if mod(old) >= p2.x */
if (CMPLXmod(old) < parm2.x){
CMPLXtrig0(old,old);
CMPLXadd(*floatparm,old,new);}
else{
CMPLXtrig1(old,old);
CMPLXadd(*floatparm,old,new);}
return(floatbailout());
}
int AplusOne, Ap1deg;
struct MP mpAplusOne, mpAp1deg;
struct MPC mpctmpparm;
int MPCHalleyFractal()
{
#ifndef XFRACT
/* X(X^a - 1) = 0, Halley Map */
/* a = parm.x, relaxation coeff. = parm.y, epsilon = parm2.x */
int ihal;
struct MPC mpcXtoAlessOne, mpcXtoA;
struct MPC mpcXtoAplusOne; /* a-1, a, a+1 */
struct MPC mpcFX, mpcF1prime, mpcF2prime, mpcHalnumer1;
struct MPC mpcHalnumer2, mpcHaldenom, mpctmp;
MPOverflow = 0;
mpcXtoAlessOne.x = mpcold.x;
mpcXtoAlessOne.y = mpcold.y;
for(ihal=2; ihal<degree; ihal++) {
mpctmp.x = *pMPsub(*pMPmul(mpcXtoAlessOne.x,mpcold.x),*pMPmul(mpcXtoAlessOne.y,mpcold.y));
mpctmp.y = *pMPadd(*pMPmul(mpcXtoAlessOne.x,mpcold.y),*pMPmul(mpcXtoAlessOne.y,mpcold.x));
mpcXtoAlessOne.x = mpctmp.x;
mpcXtoAlessOne.y = mpctmp.y;
}
mpcXtoA.x = *pMPsub(*pMPmul(mpcXtoAlessOne.x,mpcold.x),*pMPmul(mpcXtoAlessOne.y,mpcold.y));
mpcXtoA.y = *pMPadd(*pMPmul(mpcXtoAlessOne.x,mpcold.y),*pMPmul(mpcXtoAlessOne.y,mpcold.x));
mpcXtoAplusOne.x = *pMPsub(*pMPmul(mpcXtoA.x,mpcold.x),*pMPmul(mpcXtoA.y,mpcold.y));
mpcXtoAplusOne.y = *pMPadd(*pMPmul(mpcXtoA.x,mpcold.y),*pMPmul(mpcXtoA.y,mpcold.x));
mpcFX.x = *pMPsub(mpcXtoAplusOne.x, mpcold.x);
mpcFX.y = *pMPsub(mpcXtoAplusOne.y, mpcold.y); /* FX = X^(a+1) - X = F */
mpcF2prime.x = *pMPmul(mpAp1deg, mpcXtoAlessOne.x); /* mpAp1deg in setup */
mpcF2prime.y = *pMPmul(mpAp1deg, mpcXtoAlessOne.y); /* F" */
mpcF1prime.x = *pMPsub(*pMPmul(mpAplusOne, mpcXtoA.x), mpone);
mpcF1prime.y = *pMPmul(mpAplusOne, mpcXtoA.y); /* F' */
mpctmp.x = *pMPsub(*pMPmul(mpcF2prime.x,mpcFX.x),*pMPmul(mpcF2prime.y,mpcFX.y));
mpctmp.y = *pMPadd(*pMPmul(mpcF2prime.x,mpcFX.y),*pMPmul(mpcF2prime.y,mpcFX.x));
/* F * F" */
mpcHaldenom.x = *pMPadd(mpcF1prime.x, mpcF1prime.x);
mpcHaldenom.y = *pMPadd(mpcF1prime.y, mpcF1prime.y); /* 2 * F' */
mpcHalnumer1 = MPCdiv(mpctmp, mpcHaldenom); /* F"F/2F' */
mpctmp.x = *pMPsub(mpcF1prime.x, mpcHalnumer1.x);
mpctmp.y = *pMPsub(mpcF1prime.y, mpcHalnumer1.y); /* F' - F"F/2F' */
mpcHalnumer2 = MPCdiv(mpcFX, mpctmp);
mpctmp = MPCmul(mpctmpparm, mpcHalnumer2); /* mpctmpparm is */
/* relaxation coef. */
#if 0
mpctmp.x = *pMPmul(mptmpparmy,mpcHalnumer2.x); /* mptmpparmy is */
mpctmp.y = *pMPmul(mptmpparmy,mpcHalnumer2.y); /* relaxation coef. */
mpcnew.x = *pMPsub(mpcold.x, mpctmp.x);
mpcnew.y = *pMPsub(mpcold.y, mpctmp.y);
new.x = *pMP2d(mpcnew.x);
new.y = *pMP2d(mpcnew.y);
#endif
mpcnew = MPCsub(mpcold, mpctmp);
new = MPC2cmplx(mpcnew);
return(MPCHalleybailout()||MPOverflow);
#endif
}
HalleyFractal()
{
/* X(X^a - 1) = 0, Halley Map */
/* a = parm.x = degree, relaxation coeff. = parm.y, epsilon = parm2.x */
int ihal;
_CMPLX XtoAlessOne, XtoA, XtoAplusOne; /* a-1, a, a+1 */
_CMPLX FX, F1prime, F2prime, Halnumer1, Halnumer2, Haldenom;
_CMPLX relax;
XtoAlessOne = old;
for(ihal=2; ihal<degree; ihal++) {
FPUcplxmul(&old, &XtoAlessOne, &XtoAlessOne);
}
FPUcplxmul(&old, &XtoAlessOne, &XtoA);
FPUcplxmul(&old, &XtoA, &XtoAplusOne);
CMPLXsub(XtoAplusOne, old, FX); /* FX = X^(a+1) - X = F */
F2prime.x = Ap1deg * XtoAlessOne.x; /* Ap1deg in setup */
F2prime.y = Ap1deg * XtoAlessOne.y; /* F" */
F1prime.x = AplusOne * XtoA.x - 1.0;
F1prime.y = AplusOne * XtoA.y; /* F' */
FPUcplxmul(&F2prime, &FX, &Halnumer1); /* F * F" */
Haldenom.x = F1prime.x + F1prime.x;
Haldenom.y = F1prime.y + F1prime.y; /* 2 * F' */
FPUcplxdiv(&Halnumer1, &Haldenom, &Halnumer1); /* F"F/2F' */
CMPLXsub(F1prime, Halnumer1, Halnumer2); /* F' - F"F/2F' */
FPUcplxdiv(&FX, &Halnumer2, &Halnumer2);
/* parm.y is relaxation coef. */
/* new.x = old.x - (parm.y * Halnumer2.x);
new.y = old.y - (parm.y * Halnumer2.y); */
relax.x = parm.y;
relax.y = param[3];
FPUcplxmul(&relax, &Halnumer2, &Halnumer2);
new.x = old.x - Halnumer2.x;
new.y = old.y - Halnumer2.y;
return(Halleybailout());
}
LongPhoenixFractal()
{
#ifndef XFRACT
/* z(n+1) = z(n)^2 + p + qy(n), y(n+1) = z(n) */
ltmp.x = multiply(lold.x, lold.y, bitshift);
lnew.x = ltempsqrx-ltempsqry+longparm->x+multiply(longparm->y,ltmp2.x,bitshift);
lnew.y = (ltmp.x + ltmp.x) + multiply(longparm->y,ltmp2.y,bitshift);
ltmp2 = lold; /* set ltmp2 to Y value */
return(longbailout());
#endif
}
PhoenixFractal()
{
/* z(n+1) = z(n)^2 + p + qy(n), y(n+1) = z(n) */
tmp.x = old.x * old.y;
new.x = tempsqrx - tempsqry + floatparm->x + (floatparm->y * tmp2.x);
new.y = (tmp.x + tmp.x) + (floatparm->y * tmp2.y);
tmp2 = old; /* set tmp2 to Y value */
return(floatbailout());
}
LongPhoenixFractalcplx()
{
#ifndef XFRACT
/* z(n+1) = z(n)^2 + p + qy(n), y(n+1) = z(n) */
ltmp.x = multiply(lold.x, lold.y, bitshift);
lnew.x = ltempsqrx-ltempsqry+longparm->x+multiply(lparm2.x,ltmp2.x,bitshift)-multiply(lparm2.y,ltmp2.y,bitshift);
lnew.y = (ltmp.x + ltmp.x)+longparm->y+multiply(lparm2.x,ltmp2.y,bitshift)+multiply(lparm2.y,ltmp2.x,bitshift);
ltmp2 = lold; /* set ltmp2 to Y value */
return(longbailout());
#endif
}
PhoenixFractalcplx()
{
/* z(n+1) = z(n)^2 + p1 + p2*y(n), y(n+1) = z(n) */
tmp.x = old.x * old.y;
new.x = tempsqrx - tempsqry + floatparm->x + (parm2.x * tmp2.x) - (parm2.y * tmp2.y);
new.y = (tmp.x + tmp.x) + floatparm->y + (parm2.x * tmp2.y) + (parm2.y * tmp2.x);
tmp2 = old; /* set tmp2 to Y value */
return(floatbailout());
}
LongPhoenixPlusFractal()
{
#ifndef XFRACT
/* z(n+1) = z(n)^(degree-1) * (z(n) + p) + qy(n), y(n+1) = z(n) */
int i;
_LCMPLX loldplus, lnewminus;
loldplus = lold;
ltmp = lold;
for(i=1; i<degree; i++) { /* degree >= 2, degree=degree-1 in setup */
LCMPLXmult(lold,ltmp,ltmp); /* = old^(degree-1) */
}
loldplus.x += longparm->x;
LCMPLXmult(ltmp, loldplus, lnewminus);
lnew.x = lnewminus.x + multiply(longparm->y,ltmp2.x,bitshift);
lnew.y = lnewminus.y + multiply(longparm->y,ltmp2.y,bitshift);
ltmp2 = lold; /* set ltmp2 to Y value */
return(longbailout());
#endif
}
PhoenixPlusFractal()
{
/* z(n+1) = z(n)^(degree-1) * (z(n) + p) + qy(n), y(n+1) = z(n) */
int i;
_CMPLX oldplus, newminus;
oldplus = old;
tmp = old;
for(i=1; i<degree; i++) { /* degree >= 2, degree=degree-1 in setup */
FPUcplxmul(&old, &tmp, &tmp); /* = old^(degree-1) */
}
oldplus.x += floatparm->x;
FPUcplxmul(&tmp, &oldplus, &newminus);
new.x = newminus.x + (floatparm->y * tmp2.x);
new.y = newminus.y + (floatparm->y * tmp2.y);
tmp2 = old; /* set tmp2 to Y value */
return(floatbailout());
}
LongPhoenixMinusFractal()
{
#ifndef XFRACT
/* z(n+1) = z(n)^(degree-2) * (z(n)^2 + p) + qy(n), y(n+1) = z(n) */
int i;
_LCMPLX loldsqr, lnewminus;
LCMPLXmult(lold,lold,loldsqr);
ltmp = lold;
for(i=1; i<degree; i++) { /* degree >= 3, degree=degree-2 in setup */
LCMPLXmult(lold,ltmp,ltmp); /* = old^(degree-2) */
}
loldsqr.x += longparm->x;
LCMPLXmult(ltmp, loldsqr, lnewminus);
lnew.x = lnewminus.x + multiply(longparm->y,ltmp2.x,bitshift);
lnew.y = lnewminus.y + multiply(longparm->y,ltmp2.y,bitshift);
ltmp2 = lold; /* set ltmp2 to Y value */
return(longbailout());
#endif
}
PhoenixMinusFractal()
{
/* z(n+1) = z(n)^(degree-2) * (z(n)^2 + p) + qy(n), y(n+1) = z(n) */
int i;
_CMPLX oldsqr, newminus;
FPUcplxmul(&old, &old, &oldsqr);
tmp = old;
for(i=1; i<degree; i++) { /* degree >= 3, degree=degree-2 in setup */
FPUcplxmul(&old, &tmp, &tmp); /* = old^(degree-2) */
}
oldsqr.x += floatparm->x;
FPUcplxmul(&tmp, &oldsqr, &newminus);
new.x = newminus.x + (floatparm->y * tmp2.x);
new.y = newminus.y + (floatparm->y * tmp2.y);
tmp2 = old; /* set tmp2 to Y value */
return(floatbailout());
}
LongPhoenixCplxPlusFractal()
{
#ifndef XFRACT
/* z(n+1) = z(n)^(degree-1) * (z(n) + p) + qy(n), y(n+1) = z(n) */
int i;
_LCMPLX loldplus, lnewminus;
loldplus = lold;
ltmp = lold;
for(i=1; i<degree; i++) { /* degree >= 2, degree=degree-1 in setup */
LCMPLXmult(lold,ltmp,ltmp); /* = old^(degree-1) */
}
loldplus.x += longparm->x;
loldplus.y += longparm->y;
LCMPLXmult(ltmp, loldplus, lnewminus);
LCMPLXmult(lparm2, ltmp2, ltmp);
lnew.x = lnewminus.x + ltmp.x;
lnew.y = lnewminus.y + ltmp.y;
ltmp2 = lold; /* set ltmp2 to Y value */
return(longbailout());
#endif
}
PhoenixCplxPlusFractal()
{
/* z(n+1) = z(n)^(degree-1) * (z(n) + p) + qy(n), y(n+1) = z(n) */
int i;
_CMPLX oldplus, newminus;
oldplus = old;
tmp = old;
for(i=1; i<degree; i++) { /* degree >= 2, degree=degree-1 in setup */
FPUcplxmul(&old, &tmp, &tmp); /* = old^(degree-1) */
}
oldplus.x += floatparm->x;
oldplus.y += floatparm->y;
FPUcplxmul(&tmp, &oldplus, &newminus);
FPUcplxmul(&parm2, &tmp2, &tmp);
new.x = newminus.x + tmp.x;
new.y = newminus.y + tmp.y;
tmp2 = old; /* set tmp2 to Y value */
return(floatbailout());
}
LongPhoenixCplxMinusFractal()
{
#ifndef XFRACT
/* z(n+1) = z(n)^(degree-2) * (z(n)^2 + p) + qy(n), y(n+1) = z(n) */
int i;
_LCMPLX loldsqr, lnewminus;
LCMPLXmult(lold,lold,loldsqr);
ltmp = lold;
for(i=1; i<degree; i++) { /* degree >= 3, degree=degree-2 in setup */
LCMPLXmult(lold,ltmp,ltmp); /* = old^(degree-2) */
}
loldsqr.x += longparm->x;
loldsqr.y += longparm->y;
LCMPLXmult(ltmp, loldsqr, lnewminus);
LCMPLXmult(lparm2, ltmp2, ltmp);
lnew.x = lnewminus.x + ltmp.x;
lnew.y = lnewminus.y + ltmp.y;
ltmp2 = lold; /* set ltmp2 to Y value */
return(longbailout());
#endif
}
PhoenixCplxMinusFractal()
{
/* z(n+1) = z(n)^(degree-2) * (z(n)^2 + p) + qy(n), y(n+1) = z(n) */
int i;
_CMPLX oldsqr, newminus;
FPUcplxmul(&old, &old, &oldsqr);
tmp = old;
for(i=1; i<degree; i++) { /* degree >= 3, degree=degree-2 in setup */
FPUcplxmul(&old, &tmp, &tmp); /* = old^(degree-2) */
}
oldsqr.x += floatparm->x;
oldsqr.y += floatparm->y;
FPUcplxmul(&tmp, &oldsqr, &newminus);
FPUcplxmul(&parm2, &tmp2, &tmp);
new.x = newminus.x + tmp.x;
new.y = newminus.y + tmp.y;
tmp2 = old; /* set tmp2 to Y value */
return(floatbailout());
}
ScottTrigPlusTrigFractal()
{
#ifndef XFRACT
/* z = trig0(z)+trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,lold);
LCMPLXadd(ltmp,lold,lnew);
return(longbailout());
#endif
}
ScottTrigPlusTrigfpFractal()
{
/* z = trig0(z)+trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXadd(tmp,tmp2,new);
return(floatbailout());
}
SkinnerTrigSubTrigFractal()
{
#ifndef XFRACT
/* z = trig(0,z)-trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXsub(ltmp,ltmp2,lnew);
return(longbailout());
#endif
}
SkinnerTrigSubTrigfpFractal()
{
/* z = trig0(z)-trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXsub(tmp,tmp2,new);
return(floatbailout());
}
TrigXTrigfpFractal(void)
{
/* z = trig0(z)*trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,old);
CMPLXmult(tmp,old,new);
return(floatbailout());
}
/* call float version of fractal if integer math overflow */
static TryFloatFractal(int (*fpFractal)(void))
{
overflow=0;
/* lold had better not be changed! */
old.x = lold.x; old.x /= fudge;
old.y = lold.y; old.y /= fudge;
tempsqrx = sqr(old.x);
tempsqry = sqr(old.y);
fpFractal();
lnew.x = (long)(new.x*fudge);
lnew.y = (long)(new.y*fudge);
return(0);
}
TrigXTrigFractal()
{
#ifndef XFRACT
_LCMPLX ltmp2;
/* z = trig0(z)*trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXmult(ltmp,ltmp2,lnew);
if(overflow)
TryFloatFractal(TrigXTrigfpFractal);
return(longbailout());
#endif
}
/********************************************************************/
/* Next six orbit functions are one type - extra functions are */
/* special cases written for speed. */
/********************************************************************/
TrigPlusSqrFractal() /* generalization of Scott and Skinner types */
{
#ifndef XFRACT
/* { z=pixel: z=(p1,p2)*trig(z)+(p3,p4)*sqr(z), |z|<BAILOUT } */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(lparm,ltmp,lnew); /* lnew = lparm*trig(lold) */
LCMPLXsqr_old(ltmp); /* ltmp = sqr(lold) */
LCMPLXmult(lparm2,ltmp,ltmp);/* ltmp = lparm2*sqr(lold) */
LCMPLXadd(lnew,ltmp,lnew); /* lnew = lparm*trig(lold)+lparm2*sqr(lold) */
return(longbailout());
#endif
}
TrigPlusSqrfpFractal() /* generalization of Scott and Skinner types */
{
/* { z=pixel: z=(p1,p2)*trig(z)+(p3,p4)*sqr(z), |z|<BAILOUT } */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(parm,tmp,new); /* new = parm*trig(old) */
CMPLXsqr_old(tmp); /* tmp = sqr(old) */
CMPLXmult(parm2,tmp,tmp2); /* tmp = parm2*sqr(old) */
CMPLXadd(new,tmp2,new); /* new = parm*trig(old)+parm2*sqr(old) */
return(floatbailout());
}
ScottTrigPlusSqrFractal()
{
#ifndef XFRACT
/* { z=pixel: z=trig(z)+sqr(z), |z|<BAILOUT } */
LCMPLXtrig0(lold,lnew); /* lnew = trig(lold) */
LCMPLXsqr_old(ltmp); /* lold = sqr(lold) */
LCMPLXadd(ltmp,lnew,lnew); /* lnew = trig(lold)+sqr(lold) */
return(longbailout());
#endif
}
ScottTrigPlusSqrfpFractal() /* float version */
{
/* { z=pixel: z=sin(z)+sqr(z), |z|<BAILOUT } */
CMPLXtrig0(old,new); /* new = trig(old) */
CMPLXsqr_old(tmp); /* tmp = sqr(old) */
CMPLXadd(new,tmp,new); /* new = trig(old)+sqr(old) */
return(floatbailout());
}
SkinnerTrigSubSqrFractal()
{
#ifndef XFRACT
/* { z=pixel: z=sin(z)-sqr(z), |z|<BAILOUT } */
LCMPLXtrig0(lold,lnew); /* lnew = trig(lold) */
LCMPLXsqr_old(ltmp); /* lold = sqr(lold) */
LCMPLXsub(lnew,ltmp,lnew); /* lnew = trig(lold)-sqr(lold) */
return(longbailout());
#endif
}
SkinnerTrigSubSqrfpFractal()
{
/* { z=pixel: z=sin(z)-sqr(z), |z|<BAILOUT } */
CMPLXtrig0(old,new); /* new = trig(old) */
CMPLXsqr_old(tmp); /* old = sqr(old) */
CMPLXsub(new,tmp,new); /* new = trig(old)-sqr(old) */
return(floatbailout());
}
TrigZsqrdfpFractal(void)
{
/* { z=pixel: z=trig(z*z), |z|<TEST } */
CMPLXsqr_old(tmp);
CMPLXtrig0(tmp,new);
return(floatbailout());
}
TrigZsqrdFractal() /* this doesn't work very well */
{
#ifndef XFRACT
/* { z=pixel: z=trig(z*z), |z|<TEST } */
LCMPLXsqr_old(ltmp);
if(labs(ltmp.x) > l16triglim || labs(ltmp.y) > l16triglim)
overflow = 1;
LCMPLXtrig0(ltmp,lnew);
if(overflow)
TryFloatFractal(TrigZsqrdfpFractal);
return(longbailout());
#endif
}
SqrTrigFractal()
{
#ifndef XFRACT
/* { z=pixel: z=sqr(trig(z)), |z|<TEST} */
LCMPLXtrig0(lold,ltmp);
LCMPLXsqr(ltmp,lnew);
return(longbailout());
#endif
}
SqrTrigfpFractal()
{
/* SZSB(XYAXIS) { z=pixel, TEST=(p1+3): z=sin(z)*sin(z), |z|<TEST} */
CMPLXtrig0(old,tmp);
CMPLXsqr(tmp,new);
return(floatbailout());
}
Magnet1Fractal() /* Z = ((Z**2 + C - 1)/(2Z + C - 2))**2 */
{ /* In "Beauty of Fractals", code by Kev Allen. */
_CMPLX top, bot, tmp;
double div;
top.x = tempsqrx - tempsqry + floatparm->x - 1; /* top = Z**2+C-1 */
top.y = old.x * old.y;
top.y = top.y + top.y + floatparm->y;
bot.x = old.x + old.x + floatparm->x - 2; /* bot = 2*Z+C-2 */
bot.y = old.y + old.y + floatparm->y;
div = bot.x*bot.x + bot.y*bot.y; /* tmp = top/bot */
if (div < FLT_MIN) return(1);
tmp.x = (top.x*bot.x + top.y*bot.y)/div;
tmp.y = (top.y*bot.x - top.x*bot.y)/div;
new.x = (tmp.x + tmp.y) * (tmp.x - tmp.y); /* Z = tmp**2 */
new.y = tmp.x * tmp.y;
new.y += new.y;
return(floatbailout());
}
Magnet2Fractal() /* Z = ((Z**3 + 3(C-1)Z + (C-1)(C-2) ) / */
/* (3Z**2 + 3(C-2)Z + (C-1)(C-2)+1) )**2 */
{ /* In "Beauty of Fractals", code by Kev Allen. */
_CMPLX top, bot, tmp;
double div;
top.x = old.x * (tempsqrx-tempsqry-tempsqry-tempsqry + T_Cm1.x)
- old.y * T_Cm1.y + T_Cm1Cm2.x;
top.y = old.y * (tempsqrx+tempsqrx+tempsqrx-tempsqry + T_Cm1.x)
+ old.x * T_Cm1.y + T_Cm1Cm2.y;
bot.x = tempsqrx - tempsqry;
bot.x = bot.x + bot.x + bot.x
+ old.x * T_Cm2.x - old.y * T_Cm2.y
+ T_Cm1Cm2.x + 1.0;
bot.y = old.x * old.y;
bot.y += bot.y;
bot.y = bot.y + bot.y + bot.y
+ old.x * T_Cm2.y + old.y * T_Cm2.x
+ T_Cm1Cm2.y;
div = bot.x*bot.x + bot.y*bot.y; /* tmp = top/bot */
if (div < FLT_MIN) return(1);
tmp.x = (top.x*bot.x + top.y*bot.y)/div;
tmp.y = (top.y*bot.x - top.x*bot.y)/div;
new.x = (tmp.x + tmp.y) * (tmp.x - tmp.y); /* Z = tmp**2 */
new.y = tmp.x * tmp.y;
new.y += new.y;
return(floatbailout());
}
LambdaTrigFractal()
{
#ifndef XFRACT
LONGXYTRIGBAILOUT();
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
#endif
}
LambdaTrigfpFractal()
{
FLOATXYTRIGBAILOUT();
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
}
/* bailouts are different for different trig functions */
LambdaTrigFractal1()
{
#ifndef XFRACT
LONGTRIGBAILOUT(); /* sin,cos */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
#endif
}
LambdaTrigfpFractal1()
{
FLOATTRIGBAILOUT(); /* sin,cos */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
}
LambdaTrigFractal2()
{
#ifndef XFRACT
LONGHTRIGBAILOUT(); /* sinh,cosh */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
#endif
}
LambdaTrigfpFractal2()
{
#ifndef XFRACT
FLOATHTRIGBAILOUT(); /* sinh,cosh */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
#endif
}
ManOWarFractal()
{
#ifndef XFRACT
/* From Art Matrix via Lee Skinner */
lnew.x = ltempsqrx - ltempsqry + ltmp.x + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + ltmp.y + longparm->y;
ltmp = lold;
return(longbailout());
#endif
}
ManOWarfpFractal()
{
/* From Art Matrix via Lee Skinner */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
new.x = tempsqrx - tempsqry + tmp.x + floatparm->x;
new.y = 2.0 * old.x * old.y + tmp.y + floatparm->y;
tmp = old;
return(floatbailout());
}
/*
MarksMandelPwr (XAXIS) {
z = pixel, c = z ^ (z - 1):
z = c * sqr(z) + pixel,
|z| <= 4
}
*/
MarksMandelPwrfpFractal()
{
CMPLXtrig0(old,new);
CMPLXmult(tmp,new,new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
MarksMandelPwrFractal()
{
#ifndef XFRACT
LCMPLXtrig0(lold,lnew);
LCMPLXmult(ltmp,lnew,lnew);
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
/* I was coding Marksmandelpower and failed to use some temporary
variables. The result was nice, and since my name is not on any fractal,
I thought I would immortalize myself with this error!
Tim Wegner */
TimsErrorfpFractal()
{
CMPLXtrig0(old,new);
new.x = new.x * tmp.x - new.y * tmp.y;
new.y = new.x * tmp.y - new.y * tmp.x;
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
TimsErrorFractal()
{
#ifndef XFRACT
LCMPLXtrig0(lold,lnew);
lnew.x = multiply(lnew.x,ltmp.x,bitshift)-multiply(lnew.y,ltmp.y,bitshift);
lnew.y = multiply(lnew.x,ltmp.y,bitshift)-multiply(lnew.y,ltmp.x,bitshift);
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
CirclefpFractal()
{
long i;
i = (long)(param[0]*(tempsqrx+tempsqry));
coloriter = i%colors;
return(1);
}
/*
CirclelongFractal()
{
long i;
i = multiply(lparm.x,(ltempsqrx+ltempsqry),bitshift);
i = i >> bitshift;
coloriter = i%colors);
return(1);
}
*/
/* -------------------------------------------------------------------- */
/* Initialization (once per pixel) routines */
/* -------------------------------------------------------------------- */
#ifdef XFRACT
/* this code translated to asm - lives in newton.asm */
/* transform points with reciprocal function */
void invertz2(_CMPLX *z)
{
z->x = dx0[col]+dx1[row];
z->y = dy0[row]+dy1[col];
z->x -= f_xcenter; z->y -= f_ycenter; /* Normalize values to center of circle */
tempsqrx = sqr(z->x) + sqr(z->y); /* Get old radius */
if(fabs(tempsqrx) > FLT_MIN)
tempsqrx = f_radius / tempsqrx;
else
tempsqrx = FLT_MAX; /* a big number, but not TOO big */
z->x *= tempsqrx; z->y *= tempsqrx; /* Perform inversion */
z->x += f_xcenter; z->y += f_ycenter; /* Renormalize */
}
#endif
int long_julia_per_pixel()
{
#ifndef XFRACT
/* integer julia types */
/* lambda */
/* barnsleyj1 */
/* barnsleyj2 */
/* sierpinski */
if(invert)
{
/* invert */
invertz2(&old);
/* watch out for overflow */
if(sqr(old.x)+sqr(old.y) >= 127)
{
old.x = 8; /* value to bail out in one iteration */
old.y = 8;
}
/* convert to fudged longs */
lold.x = (long)(old.x*fudge);
lold.y = (long)(old.y*fudge);
}
else
{
lold.x = lx0[col]+lx1[row];
lold.y = ly0[row]+ly1[col];
}
return(0);
#else
printf("Called long_julia_per_pixel\n");
exit(0);
#endif
}
int long_richard8_per_pixel()
{
#ifndef XFRACT
long_mandel_per_pixel();
LCMPLXtrig1(*longparm,ltmp);
LCMPLXmult(ltmp,lparm2,ltmp);
return(1);
#endif
}
int long_mandel_per_pixel()
{
#ifndef XFRACT
/* integer mandel types */
/* barnsleym1 */
/* barnsleym2 */
linit.x = lx0[col]+lx1[row];
if(invert)
{
/* invert */
invertz2(&init);
/* watch out for overflow */
if(sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
/* convert to fudged longs */
linit.x = (long)(init.x*fudge);
linit.y = (long)(init.y*fudge);
}
if(useinitorbit == 1)
lold = linitorbit;
else
lold = linit;
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
return(1); /* 1st iteration has been done */
#else
printf("Called long_mandel_per_pixel\n");
exit(0);
#endif
}
int julia_per_pixel()
{
/* julia */
if(invert)
{
/* invert */
invertz2(&old);
/* watch out for overflow */
if(bitshift <= 24)
if (sqr(old.x)+sqr(old.y) >= 127)
{
old.x = 8; /* value to bail out in one iteration */
old.y = 8;
}
if(bitshift > 24)
if (sqr(old.x)+sqr(old.y) >= 4.0)
{
old.x = 2; /* value to bail out in one iteration */
old.y = 2;
}
/* convert to fudged longs */
lold.x = (long)(old.x*fudge);
lold.y = (long)(old.y*fudge);
}
else
{
lold.x = lx0[col]+lx1[row];
lold.y = ly0[row]+ly1[col];
}
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
ltmp = lold;
return(0);
}
marks_mandelpwr_per_pixel()
{
#ifndef XFRACT
mandel_per_pixel();
ltmp = lold;
ltmp.x -= fudge;
LCMPLXpwr(lold,ltmp,ltmp);
return(1);
#endif
}
int mandel_per_pixel()
{
/* mandel */
if(invert)
{
invertz2(&init);
/* watch out for overflow */
if(bitshift <= 24)
if (sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
if(bitshift > 24)
if (sqr(init.x)+sqr(init.y) >= 4)
{
init.x = 2; /* value to bail out in one iteration */
init.y = 2;
}
/* convert to fudged longs */
linit.x = (long)(init.x*fudge);
linit.y = (long)(init.y*fudge);
}
else
linit.x = lx0[col]+lx1[row];
switch (fractype)
{
case MANDELLAMBDA: /* Critical Value 0.5 + 0.0i */
lold.x = FgHalf;
lold.y = 0;
break;
default:
lold = linit;
break;
}
/* alter init value */
if(useinitorbit == 1)
lold = linitorbit;
else if(useinitorbit == 2)
lold = linit;
if(inside == -60 || inside == -61)
{
/* kludge to match "Beauty of Fractals" picture since we start
Mandelbrot iteration with init rather than 0 */
lold.x = lparm.x; /* initial pertubation of parameters set */
lold.y = lparm.y;
coloriter = -1;
}
else
{
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
}
ltmp = linit; /* for spider */
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
return(1); /* 1st iteration has been done */
}
int marksmandel_per_pixel()
{
/* marksmandel */
if(invert)
{
invertz2(&init);
/* watch out for overflow */
if(sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
/* convert to fudged longs */
linit.x = (long)(init.x*fudge);
linit.y = (long)(init.y*fudge);
}
else
linit.x = lx0[col]+lx1[row];
if(useinitorbit == 1)
lold = linitorbit;
else
lold = linit;
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
if(c_exp > 3)
lcpower(&lold,c_exp-1,&lcoefficient,bitshift);
else if(c_exp == 3) {
lcoefficient.x = multiply(lold.x, lold.x, bitshift)
- multiply(lold.y, lold.y, bitshift);
lcoefficient.y = multiply(lold.x, lold.y, bitshiftless1);
}
else if(c_exp == 2)
lcoefficient = lold;
else if(c_exp < 2) {
lcoefficient.x = 1L << bitshift;
lcoefficient.y = 0L;
}
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
return(1); /* 1st iteration has been done */
}
int marksmandelfp_per_pixel()
{
/* marksmandel */
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
if(useinitorbit == 1)
old = initorbit;
else
old = init;
old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
tempsqrx = sqr(old.x);
tempsqry = sqr(old.y);
if(c_exp > 3)
cpower(&old,c_exp-1,&coefficient);
else if(c_exp == 3) {
coefficient.x = tempsqrx - tempsqry;
coefficient.y = old.x * old.y * 2;
}
else if(c_exp == 2)
coefficient = old;
else if(c_exp < 2) {
coefficient.x = 1.0;
coefficient.y = 0.0;
}
return(1); /* 1st iteration has been done */
}
marks_mandelpwrfp_per_pixel()
{
mandelfp_per_pixel();
tmp = old;
tmp.x -= 1;
CMPLXpwr(old,tmp,tmp);
return(1);
}
int mandelfp_per_pixel()
{
/* floating point mandelbrot */
/* mandelfp */
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
switch (fractype)
{
case MAGNET2M:
FloatPreCalcMagnet2();
case MAGNET1M: /* Crit Val Zero both, but neither */
old.x = old.y = 0.0; /* is of the form f(Z,C) = Z*g(Z)+C */
break;
case MANDELLAMBDAFP: /* Critical Value 0.5 + 0.0i */
old.x = 0.5;
old.y = 0.0;
break;
default:
old = init;
break;
}
/* alter init value */
if(useinitorbit == 1)
old = initorbit;
else if(useinitorbit == 2)
old = init;
if(inside == -60 || inside == -61)
{
/* kludge to match "Beauty of Fractals" picture since we start
Mandelbrot iteration with init rather than 0 */
old.x = parm.x; /* initial pertubation of parameters set */
old.y = parm.y;
coloriter = -1;
}
else
{
old.x += parm.x;
old.y += parm.y;
}
tmp = init; /* for spider */
tempsqrx = sqr(old.x); /* precalculated value for regular Mandelbrot */
tempsqry = sqr(old.y);
return(1); /* 1st iteration has been done */
}
int juliafp_per_pixel()
{
/* floating point julia */
/* juliafp */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
tempsqrx = sqr(old.x); /* precalculated value for regular Julia */
tempsqry = sqr(old.y);
tmp = old;
return(0);
}
int MPCjulia_per_pixel()
{
#ifndef XFRACT
/* floating point julia */
/* juliafp */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
mpcold.x = *pd2MP(old.x);
mpcold.y = *pd2MP(old.y);
return(0);
#endif
}
otherrichard8fp_per_pixel()
{
othermandelfp_per_pixel();
CMPLXtrig1(*floatparm,tmp);
CMPLXmult(tmp,parm2,tmp);
return(1);
}
int othermandelfp_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
if(useinitorbit == 1)
old = initorbit;
else
old = init;
old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
return(1); /* 1st iteration has been done */
}
int MPCHalley_per_pixel()
{
#ifndef XFRACT
/* MPC halley */
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
mpcold.x = *pd2MP(init.x);
mpcold.y = *pd2MP(init.y);
return(0);
#endif
}
int Halley_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
old = init;
return(0); /* 1st iteration is not done */
}
int otherjuliafp_per_pixel()
{
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
return(0);
}
#if 0
#define Q0 .113
#define Q1 .01
#else
#define Q0 0
#define Q1 0
#endif
int quaternionjulfp_per_pixel()
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
floatparm->x = param[4];
floatparm->y = param[5];
qc = param[0];
qci = param[1];
qcj = param[2];
qck = param[3];
return(0);
}
int quaternionfp_per_pixel()
{
old.x = 0;
old.y = 0;
floatparm->x = 0;
floatparm->y = 0;
qc = dx0[col]+dx1[row];
qci = dy0[row]+dy1[col];
qcj = param[2];
qck = param[3];
return(0);
}
int MarksCplxMandperp(void)
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
old.x = init.x + parm.x; /* initial pertubation of parameters set */
old.y = init.y + parm.y;
tempsqrx = sqr(old.x); /* precalculated value */
tempsqry = sqr(old.y);
coefficient = ComplexPower(init, pwr);
return(1);
}
int long_phoenix_per_pixel()
{
#ifndef XFRACT
if(invert)
{
/* invert */
invertz2(&old);
/* watch out for overflow */
if(sqr(old.x)+sqr(old.y) >= 127)
{
old.x = 8; /* value to bail out in one iteration */
old.y = 8;
}
/* convert to fudged longs */
lold.x = (long)(old.x*fudge);
lold.y = (long)(old.y*fudge);
}
else
{
lold.x = lx0[col]+lx1[row];
lold.y = ly0[row]+ly1[col];
}
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
ltmp2.x = 0; /* use ltmp2 as the complex Y value */
ltmp2.y = 0;
return(0);
#else
printf("Called long_phoenix_per_pixel\n");
exit(0);
#endif
}
int phoenix_per_pixel()
{
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
tempsqrx = sqr(old.x); /* precalculated value */
tempsqry = sqr(old.y);
tmp2.x = 0; /* use tmp2 as the complex Y value */
tmp2.y = 0;
return(0);
}
int long_mandphoenix_per_pixel()
{
#ifndef XFRACT
linit.x = lx0[col]+lx1[row];
if(invert)
{
/* invert */
invertz2(&init);
/* watch out for overflow */
if(sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
/* convert to fudged longs */
linit.x = (long)(init.x*fudge);
linit.y = (long)(init.y*fudge);
}
if(useinitorbit == 1)
lold = linitorbit;
else
lold = linit;
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
ltmp2.x = 0;
ltmp2.y = 0;
return(1); /* 1st iteration has been done */
#else
printf("Called long_mandphoenix_per_pixel\n");
exit(0);
#endif
}
int mandphoenix_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
if(useinitorbit == 1)
old = initorbit;
else
old = init;
old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
tempsqrx = sqr(old.x); /* precalculated value */
tempsqry = sqr(old.y);
tmp2.x = 0;
tmp2.y = 0;
return(1); /* 1st iteration has been done */
}
QuaternionFPFractal()
{
double a0,a1,a2,a3,n0,n1,n2,n3;
a0 = old.x;
a1 = old.y;
a2 = floatparm->x;
a3 = floatparm->y;
n0 = a0*a0-a1*a1-a2*a2-a3*a3 + qc;
n1 = 2*a0*a1 + qci;
n2 = 2*a0*a2 + qcj;
n3 = 2*a0*a3 + qck;
/* Check bailout */
magnitude = a0*a0+a1*a1+a2*a2+a3*a3;
if (magnitude>rqlim) {
return 1;
}
old.x = n0;
old.y = n1;
floatparm->x = n2;
floatparm->y = n3;
return(0);
}
HyperComplexFPFractal()
{
_HCMPLX hold, hnew;
hold.x = old.x;
hold.y = old.y;
hold.z = floatparm->x;
hold.t = floatparm->y;
/* HComplexSqr(&hold,&hnew); */
HComplexTrig0(&hold,&hnew);
hnew.x += qc;
hnew.y += qci;
hnew.z += qcj;
hnew.t += qck;
old.x = hnew.x;
old.y = hnew.y;
floatparm->x = hnew.z;
floatparm->y = hnew.t;
/* Check bailout */
magnitude = sqr(old.x)+sqr(old.y)+sqr(floatparm->x)+sqr(floatparm->y);
if (magnitude>rqlim) {
return 1;
}
return(0);
}
#if 0
demowalk()
{
float stepsize; /* average stepsize */
int xwalk, ywalk; /* current position */
int xstep, ystep; /* current step */
long steps; /* number of steps */
int color; /* color to draw this step */
float temp, tempadjust; /* temporary variables */
if (param[0] != 999) { /* if 999, do a Mandelbrot instead */
srand(rseed); /* seed the random number generator */
if (!rflag) ++rseed;
tempadjust = RAND_MAX >> 2; /* adjustment factor */
xwalk = xdots / 2; /* start in the center of the image */
ywalk = ydots / 2;
stepsize = min(xdots, ydots) /* calculate average stepsize */
* (param[0]/100.0); /* as a percentage of the image */
color = (int)max(0, min(colors, param[1])); /* set the initial color */
for (steps = 0; steps < maxit; steps++) { /* take maxit steps */
if (keypressed()) /* abort if told to do so */
return(0);
temp = rand(); /* calculate the next xstep */
xstep = (int)(((temp/tempadjust) - 2.0) * stepsize);
xstep = min(xwalk + xstep, xdots - 1);
xstep = max(0, xstep);
temp = rand(); /* calculate the next ystep */
ystep = (int)(((temp/tempadjust) - 2.0) * stepsize);
ystep = min(ywalk + ystep, ydots - 1);
ystep = max(0, ystep);
if (param[1] == 0.0) /* rotate the colors? */
if (++color >= colors) /* rotate the colors, avoiding */
color = 1; /* the background color 0 */
/* the draw_line function is borrowed from the 3D routines */
draw_line(xwalk, ywalk,xstep,ystep,color);
/* or, we could be on a pogo stick and just displaying
where we landed...
putcolor(xstep, ystep, color);
*/
xwalk = xstep; /* remember where we were */
ywalk = ystep;
}
return(1); /* we're done */
} else { /* a simple Mandelbrot routine */
/* the following routine determines the X and Y values of
each pixel coordinate and calculates a simple mandelbrot
fractal with them - slowly, but surely */
int ix, iy;
for (iy = 0; iy < ydots; iy++) {
for (ix = 0; ix < xdots; ix++) {
long iter;
double x, y, newx, newy, tempxx, tempxy, tempyy;
/* first, obtain the X and Y coordinate values of this pixel */
x = dx0[ix]+dx1[iy];
y = dy0[iy]+dy1[ix];
/* now initialize the temporary values */
tempxx = tempyy = tempxy = 0.0;
if (keypressed()) /* abort if told to do so */
return(0);
/* the inner iteration loop */
for (iter = 1; iter < maxit; iter++) {
/* calculate the X and Y values of Z(iter) */
newx = tempxx - tempyy + x;
newy = tempxy + tempxy + y;
/* calculate the temporary values */
tempxx = newx * newx;
tempyy = newy * newy;
tempxy = newx * newy;
/* are we done yet? */
if (tempxx + tempyy > 4.0) break;
}
/* color in the pixel */
putcolor(ix, iy, (int)iter % colors);
}
}
return(1); /* we're done */
}
}
#endif