home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Computerworld 1996 March
/
Computerworld_1996-03_cd.bin
/
idg_cd3
/
grafika
/
fraktaly
/
fractxtr
/
frm
/
dons.frm
< prev
next >
Wrap
Text File
|
1994-02-07
|
2KB
|
84 lines
; formulas accessed from my PARS, lumped in here for convenience.
; Sources are noted ... thanks, folks
;
; >>don CIS:76704,41
; from SKINNER.FRM - Lee Skinner
CGNewtonSinExp (XAXIS) {
z=pixel:
z1=exp(z);
z2=sin(z)+z1-z;
z=z-p1*z2/(cos(z)+z1), .0001 < |z2|
}
Leeze (XAXIS) = {
s = exp(1.,0.), z = Pixel, f = Pixel ^ s:
z = cosxx (z) + f, |z| <= 50 }
FractalFenderC(XAXIS_NOPARM) {
z=p1,x=|z|:
(z=cosh(z)+pixel)*(1<x)+(z=z)*(x<=1),
z=sqr(z)+pixel,x=|z|,
x<=4 }
TSinh (XAXIS) = {
z = c = sinh(pixel):
z = c ^ z,
z <= (p1 + 3)
}
ScSkLMS(XAXIS) { z = pixel, TEST = (p1+3): z = log(z) - sin(z), |z|<TEST }
;
;
;REB004.FRM - Ron Barnett
REB004A = {; Ron Barnett, 1993
z = pixel:
z =p1*fn1(z) + p1*p1*fn2(p2*z) + pixel, |z| <= 100
}
;
;
;LIAR.FRM - Chuck Ebbert
Liar3 { ; by Chuck Ebbert.
; X: X is true to P1 times the extent that Y is true
; Y: Y is true to the extent that X is false.
; Sequential reasoning. P1 usually 0 to 1. P1=1 is Liar2 formula.
; x(n+1) = 1 - abs(p1*y(n)-x(n) );
; y(n+1) = 1 - abs((1-x(n+1) )-y(n) );
z = pixel:
x = 1 - abs(imag(z)*real(p1)-real(z) )
z = flip(1 - abs(1-real(x)-imag(z) ) ) + real(x)
|z| <= 1;
}
Liar4 { ; by Chuck Ebbert.
; X: X is as true as (p1+1) times Y
; Y: Y is as true as X is false
; Calculate new x and y values simultaneously.
; Real part of p1 changes probability. Use floating point.
; y(n+1)=abs((1-x(n) )-y(n) ), x(n+1)=1-abs(y(n)-x(n) )
z = pixel, p = p1 + 1:
z = 1-abs(imag(z)*p-real(z))+flip(1-abs(1-real(z)-imag(z)));
|z| <= 1
}
;Tim Wegner - from a message on the board in GraphDev 1/10/94
Newton_poly2 { ; Tim Wegner - use float=yes
; fractal generated by Newton formula z^3 + (c-1)z - c
; p1 is c in above formula
z = pixel, z2 = z*z, z3 = z*z2:
z = (2*z3 + p1) / (3*z2 + (p1 - 1));
z2 = z*z;
z3 = z*z2,
.004 <= |z3 + (p1-1)*z - p1|
}