home *** CD-ROM | disk | FTP | other *** search
/ Chip 2003 September / Chip_2003-09_cd1.bin / zkuste / macos / Files / wamcom.sit / wamcom-131-macos9-20030721 / res / fonts / mathfont.properties < prev    next >
MacBinary  |  2003-06-30  |  38.6 KB  |  [TEXT/CWIE]

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text

This file was processed as: MacBinary (archive/macBinary).

You can browse this item here: mathfont.properties

ConfidenceProgramDetectionMatch TypeSupport
10% dexvert MacBinary (archive/macBinary) fallback Supported
1% dexvert Text File (text/txt) fallback Supported
100% file MacBinary II, Mon Jun 30 01:41:15 2003, modified Mon Jun 30 01:41:15 2003, creator 'CWIE', type ASCII, 38885 bytes "mathfont.properties" , at 0x9865 414 bytes resource default (weak)
99% file data default
74% TrID Macintosh plain text (MacBinary) default
25% TrID MacBinary 2 default (weak)
100% siegfried fmt/1762 MacBinary (II) default
100% lsar MacBinary default


id metadata
keyvalue
macFileType[TEXT]
macFileCreator[CWIE]



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 13 6d 61 74 68 66 6f | 6e 74 2e 70 72 6f 70 65 |..mathfo|nt.prope|
|00000010| 72 74 69 65 73 00 00 00 | 00 00 00 00 00 00 00 00 |rties...|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 43 57 49 | 45 00 00 00 00 00 00 00 |.TEXTCWI|E.......|
|00000050| 00 00 00 00 00 97 e5 00 | 00 01 9e bb 25 7d fb bb |........|....%}..|
|00000060| 25 7d fb 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |%}......|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 4f 7c 00 00 |........|....O|..|
|00000080| 23 23 0d 23 23 20 54 68 | 65 20 63 6f 6e 74 65 6e |##.## Th|e conten|
|00000090| 74 73 20 6f 66 20 74 68 | 69 73 20 66 69 6c 65 20 |ts of th|is file |
|000000a0| 61 72 65 20 73 75 62 6a | 65 63 74 20 74 6f 20 74 |are subj|ect to t|
|000000b0| 68 65 20 4d 6f 7a 69 6c | 6c 61 20 50 75 62 6c 69 |he Mozil|la Publi|
|000000c0| 63 0d 23 23 20 4c 69 63 | 65 6e 73 65 20 56 65 72 |c.## Lic|ense Ver|
|000000d0| 73 69 6f 6e 20 31 2e 31 | 20 28 74 68 65 20 22 4c |sion 1.1| (the "L|
|000000e0| 69 63 65 6e 73 65 22 29 | 3b 20 79 6f 75 20 6d 61 |icense")|; you ma|
|000000f0| 79 20 6e 6f 74 20 75 73 | 65 20 74 68 69 73 20 66 |y not us|e this f|
|00000100| 69 6c 65 0d 23 23 20 65 | 78 63 65 70 74 20 69 6e |ile.## e|xcept in|
|00000110| 20 63 6f 6d 70 6c 69 61 | 6e 63 65 20 77 69 74 68 | complia|nce with|
|00000120| 20 74 68 65 20 4c 69 63 | 65 6e 73 65 2e 20 59 6f | the Lic|ense. Yo|
|00000130| 75 20 6d 61 79 20 6f 62 | 74 61 69 6e 20 61 20 63 |u may ob|tain a c|
|00000140| 6f 70 79 20 6f 66 0d 23 | 23 20 74 68 65 20 4c 69 |opy of.#|# the Li|
|00000150| 63 65 6e 73 65 20 61 74 | 20 68 74 74 70 3a 2f 2f |cense at| http://|
|00000160| 77 77 77 2e 6d 6f 7a 69 | 6c 6c 61 2e 6f 72 67 2f |www.mozi|lla.org/|
|00000170| 4d 50 4c 2f 0d 23 23 0d | 23 23 20 53 6f 66 74 77 |MPL/.##.|## Softw|
|00000180| 61 72 65 20 64 69 73 74 | 72 69 62 75 74 65 64 20 |are dist|ributed |
|00000190| 75 6e 64 65 72 20 74 68 | 65 20 4c 69 63 65 6e 73 |under th|e Licens|
|000001a0| 65 20 69 73 20 64 69 73 | 74 72 69 62 75 74 65 64 |e is dis|tributed|
|000001b0| 20 6f 6e 20 61 6e 20 22 | 41 53 0d 23 23 20 49 53 | on an "|AS.## IS|
|000001c0| 22 20 62 61 73 69 73 2c | 20 57 49 54 48 4f 55 54 |" basis,| WITHOUT|
|000001d0| 20 57 41 52 52 41 4e 54 | 59 20 4f 46 20 41 4e 59 | WARRANT|Y OF ANY|
|000001e0| 20 4b 49 4e 44 2c 20 65 | 69 74 68 65 72 20 65 78 | KIND, e|ither ex|
|000001f0| 70 72 65 73 73 20 6f 72 | 0d 23 23 20 69 6d 70 6c |press or|.## impl|
|00000200| 69 65 64 2e 20 53 65 65 | 20 74 68 65 20 4c 69 63 |ied. See| the Lic|
|00000210| 65 6e 73 65 20 66 6f 72 | 20 74 68 65 20 73 70 65 |ense for| the spe|
|00000220| 63 69 66 69 63 20 6c 61 | 6e 67 75 61 67 65 20 67 |cific la|nguage g|
|00000230| 6f 76 65 72 6e 69 6e 67 | 0d 23 23 20 72 69 67 68 |overning|.## righ|
|00000240| 74 73 20 61 6e 64 20 6c | 69 6d 69 74 61 74 69 6f |ts and l|imitatio|
|00000250| 6e 73 20 75 6e 64 65 72 | 20 74 68 65 20 4c 69 63 |ns under| the Lic|
|00000260| 65 6e 73 65 2e 0d 23 23 | 0d 23 23 20 54 68 65 20 |ense..##|.## The |
|00000270| 4f 72 69 67 69 6e 61 6c | 20 43 6f 64 65 20 69 73 |Original| Code is|
|00000280| 20 4d 6f 7a 69 6c 6c 61 | 20 4d 61 74 68 4d 4c 20 | Mozilla| MathML |
|00000290| 50 72 6f 6a 65 63 74 2e | 0d 23 23 0d 23 23 20 54 |Project.|.##.## T|
|000002a0| 68 65 20 49 6e 69 74 69 | 61 6c 20 44 65 76 65 6c |he Initi|al Devel|
|000002b0| 6f 70 65 72 20 6f 66 20 | 74 68 65 20 4f 72 69 67 |oper of |the Orig|
|000002c0| 69 6e 61 6c 20 43 6f 64 | 65 20 69 73 20 54 68 65 |inal Cod|e is The|
|000002d0| 20 55 6e 69 76 65 72 73 | 69 74 79 20 4f 66 0d 23 | Univers|ity Of.#|
|000002e0| 23 20 51 75 65 65 6e 73 | 6c 61 6e 64 2e 20 20 50 |# Queens|land. P|
|000002f0| 6f 72 74 69 6f 6e 73 20 | 63 72 65 61 74 65 64 20 |ortions |created |
|00000300| 62 79 20 54 68 65 20 55 | 6e 69 76 65 72 73 69 74 |by The U|niversit|
|00000310| 79 20 4f 66 20 51 75 65 | 65 6e 73 6c 61 6e 64 20 |y Of Que|ensland |
|00000320| 61 72 65 0d 23 23 20 43 | 6f 70 79 72 69 67 68 74 |are.## C|opyright|
|00000330| 20 28 43 29 20 32 30 30 | 31 20 54 68 65 20 55 6e | (C) 200|1 The Un|
|00000340| 69 76 65 72 73 69 74 79 | 20 4f 66 20 51 75 65 65 |iversity| Of Quee|
|00000350| 6e 73 6c 61 6e 64 2e 20 | 20 41 6c 6c 20 52 69 67 |nsland. | All Rig|
|00000360| 68 74 73 20 52 65 73 65 | 72 76 65 64 2e 0d 23 23 |hts Rese|rved..##|
|00000370| 0d 23 23 20 43 6f 6e 74 | 72 69 62 75 74 6f 72 28 |.## Cont|ributor(|
|00000380| 73 29 3a 0d 23 23 20 20 | 20 52 6f 67 65 72 20 42 |s):.## | Roger B|
|00000390| 2e 20 53 69 64 6a 65 20 | 3c 72 62 73 40 6d 61 74 |. Sidje |<rbs@mat|
|000003a0| 68 73 2e 75 71 2e 65 64 | 75 2e 61 75 3e 0d 23 23 |hs.uq.ed|u.au>.##|
|000003b0| 0d 0d 23 23 4c 4f 43 41 | 4c 49 5a 41 54 49 4f 4e |..##LOCA|LIZATION|
|000003c0| 20 4e 4f 54 45 3a 0d 23 | 20 54 68 65 73 65 20 61 | NOTE:.#| These a|
|000003d0| 72 65 20 75 73 65 64 20 | 74 6f 20 64 69 73 70 6c |re used |to displ|
|000003e0| 61 79 20 61 6e 20 61 6c | 65 72 74 20 62 6f 78 20 |ay an al|ert box |
|000003f0| 74 6f 20 77 61 72 6e 20 | 75 73 65 72 73 20 77 68 |to warn |users wh|
|00000400| 65 6e 20 4d 61 74 68 4d | 4c 20 66 6f 6e 74 73 0d |en MathM|L fonts.|
|00000410| 23 20 61 72 65 20 6e 6f | 74 20 69 6e 73 74 61 6c |# are no|t instal|
|00000420| 6c 65 64 20 6f 6e 20 74 | 68 65 69 72 20 73 79 73 |led on t|heir sys|
|00000430| 74 65 6d 2e 20 54 68 65 | 20 6c 69 73 74 20 6f 66 |tem. The| list of|
|00000440| 20 6d 69 73 73 69 6e 67 | 20 66 6f 6e 74 73 20 77 | missing| fonts w|
|00000450| 69 6c 6c 20 62 65 0d 23 | 20 73 75 62 73 74 69 74 |ill be.#| substit|
|00000460| 75 74 65 64 20 69 6e 20 | 61 72 67 75 6d 65 6e 74 |uted in |argument|
|00000470| 20 25 31 24 53 20 28 73 | 65 65 20 61 20 73 63 72 | %1$S (s|ee a scr|
|00000480| 65 65 6e 73 68 6f 74 20 | 69 6e 20 62 75 67 20 31 |eenshot |in bug 1|
|00000490| 32 38 31 33 39 29 2e 0d | 6d 61 74 68 66 6f 6e 74 |28139)..|mathfont|
|000004a0| 5f 6d 69 73 73 69 6e 67 | 5f 64 69 61 6c 6f 67 5f |_missing|_dialog_|
|000004b0| 74 69 74 6c 65 20 3d 20 | 4d 69 73 73 69 6e 67 20 |title = |Missing |
|000004c0| 4d 61 74 68 4d 4c 20 46 | 6f 6e 74 73 0d 6d 61 74 |MathML F|onts.mat|
|000004d0| 68 66 6f 6e 74 5f 6d 69 | 73 73 69 6e 67 5f 64 69 |hfont_mi|ssing_di|
|000004e0| 61 6c 6f 67 5f 6d 65 73 | 73 61 67 65 20 3d 20 54 |alog_mes|sage = T|
|000004f0| 6f 20 70 72 6f 70 65 72 | 6c 79 20 64 69 73 70 6c |o proper|ly displ|
|00000500| 61 79 20 74 68 65 20 4d | 61 74 68 4d 4c 20 6f 6e |ay the M|athML on|
|00000510| 20 74 68 69 73 20 70 61 | 67 65 20 79 6f 75 20 6e | this pa|ge you n|
|00000520| 65 65 64 20 74 6f 20 69 | 6e 73 74 61 6c 6c 20 74 |eed to i|nstall t|
|00000530| 68 65 20 66 6f 6c 6c 6f | 77 69 6e 67 20 66 6f 6e |he follo|wing fon|
|00000540| 74 73 3a 5c 6e 25 31 24 | 53 2e 5c 6e 5c 6e 5c 6e |ts:\n%1$|S.\n\n\n|
|00000550| 20 46 6f 72 20 66 75 72 | 74 68 65 72 20 69 6e 66 | For fur|ther inf|
|00000560| 6f 72 6d 61 74 69 6f 6e | 20 73 65 65 3a 5c 6e 68 |ormation| see:\nh|
|00000570| 74 74 70 3a 2f 2f 77 77 | 77 2e 6d 6f 7a 69 6c 6c |ttp://ww|w.mozill|
|00000580| 61 2e 6f 72 67 2f 70 72 | 6f 6a 65 63 74 73 2f 6d |a.org/pr|ojects/m|
|00000590| 61 74 68 6d 6c 2f 66 6f | 6e 74 73 0d 0d 23 23 4c |athml/fo|nts..##L|
|000005a0| 4f 43 41 4c 49 5a 41 54 | 49 4f 4e 20 4e 4f 54 45 |OCALIZAT|ION NOTE|
|000005b0| 3a 0d 23 20 44 6f 20 6e | 6f 74 20 74 72 61 6e 73 |:.# Do n|ot trans|
|000005c0| 6c 61 74 65 20 61 6e 79 | 74 68 69 6e 67 20 65 6c |late any|thing el|
|000005d0| 73 65 20 69 6e 20 74 68 | 69 73 20 66 69 6c 65 0d |se in th|is file.|
|000005e0| 0d 23 20 4f 72 64 65 72 | 65 64 20 6c 69 73 74 20 |.# Order|ed list |
|000005f0| 6f 66 20 66 6f 6e 74 73 | 20 77 69 74 68 20 77 68 |of fonts| with wh|
|00000600| 69 63 68 20 74 6f 20 61 | 74 74 65 6d 70 74 20 74 |ich to a|ttempt t|
|00000610| 6f 20 73 74 72 65 74 63 | 68 20 4d 61 74 68 4d 4c |o stretc|h MathML|
|00000620| 20 63 68 61 72 61 63 74 | 65 72 73 2e 0d 23 20 53 | charact|ers..# S|
|00000630| 65 65 20 74 68 65 20 64 | 6f 63 75 6d 65 6e 74 61 |ee the d|ocumenta|
|00000640| 74 69 6f 6e 20 61 74 20 | 74 68 65 20 65 6e 64 20 |tion at |the end |
|00000650| 6f 66 20 74 68 69 73 20 | 66 69 6c 65 20 66 6f 72 |of this |file for|
|00000660| 20 64 65 74 61 69 6c 73 | 20 6f 6e 20 74 68 65 20 | details| on the |
|00000670| 73 65 74 75 70 20 6f 66 | 0d 23 20 74 68 65 20 70 |setup of|.# the p|
|00000680| 72 6f 70 65 72 74 79 20 | 66 69 6c 65 20 61 73 73 |roperty |file ass|
|00000690| 6f 63 69 61 74 65 64 20 | 74 6f 20 65 61 63 68 20 |ociated |to each |
|000006a0| 66 6f 6e 74 2e 20 54 68 | 69 73 20 6f 72 64 65 72 |font. Th|is order|
|000006b0| 20 63 61 6e 20 62 65 20 | 6f 76 65 72 72 69 64 65 | can be |override|
|000006c0| 6e 20 62 79 0d 23 20 73 | 65 74 74 69 6e 67 20 74 |n by.# s|etting t|
|000006d0| 68 65 20 70 72 65 66 28 | 22 66 6f 6e 74 2e 6d 61 |he pref(|"font.ma|
|000006e0| 74 68 66 6f 6e 74 2d 66 | 61 6d 69 6c 79 22 2c 20 |thfont-f|amily", |
|000006f0| 22 43 4d 53 59 31 30 2c | 20 43 4d 45 58 31 30 2c |"CMSY10,| CMEX10,|
|00000700| 20 2e 2e 2e 22 29 20 6f | 72 20 62 79 0d 23 20 73 | ...") o|r by.# s|
|00000710| 65 74 74 69 6e 67 20 74 | 68 65 20 66 6f 6e 74 2d |etting t|he font-|
|00000720| 66 61 6d 69 6c 79 20 6c | 69 73 74 20 69 6e 20 3a |family l|ist in :|
|00000730| 2d 6d 6f 7a 2d 6d 61 74 | 68 2d 66 6f 6e 74 2d 73 |-moz-mat|h-font-s|
|00000740| 74 79 6c 65 2d 73 74 72 | 65 74 63 68 79 20 69 6e |tyle-str|etchy in|
|00000750| 20 6d 61 74 68 6d 6c 2e | 63 73 73 2e 0d 0d 6d 61 | mathml.|css...ma|
|00000760| 74 68 66 6f 6e 74 2d 66 | 61 6d 69 6c 79 20 3d 20 |thfont-f|amily = |
|00000770| 43 4d 53 59 31 30 2c 20 | 43 4d 45 58 31 30 2c 20 |CMSY10, |CMEX10, |
|00000780| 4d 61 74 68 31 2c 20 4d | 61 74 68 32 2c 20 4d 61 |Math1, M|ath2, Ma|
|00000790| 74 68 34 2c 20 4d 54 20 | 45 78 74 72 61 2c 20 53 |th4, MT |Extra, S|
|000007a0| 79 6d 62 6f 6c 0d 0d 23 | 20 53 74 79 6c 65 20 69 |ymbol..#| Style i|
|000007b0| 6e 76 61 72 69 61 6e 74 | 20 63 68 61 72 73 20 28 |nvariant| chars (|
|000007c0| 74 68 65 73 65 20 63 68 | 61 72 73 20 68 61 76 65 |these ch|ars have|
|000007d0| 20 74 68 65 69 72 20 6f | 77 6e 20 69 6e 74 72 69 | their o|wn intri|
|000007e0| 6e 73 69 63 20 70 72 65 | 64 65 66 69 6e 65 64 20 |nsic pre|defined |
|000007f0| 73 74 79 6c 65 73 29 0d | 23 20 58 58 58 20 63 6f |styles).|# XXX co|
|00000800| 6d 70 6c 65 74 65 20 74 | 68 65 73 65 2e 2e 2e 0d |mplete t|hese....|
|00000810| 0d 23 6d 61 74 68 76 61 | 72 69 61 6e 74 2e 6e 6f |.#mathva|riant.no|
|00000820| 72 6d 61 6c 20 3d 0d 23 | 6d 61 74 68 76 61 72 69 |rmal =.#|mathvari|
|00000830| 61 6e 74 2e 62 6f 6c 64 | 20 3d 0d 23 6d 61 74 68 |ant.bold| =.#math|
|00000840| 76 61 72 69 61 6e 74 2e | 69 74 61 6c 69 63 20 3d |variant.|italic =|
|00000850| 0d 23 6d 61 74 68 76 61 | 72 69 61 6e 74 2e 62 6f |.#mathva|riant.bo|
|00000860| 6c 64 2d 69 74 61 6c 69 | 63 20 3d 0d 23 6d 61 74 |ld-itali|c =.#mat|
|00000870| 68 76 61 72 69 61 6e 74 | 2e 73 61 6e 73 2d 73 65 |hvariant|.sans-se|
|00000880| 72 69 66 20 3d 0d 23 6d | 61 74 68 76 61 72 69 61 |rif =.#m|athvaria|
|00000890| 6e 74 2e 62 6f 6c 64 2d | 73 61 6e 73 2d 73 65 72 |nt.bold-|sans-ser|
|000008a0| 69 66 20 3d 0d 23 6d 61 | 74 68 76 61 72 69 61 6e |if =.#ma|thvarian|
|000008b0| 74 2e 73 61 6e 73 2d 73 | 65 72 69 66 2d 69 74 61 |t.sans-s|erif-ita|
|000008c0| 6c 69 63 20 3d 0d 23 6d | 61 74 68 76 61 72 69 61 |lic =.#m|athvaria|
|000008d0| 6e 74 2e 73 61 6e 73 2d | 73 65 72 69 66 2d 62 6f |nt.sans-|serif-bo|
|000008e0| 6c 64 2d 69 74 61 6c 69 | 63 20 3d 0d 23 6d 61 74 |ld-itali|c =.#mat|
|000008f0| 68 76 61 72 69 61 6e 74 | 2e 6d 6f 6e 6f 73 70 61 |hvariant|.monospa|
|00000900| 63 65 20 3d 0d 23 6d 61 | 74 68 76 61 72 69 61 6e |ce =.#ma|thvarian|
|00000910| 74 2e 73 63 72 69 70 74 | 20 3d 0d 23 6d 61 74 68 |t.script| =.#math|
|00000920| 76 61 72 69 61 6e 74 2e | 62 6f 6c 64 2d 73 63 72 |variant.|bold-scr|
|00000930| 69 70 74 20 3d 0d 23 6d | 61 74 68 76 61 72 69 61 |ipt =.#m|athvaria|
|00000940| 6e 74 2e 66 72 61 6b 74 | 75 72 20 3d 20 0d 23 6d |nt.frakt|ur = .#m|
|00000950| 61 74 68 76 61 72 69 61 | 6e 74 2e 62 6f 6c 64 2d |athvaria|nt.bold-|
|00000960| 66 72 61 6b 74 75 72 20 | 3d 0d 6d 61 74 68 76 61 |fraktur |=.mathva|
|00000970| 72 69 61 6e 74 2e 64 6f | 75 62 6c 65 2d 73 74 72 |riant.do|uble-str|
|00000980| 75 63 6b 20 3d 20 5c 75 | 32 31 30 32 5c 75 32 31 |uck = \u|2102\u21|
|00000990| 30 44 5c 75 32 31 31 35 | 5c 75 32 31 31 39 5c 75 |0D\u2115|\u2119\u|
|000009a0| 32 31 31 41 5c 75 32 31 | 31 44 5c 75 32 31 32 34 |211A\u21|1D\u2124|
|000009b0| 0d 0d 0d 23 20 53 74 72 | 65 74 63 68 79 20 63 68 |...# Str|etchy ch|
|000009c0| 61 72 61 63 74 65 72 73 | 20 74 68 61 74 20 68 61 |aracters| that ha|
|000009d0| 76 65 20 74 68 65 69 72 | 20 70 72 65 66 65 72 72 |ve their| preferr|
|000009e0| 65 64 20 65 78 74 65 6e | 73 69 6f 6e 20 66 6f 6e |ed exten|sion fon|
|000009f0| 74 73 2e 0d 23 20 2d 20 | 54 68 65 20 22 2e 76 61 |ts..# - |The ".va|
|00000a00| 72 69 61 6e 74 73 22 20 | 72 65 70 72 65 73 65 6e |riants" |represen|
|00000a10| 74 73 20 74 68 65 20 6f | 72 64 65 72 65 64 20 6c |ts the o|rdered l|
|00000a20| 69 73 74 20 6f 66 20 66 | 6f 6e 74 73 20 77 68 65 |ist of f|onts whe|
|00000a30| 72 65 20 74 6f 20 6c 6f | 6f 6b 20 66 6f 72 20 67 |re to lo|ok for g|
|00000a40| 6c 79 70 68 0d 23 20 6f | 66 20 6c 61 72 67 65 72 |lyph.# o|f larger|
|00000a50| 20 73 69 7a 65 73 2e 20 | 4e 6f 74 65 20 74 68 61 | sizes. |Note tha|
|00000a60| 74 20 69 66 20 6f 6e 65 | 20 6f 66 20 74 68 65 20 |t if one| of the |
|00000a70| 66 6f 6e 74 73 20 73 70 | 65 63 69 66 69 65 64 20 |fonts sp|ecified |
|00000a80| 66 6f 72 20 61 20 67 69 | 76 65 6e 20 63 68 61 72 |for a gi|ven char|
|00000a90| 61 63 74 65 72 20 69 73 | 0d 23 20 69 6e 73 74 61 |acter is|.# insta|
|00000aa0| 6c 6c 65 64 20 6f 6e 20 | 74 68 65 20 75 73 65 72 |lled on |the user|
|00000ab0| 27 20 73 79 73 74 65 6d | 2c 20 6e 6f 20 6f 74 68 |' system|, no oth|
|00000ac0| 65 72 20 61 6c 74 65 72 | 6e 61 74 65 20 66 6f 6e |er alter|nate fon|
|00000ad0| 74 20 77 69 6c 6c 20 62 | 65 20 75 73 65 64 20 74 |t will b|e used t|
|00000ae0| 6f 20 61 74 74 65 6d 70 | 74 0d 23 20 74 6f 20 73 |o attemp|t.# to s|
|00000af0| 74 72 65 74 63 68 20 74 | 68 61 74 20 70 61 72 74 |tretch t|hat part|
|00000b00| 69 63 75 6c 61 72 20 63 | 68 61 72 61 63 74 65 72 |icular c|haracter|
|00000b10| 2e 20 54 68 65 20 64 65 | 63 6c 61 72 61 74 69 6f |. The de|claratio|
|00000b20| 6e 20 69 73 20 69 67 6e | 6f 72 65 64 20 69 66 20 |n is ign|ored if |
|00000b30| 6e 6f 6e 65 20 6f 66 20 | 74 68 65 0d 23 20 66 6f |none of |the.# fo|
|00000b40| 6e 74 73 20 69 73 20 69 | 6e 73 74 61 6c 6c 65 64 |nts is i|nstalled|
|00000b50| 2e 0d 23 20 2d 20 54 68 | 65 20 22 2e 70 61 72 74 |..# - Th|e ".part|
|00000b60| 73 22 20 72 65 70 72 65 | 73 65 6e 74 73 20 74 68 |s" repre|sents th|
|00000b70| 65 20 6f 72 64 65 72 65 | 64 20 6c 69 73 74 20 6f |e ordere|d list o|
|00000b80| 66 20 66 6f 6e 74 73 20 | 74 68 61 74 20 73 68 6f |f fonts |that sho|
|00000b90| 75 6c 64 20 62 65 20 75 | 73 65 64 20 74 6f 20 6c |uld be u|sed to l|
|00000ba0| 6f 6f 6b 0d 23 20 66 6f | 72 20 74 68 65 20 70 61 |ook.# fo|r the pa|
|00000bb0| 72 74 69 61 6c 20 67 6c | 79 70 68 73 20 74 6f 20 |rtial gl|yphs to |
|00000bc0| 62 65 20 75 73 65 64 20 | 74 6f 20 62 75 69 6c 64 |be used |to build|
|00000bd0| 20 75 70 20 74 68 65 20 | 63 68 61 72 61 63 74 65 | up the |characte|
|00000be0| 72 2e 20 4e 6f 74 65 20 | 74 68 61 74 20 69 66 20 |r. Note |that if |
|00000bf0| 6f 6e 65 20 6f 66 0d 23 | 20 74 68 65 20 73 70 65 |one of.#| the spe|
|00000c00| 63 69 66 69 65 64 20 66 | 6f 6e 74 73 20 69 73 20 |cified f|onts is |
|00000c10| 69 6e 73 74 61 6c 6c 65 | 64 20 6f 6e 20 74 68 65 |installe|d on the|
|00000c20| 20 75 73 65 72 27 20 73 | 79 73 74 65 6d 2c 20 6e | user' s|ystem, n|
|00000c30| 6f 20 6f 74 68 65 72 20 | 61 6c 74 65 72 6e 61 74 |o other |alternat|
|00000c40| 65 20 66 6f 6e 74 0d 23 | 20 77 69 6c 6c 20 62 65 |e font.#| will be|
|00000c50| 20 75 73 65 64 20 74 6f | 20 61 74 74 65 6d 70 74 | used to| attempt|
|00000c60| 20 74 6f 20 73 74 72 65 | 74 63 68 20 74 68 61 74 | to stre|tch that|
|00000c70| 20 70 61 72 74 69 63 75 | 6c 61 72 20 63 68 61 72 | particu|lar char|
|00000c80| 61 63 74 65 72 2e 20 54 | 68 65 20 64 65 63 6c 61 |acter. T|he decla|
|00000c90| 72 61 74 69 6f 6e 20 69 | 73 0d 23 20 69 67 6e 6f |ration i|s.# igno|
|00000ca0| 72 65 64 20 69 66 20 6e | 6f 6e 65 20 6f 66 20 74 |red if n|one of t|
|00000cb0| 68 65 20 66 6f 6e 74 73 | 20 69 73 20 69 6e 73 74 |he fonts| is inst|
|00000cc0| 61 6c 6c 65 64 2e 0d 23 | 20 45 61 63 68 20 65 6e |alled..#| Each en|
|00000cd0| 74 72 79 20 69 73 20 73 | 70 65 63 69 66 69 65 64 |try is s|pecified|
|00000ce0| 20 75 73 69 6e 67 20 74 | 68 65 20 55 6e 69 63 6f | using t|he Unico|
|00000cf0| 64 65 20 66 6f 72 6d 61 | 74 20 6f 66 20 74 68 65 |de forma|t of the|
|00000d00| 20 63 68 61 72 61 63 74 | 65 72 2c 20 61 6e 64 0d | charact|er, and.|
|00000d10| 23 20 74 68 65 20 63 6f | 6d 6d 61 2d 73 65 70 61 |# the co|mma-sepa|
|00000d20| 72 61 74 65 64 20 6c 69 | 73 74 20 6f 66 20 66 6f |rated li|st of fo|
|00000d30| 6e 74 73 20 6c 69 6b 65 | 20 69 6e 20 74 68 65 20 |nts like| in the |
|00000d40| 66 6f 6e 74 2d 66 61 6d | 69 6c 79 20 70 72 6f 70 |font-fam|ily prop|
|00000d50| 65 72 74 79 20 6f 66 20 | 43 53 53 2e 0d 23 20 41 |erty of |CSS..# A|
|00000d60| 20 63 68 61 72 61 63 74 | 65 72 20 63 61 6e 20 72 | charact|er can r|
|00000d70| 65 71 75 65 73 74 20 64 | 69 66 66 65 72 65 6e 74 |equest d|ifferent|
|00000d80| 20 66 6f 6e 74 73 20 66 | 6f 72 20 69 74 73 20 76 | fonts f|or its v|
|00000d90| 61 72 69 61 6e 74 73 20 | 61 6e 64 20 66 6f 72 20 |ariants |and for |
|00000da0| 69 74 73 20 70 61 72 74 | 73 2e 0d 0d 23 20 43 4d |its part|s...# CM|
|00000db0| 45 58 31 30 20 6f 72 20 | 4d 61 74 68 32 20 61 72 |EX10 or |Math2 ar|
|00000dc0| 65 20 70 72 65 66 65 72 | 72 65 64 20 66 6f 72 20 |e prefer|red for |
|00000dd0| 53 71 72 74 0d 6d 61 74 | 68 66 6f 6e 74 2d 66 61 |Sqrt.mat|hfont-fa|
|00000de0| 6d 69 6c 79 2e 5c 75 32 | 32 31 41 2e 76 61 72 69 |mily.\u2|21A.vari|
|00000df0| 61 6e 74 73 20 3d 20 43 | 4d 45 58 31 30 2c 20 4d |ants = C|MEX10, M|
|00000e00| 61 74 68 32 0d 6d 61 74 | 68 66 6f 6e 74 2d 66 61 |ath2.mat|hfont-fa|
|00000e10| 6d 69 6c 79 2e 5c 75 32 | 32 31 41 2e 70 61 72 74 |mily.\u2|21A.part|
|00000e20| 73 20 20 20 20 3d 20 43 | 4d 45 58 31 30 2c 20 4d |s = C|MEX10, M|
|00000e30| 61 74 68 32 0d 0d 23 20 | 43 4d 45 58 31 30 20 69 |ath2..# |CMEX10 i|
|00000e40| 73 20 70 72 65 66 65 72 | 72 65 64 20 66 6f 72 20 |s prefer|red for |
|00000e50| 4f 76 65 72 42 72 61 63 | 65 20 61 6e 64 20 55 6e |OverBrac|e and Un|
|00000e60| 64 65 72 42 72 61 63 65 | 0d 6d 61 74 68 66 6f 6e |derBrace|.mathfon|
|00000e70| 74 2d 66 61 6d 69 6c 79 | 2e 5c 75 46 45 33 37 2e |t-family|.\uFE37.|
|00000e80| 70 61 72 74 73 20 20 20 | 20 3d 20 43 4d 45 58 31 |parts | = CMEX1|
|00000e90| 30 0d 6d 61 74 68 66 6f | 6e 74 2d 66 61 6d 69 6c |0.mathfo|nt-famil|
|00000ea0| 79 2e 5c 75 46 45 33 38 | 2e 70 61 72 74 73 20 20 |y.\uFE38|.parts |
|00000eb0| 20 20 3d 20 43 4d 45 58 | 31 30 0d 0d 23 20 4f 70 | = CMEX|10..# Op|
|00000ec0| 65 72 61 74 6f 72 20 44 | 69 63 74 69 6f 6e 61 72 |erator D|ictionar|
|00000ed0| 79 20 69 6e 64 65 78 65 | 64 20 6f 6e 20 74 68 65 |y indexe|d on the|
|00000ee0| 20 22 66 6f 72 6d 22 20 | 28 69 2e 65 2e 2c 20 69 | "form" |(i.e., i|
|00000ef0| 6e 66 69 78 2c 20 70 72 | 65 66 69 78 2c 20 6f 72 |nfix, pr|efix, or|
|00000f00| 20 73 75 66 66 69 78 29 | 2e 0d 23 20 45 61 63 68 | suffix)|..# Each|
|00000f10| 20 65 6e 74 72 79 20 6c | 69 73 74 73 20 74 68 65 | entry l|ists the|
|00000f20| 20 61 74 74 72 69 62 75 | 74 65 73 20 6f 66 20 74 | attribu|tes of t|
|00000f30| 68 65 20 6f 70 65 72 61 | 74 6f 72 2c 20 75 73 69 |he opera|tor, usi|
|00000f40| 6e 67 20 69 74 73 20 55 | 6e 69 63 6f 64 65 20 66 |ng its U|nicode f|
|00000f50| 6f 72 6d 61 74 2e 0d 0d | 6f 70 65 72 61 74 6f 72 |ormat...|operator|
|00000f60| 2e 5c 75 30 30 32 38 2e | 70 72 65 66 69 78 20 3d |.\u0028.|prefix =|
|00000f70| 20 73 74 72 65 74 63 68 | 79 3a 76 65 72 74 69 63 | stretch|y:vertic|
|00000f80| 61 6c 20 66 65 6e 63 65 | 3a 74 72 75 65 20 6c 73 |al fence|:true ls|
|00000f90| 70 61 63 65 3a 30 65 6d | 20 72 73 70 61 63 65 3a |pace:0em| rspace:|
|00000fa0| 30 65 6d 20 23 20 28 0d | 6f 70 65 72 61 74 6f 72 |0em # (.|operator|
|00000fb0| 2e 5c 75 30 30 32 39 2e | 70 6f 73 74 66 69 78 20 |.\u0029.|postfix |
|00000fc0| 3d 20 73 74 72 65 74 63 | 68 79 3a 76 65 72 74 69 |= stretc|hy:verti|
|00000fd0| 63 61 6c 20 66 65 6e 63 | 65 3a 74 72 75 65 20 6c |cal fenc|e:true l|
|00000fe0| 73 70 61 63 65 3a 30 65 | 6d 20 72 73 70 61 63 65 |space:0e|m rspace|
|00000ff0| 3a 30 65 6d 20 23 20 29 | 0d 6f 70 65 72 61 74 6f |:0em # )|.operato|
|00001000| 72 2e 5c 75 30 30 35 42 | 2e 70 72 65 66 69 78 20 |r.\u005B|.prefix |
|00001010| 3d 20 73 74 72 65 74 63 | 68 79 3a 76 65 72 74 69 |= stretc|hy:verti|
|00001020| 63 61 6c 20 66 65 6e 63 | 65 3a 74 72 75 65 20 6c |cal fenc|e:true l|
|00001030| 73 70 61 63 65 3a 30 65 | 6d 20 72 73 70 61 63 65 |space:0e|m rspace|
|00001040| 3a 30 65 6d 20 23 20 5b | 0d 6f 70 65 72 61 74 6f |:0em # [|.operato|
|00001050| 72 2e 5c 75 30 30 35 44 | 2e 70 6f 73 74 66 69 78 |r.\u005D|.postfix|
|00001060| 20 3d 20 73 74 72 65 74 | 63 68 79 3a 76 65 72 74 | = stret|chy:vert|
|00001070| 69 63 61 6c 20 66 65 6e | 63 65 3a 74 72 75 65 20 |ical fen|ce:true |
|00001080| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|00001090| 65 3a 30 65 6d 20 23 20 | 5d 0d 6f 70 65 72 61 74 |e:0em # |].operat|
|000010a0| 6f 72 2e 5c 75 30 30 37 | 42 2e 70 72 65 66 69 78 |or.\u007|B.prefix|
|000010b0| 20 3d 20 73 74 72 65 74 | 63 68 79 3a 76 65 72 74 | = stret|chy:vert|
|000010c0| 69 63 61 6c 20 66 65 6e | 63 65 3a 74 72 75 65 20 |ical fen|ce:true |
|000010d0| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|000010e0| 65 3a 30 65 6d 20 23 20 | 7b 0d 6f 70 65 72 61 74 |e:0em # |{.operat|
|000010f0| 6f 72 2e 5c 75 30 30 37 | 44 2e 70 6f 73 74 66 69 |or.\u007|D.postfi|
|00001100| 78 20 3d 20 73 74 72 65 | 74 63 68 79 3a 76 65 72 |x = stre|tchy:ver|
|00001110| 74 69 63 61 6c 20 66 65 | 6e 63 65 3a 74 72 75 65 |tical fe|nce:true|
|00001120| 20 6c 73 70 61 63 65 3a | 30 65 6d 20 72 73 70 61 | lspace:|0em rspa|
|00001130| 63 65 3a 30 65 6d 20 23 | 20 7d 0d 6f 70 65 72 61 |ce:0em #| }.opera|
|00001140| 74 6f 72 2e 5c 75 32 30 | 31 44 2e 70 6f 73 74 66 |tor.\u20|1D.postf|
|00001150| 69 78 20 3d 20 66 65 6e | 63 65 3a 74 72 75 65 20 |ix = fen|ce:true |
|00001160| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|00001170| 65 3a 30 65 6d 20 23 20 | 26 43 6c 6f 73 65 43 75 |e:0em # |&CloseCu|
|00001180| 72 6c 79 44 6f 75 62 6c | 65 51 75 6f 74 65 3b 0d |rlyDoubl|eQuote;.|
|00001190| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 30 31 39 2e |operator|.\u2019.|
|000011a0| 70 6f 73 74 66 69 78 20 | 3d 20 66 65 6e 63 65 3a |postfix |= fence:|
|000011b0| 74 72 75 65 20 6c 73 70 | 61 63 65 3a 30 65 6d 20 |true lsp|ace:0em |
|000011c0| 72 73 70 61 63 65 3a 30 | 65 6d 20 23 20 26 43 6c |rspace:0|em # &Cl|
|000011d0| 6f 73 65 43 75 72 6c 79 | 51 75 6f 74 65 3b 0d 6f |oseCurly|Quote;.o|
|000011e0| 70 65 72 61 74 6f 72 2e | 5c 75 32 33 32 39 2e 70 |perator.|\u2329.p|
|000011f0| 72 65 66 69 78 20 3d 20 | 73 74 72 65 74 63 68 79 |refix = |stretchy|
|00001200| 3a 76 65 72 74 69 63 61 | 6c 20 66 65 6e 63 65 3a |:vertica|l fence:|
|00001210| 74 72 75 65 20 6c 73 70 | 61 63 65 3a 30 65 6d 20 |true lsp|ace:0em |
|00001220| 72 73 70 61 63 65 3a 30 | 65 6d 20 23 20 26 4c 65 |rspace:0|em # &Le|
|00001230| 66 74 41 6e 67 6c 65 42 | 72 61 63 6b 65 74 3b 0d |ftAngleB|racket;.|
|00001240| 23 20 55 4e 52 45 53 4f | 4c 56 45 44 20 6f 70 65 |# UNRESO|LVED ope|
|00001250| 72 61 74 6f 72 2e 26 4c | 65 66 74 42 72 61 63 6b |rator.&L|eftBrack|
|00001260| 65 74 69 6e 67 42 61 72 | 3b 2e 70 72 65 66 69 78 |etingBar|;.prefix|
|00001270| 20 3d 20 73 74 72 65 74 | 63 68 79 3a 76 65 72 74 | = stret|chy:vert|
|00001280| 69 63 61 6c 20 66 65 6e | 63 65 3a 74 72 75 65 20 |ical fen|ce:true |
|00001290| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|000012a0| 65 3a 30 65 6d 20 23 20 | 26 4c 65 66 74 42 72 61 |e:0em # |&LeftBra|
|000012b0| 63 6b 65 74 69 6e 67 42 | 61 72 3b 0d 6f 70 65 72 |cketingB|ar;.oper|
|000012c0| 61 74 6f 72 2e 5c 75 32 | 33 30 38 2e 70 72 65 66 |ator.\u2|308.pref|
|000012d0| 69 78 20 3d 20 73 74 72 | 65 74 63 68 79 3a 76 65 |ix = str|etchy:ve|
|000012e0| 72 74 69 63 61 6c 20 66 | 65 6e 63 65 3a 74 72 75 |rtical f|ence:tru|
|000012f0| 65 20 6c 73 70 61 63 65 | 3a 30 65 6d 20 72 73 70 |e lspace|:0em rsp|
|00001300| 61 63 65 3a 30 65 6d 20 | 23 20 26 4c 65 66 74 43 |ace:0em |# &LeftC|
|00001310| 65 69 6c 69 6e 67 3b 0d | 6f 70 65 72 61 74 6f 72 |eiling;.|operator|
|00001320| 2e 5c 75 33 30 31 41 2e | 70 72 65 66 69 78 20 3d |.\u301A.|prefix =|
|00001330| 20 73 74 72 65 74 63 68 | 79 3a 76 65 72 74 69 63 | stretch|y:vertic|
|00001340| 61 6c 20 66 65 6e 63 65 | 3a 74 72 75 65 20 6c 73 |al fence|:true ls|
|00001350| 70 61 63 65 3a 30 65 6d | 20 72 73 70 61 63 65 3a |pace:0em| rspace:|
|00001360| 30 65 6d 20 23 20 26 4c | 65 66 74 44 6f 75 62 6c |0em # &L|eftDoubl|
|00001370| 65 42 72 61 63 6b 65 74 | 3b 0d 23 20 55 4e 52 45 |eBracket|;.# UNRE|
|00001380| 53 4f 4c 56 45 44 20 6f | 70 65 72 61 74 6f 72 2e |SOLVED o|perator.|
|00001390| 26 4c 65 66 74 44 6f 75 | 62 6c 65 42 72 61 63 6b |&LeftDou|bleBrack|
|000013a0| 65 74 69 6e 67 42 61 72 | 3b 2e 70 72 65 66 69 78 |etingBar|;.prefix|
|000013b0| 20 3d 20 73 74 72 65 74 | 63 68 79 3a 76 65 72 74 | = stret|chy:vert|
|000013c0| 69 63 61 6c 20 66 65 6e | 63 65 3a 74 72 75 65 20 |ical fen|ce:true |
|000013d0| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|000013e0| 65 3a 30 65 6d 20 23 20 | 26 4c 65 66 74 44 6f 75 |e:0em # |&LeftDou|
|000013f0| 62 6c 65 42 72 61 63 6b | 65 74 69 6e 67 42 61 72 |bleBrack|etingBar|
|00001400| 3b 0d 6f 70 65 72 61 74 | 6f 72 2e 5c 75 32 33 30 |;.operat|or.\u230|
|00001410| 41 2e 70 72 65 66 69 78 | 20 3d 20 73 74 72 65 74 |A.prefix| = stret|
|00001420| 63 68 79 3a 76 65 72 74 | 69 63 61 6c 20 66 65 6e |chy:vert|ical fen|
|00001430| 63 65 3a 74 72 75 65 20 | 6c 73 70 61 63 65 3a 30 |ce:true |lspace:0|
|00001440| 65 6d 20 72 73 70 61 63 | 65 3a 30 65 6d 20 23 20 |em rspac|e:0em # |
|00001450| 26 4c 65 66 74 46 6c 6f | 6f 72 3b 0d 6f 70 65 72 |&LeftFlo|or;.oper|
|00001460| 61 74 6f 72 2e 5c 75 32 | 30 31 43 2e 70 72 65 66 |ator.\u2|01C.pref|
|00001470| 69 78 20 3d 20 66 65 6e | 63 65 3a 74 72 75 65 20 |ix = fen|ce:true |
|00001480| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|00001490| 65 3a 30 65 6d 20 23 20 | 26 4f 70 65 6e 43 75 72 |e:0em # |&OpenCur|
|000014a0| 6c 79 44 6f 75 62 6c 65 | 51 75 6f 74 65 3b 0d 6f |lyDouble|Quote;.o|
|000014b0| 70 65 72 61 74 6f 72 2e | 5c 75 32 30 31 38 2e 70 |perator.|\u2018.p|
|000014c0| 72 65 66 69 78 20 3d 20 | 66 65 6e 63 65 3a 74 72 |refix = |fence:tr|
|000014d0| 75 65 20 6c 73 70 61 63 | 65 3a 30 65 6d 20 72 73 |ue lspac|e:0em rs|
|000014e0| 70 61 63 65 3a 30 65 6d | 20 23 20 26 4f 70 65 6e |pace:0em| # &Open|
|000014f0| 43 75 72 6c 79 51 75 6f | 74 65 3b 0d 6f 70 65 72 |CurlyQuo|te;.oper|
|00001500| 61 74 6f 72 2e 5c 75 32 | 33 32 41 2e 70 6f 73 74 |ator.\u2|32A.post|
|00001510| 66 69 78 20 3d 20 73 74 | 72 65 74 63 68 79 3a 76 |fix = st|retchy:v|
|00001520| 65 72 74 69 63 61 6c 20 | 66 65 6e 63 65 3a 74 72 |ertical |fence:tr|
|00001530| 75 65 20 6c 73 70 61 63 | 65 3a 30 65 6d 20 72 73 |ue lspac|e:0em rs|
|00001540| 70 61 63 65 3a 30 65 6d | 20 23 20 26 52 69 67 68 |pace:0em| # &Righ|
|00001550| 74 41 6e 67 6c 65 42 72 | 61 63 6b 65 74 3b 0d 23 |tAngleBr|acket;.#|
|00001560| 20 55 4e 52 45 53 4f 4c | 56 45 44 20 6f 70 65 72 | UNRESOL|VED oper|
|00001570| 61 74 6f 72 2e 26 52 69 | 67 68 74 42 72 61 63 6b |ator.&Ri|ghtBrack|
|00001580| 65 74 69 6e 67 42 61 72 | 3b 2e 70 6f 73 74 66 69 |etingBar|;.postfi|
|00001590| 78 20 3d 20 73 74 72 65 | 74 63 68 79 3a 76 65 72 |x = stre|tchy:ver|
|000015a0| 74 69 63 61 6c 20 66 65 | 6e 63 65 3a 74 72 75 65 |tical fe|nce:true|
|000015b0| 20 6c 73 70 61 63 65 3a | 30 65 6d 20 72 73 70 61 | lspace:|0em rspa|
|000015c0| 63 65 3a 30 65 6d 20 23 | 20 26 52 69 67 68 74 42 |ce:0em #| &RightB|
|000015d0| 72 61 63 6b 65 74 69 6e | 67 42 61 72 3b 0d 6f 70 |racketin|gBar;.op|
|000015e0| 65 72 61 74 6f 72 2e 5c | 75 32 33 30 39 2e 70 6f |erator.\|u2309.po|
|000015f0| 73 74 66 69 78 20 3d 20 | 73 74 72 65 74 63 68 79 |stfix = |stretchy|
|00001600| 3a 76 65 72 74 69 63 61 | 6c 20 66 65 6e 63 65 3a |:vertica|l fence:|
|00001610| 74 72 75 65 20 6c 73 70 | 61 63 65 3a 30 65 6d 20 |true lsp|ace:0em |
|00001620| 72 73 70 61 63 65 3a 30 | 65 6d 20 23 20 26 52 69 |rspace:0|em # &Ri|
|00001630| 67 68 74 43 65 69 6c 69 | 6e 67 3b 0d 6f 70 65 72 |ghtCeili|ng;.oper|
|00001640| 61 74 6f 72 2e 5c 75 33 | 30 31 42 2e 70 6f 73 74 |ator.\u3|01B.post|
|00001650| 66 69 78 20 3d 20 73 74 | 72 65 74 63 68 79 3a 76 |fix = st|retchy:v|
|00001660| 65 72 74 69 63 61 6c 20 | 66 65 6e 63 65 3a 74 72 |ertical |fence:tr|
|00001670| 75 65 20 6c 73 70 61 63 | 65 3a 30 65 6d 20 72 73 |ue lspac|e:0em rs|
|00001680| 70 61 63 65 3a 30 65 6d | 20 23 20 26 52 69 67 68 |pace:0em| # &Righ|
|00001690| 74 44 6f 75 62 6c 65 42 | 72 61 63 6b 65 74 3b 0d |tDoubleB|racket;.|
|000016a0| 23 20 55 4e 52 45 53 4f | 4c 56 45 44 20 6f 70 65 |# UNRESO|LVED ope|
|000016b0| 72 61 74 6f 72 2e 26 52 | 69 67 68 74 44 6f 75 62 |rator.&R|ightDoub|
|000016c0| 6c 65 42 72 61 63 6b 65 | 74 69 6e 67 42 61 72 3b |leBracke|tingBar;|
|000016d0| 2e 70 6f 73 74 66 69 78 | 20 3d 20 73 74 72 65 74 |.postfix| = stret|
|000016e0| 63 68 79 3a 76 65 72 74 | 69 63 61 6c 20 66 65 6e |chy:vert|ical fen|
|000016f0| 63 65 3a 74 72 75 65 20 | 6c 73 70 61 63 65 3a 30 |ce:true |lspace:0|
|00001700| 65 6d 20 72 73 70 61 63 | 65 3a 30 65 6d 20 23 20 |em rspac|e:0em # |
|00001710| 26 52 69 67 68 74 44 6f | 75 62 6c 65 42 72 61 63 |&RightDo|ubleBrac|
|00001720| 6b 65 74 69 6e 67 42 61 | 72 3b 0d 6f 70 65 72 61 |ketingBa|r;.opera|
|00001730| 74 6f 72 2e 5c 75 32 33 | 30 42 2e 70 6f 73 74 66 |tor.\u23|0B.postf|
|00001740| 69 78 20 3d 20 73 74 72 | 65 74 63 68 79 3a 76 65 |ix = str|etchy:ve|
|00001750| 72 74 69 63 61 6c 20 66 | 65 6e 63 65 3a 74 72 75 |rtical f|ence:tru|
|00001760| 65 20 6c 73 70 61 63 65 | 3a 30 65 6d 20 72 73 70 |e lspace|:0em rsp|
|00001770| 61 63 65 3a 30 65 6d 20 | 23 20 26 52 69 67 68 74 |ace:0em |# &Right|
|00001780| 46 6c 6f 6f 72 3b 0d 23 | 20 55 4e 52 45 53 4f 4c |Floor;.#| UNRESOL|
|00001790| 56 45 44 20 6f 70 65 72 | 61 74 6f 72 2e 26 4c 65 |VED oper|ator.&Le|
|000017a0| 66 74 53 6b 65 6c 65 74 | 6f 6e 3b 2e 70 72 65 66 |ftSkelet|on;.pref|
|000017b0| 69 78 20 3d 20 66 65 6e | 63 65 3a 74 72 75 65 20 |ix = fen|ce:true |
|000017c0| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|000017d0| 65 3a 30 65 6d 20 23 20 | 26 4c 65 66 74 53 6b 65 |e:0em # |&LeftSke|
|000017e0| 6c 65 74 6f 6e 3b 0d 23 | 20 55 4e 52 45 53 4f 4c |leton;.#| UNRESOL|
|000017f0| 56 45 44 20 6f 70 65 72 | 61 74 6f 72 2e 26 52 69 |VED oper|ator.&Ri|
|00001800| 67 68 74 53 6b 65 6c 65 | 74 6f 6e 3b 2e 70 6f 73 |ghtSkele|ton;.pos|
|00001810| 74 66 69 78 20 3d 20 66 | 65 6e 63 65 3a 74 72 75 |tfix = f|ence:tru|
|00001820| 65 20 6c 73 70 61 63 65 | 3a 30 65 6d 20 72 73 70 |e lspace|:0em rsp|
|00001830| 61 63 65 3a 30 65 6d 20 | 23 20 26 52 69 67 68 74 |ace:0em |# &Right|
|00001840| 53 6b 65 6c 65 74 6f 6e | 3b 0d 6f 70 65 72 61 74 |Skeleton|;.operat|
|00001850| 6f 72 2e 5c 75 32 30 30 | 42 2e 69 6e 66 69 78 20 |or.\u200|B.infix |
|00001860| 3d 20 73 65 70 61 72 61 | 74 6f 72 3a 74 72 75 65 |= separa|tor:true|
|00001870| 20 6c 73 70 61 63 65 3a | 30 65 6d 20 72 73 70 61 | lspace:|0em rspa|
|00001880| 63 65 3a 30 65 6d 20 23 | 20 26 49 6e 76 69 73 69 |ce:0em #| &Invisi|
|00001890| 62 6c 65 43 6f 6d 6d 61 | 3b 0d 6f 70 65 72 61 74 |bleComma|;.operat|
|000018a0| 6f 72 2e 5c 75 30 30 32 | 43 2e 69 6e 66 69 78 20 |or.\u002|C.infix |
|000018b0| 3d 20 73 65 70 61 72 61 | 74 6f 72 3a 74 72 75 65 |= separa|tor:true|
|000018c0| 20 6c 73 70 61 63 65 3a | 30 65 6d 20 72 73 70 61 | lspace:|0em rspa|
|000018d0| 63 65 3a 76 65 72 79 74 | 68 69 63 6b 6d 61 74 68 |ce:veryt|hickmath|
|000018e0| 73 70 61 63 65 20 23 20 | 2c 0d 6f 70 65 72 61 74 |space # |,.operat|
|000018f0| 6f 72 2e 5c 75 32 35 30 | 30 2e 69 6e 66 69 78 20 |or.\u250|0.infix |
|00001900| 3d 20 73 74 72 65 74 63 | 68 79 3a 68 6f 72 69 7a |= stretc|hy:horiz|
|00001910| 6f 6e 74 61 6c 20 6d 69 | 6e 73 69 7a 65 3a 30 20 |ontal mi|nsize:0 |
|00001920| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|00001930| 65 3a 30 65 6d 20 23 20 | 26 48 6f 72 69 7a 6f 6e |e:0em # |&Horizon|
|00001940| 74 61 6c 4c 69 6e 65 3b | 0d 6f 70 65 72 61 74 6f |talLine;|.operato|
|00001950| 72 2e 5c 75 30 30 37 43 | 2e 69 6e 66 69 78 20 3d |r.\u007C|.infix =|
|00001960| 20 73 74 72 65 74 63 68 | 79 3a 76 65 72 74 69 63 | stretch|y:vertic|
|00001970| 61 6c 20 6d 69 6e 73 69 | 7a 65 3a 30 20 6c 73 70 |al minsi|ze:0 lsp|
|00001980| 61 63 65 3a 30 65 6d 20 | 72 73 70 61 63 65 3a 30 |ace:0em |rspace:0|
|00001990| 65 6d 20 23 20 26 56 65 | 72 74 69 63 61 6c 4c 69 |em # &Ve|rticalLi|
|000019a0| 6e 65 3b 20 7c 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |ne; |.op|erator.\|
|000019b0| 75 30 30 33 42 2e 69 6e | 66 69 78 20 3d 20 73 65 |u003B.in|fix = se|
|000019c0| 70 61 72 61 74 6f 72 3a | 74 72 75 65 20 6c 73 70 |parator:|true lsp|
|000019d0| 61 63 65 3a 30 65 6d 20 | 72 73 70 61 63 65 3a 74 |ace:0em |rspace:t|
|000019e0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|000019f0| 3b 0d 6f 70 65 72 61 74 | 6f 72 2e 5c 75 30 30 33 |;.operat|or.\u003|
|00001a00| 42 2e 70 6f 73 74 66 69 | 78 20 3d 20 73 65 70 61 |B.postfi|x = sepa|
|00001a10| 72 61 74 6f 72 3a 74 72 | 75 65 20 6c 73 70 61 63 |rator:tr|ue lspac|
|00001a20| 65 3a 30 65 6d 20 72 73 | 70 61 63 65 3a 30 65 6d |e:0em rs|pace:0em|
|00001a30| 20 23 20 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 | # ;.ope|rator.\u|
|00001a40| 30 30 33 41 5c 75 30 30 | 33 44 2e 69 6e 66 69 78 |003A\u00|3D.infix|
|00001a50| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00001a60| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00001a70| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00001a80| 20 3a 3d 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 | :=.oper|ator.\u2|
|00001a90| 32 35 34 2e 69 6e 66 69 | 78 20 3d 20 6c 73 70 61 |254.infi|x = lspa|
|00001aa0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00001ab0| 65 20 72 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |e rspace|:thickma|
|00001ac0| 74 68 73 70 61 63 65 20 | 23 20 26 41 73 73 69 67 |thspace |# &Assig|
|00001ad0| 6e 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |n;.opera|tor.\u22|
|00001ae0| 33 35 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |35.infix| = lspac|
|00001af0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00001b00| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00001b10| 68 73 70 61 63 65 20 23 | 20 26 42 65 63 61 75 73 |hspace #| &Becaus|
|00001b20| 65 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |e;.opera|tor.\u22|
|00001b30| 33 34 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |34.infix| = lspac|
|00001b40| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00001b50| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00001b60| 68 73 70 61 63 65 20 23 | 20 26 54 68 65 72 65 66 |hspace #| &Theref|
|00001b70| 6f 72 65 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |ore;.ope|rator.\u|
|00001b80| 32 37 35 38 2e 69 6e 66 | 69 78 20 3d 20 73 74 72 |2758.inf|ix = str|
|00001b90| 65 74 63 68 79 3a 76 65 | 72 74 69 63 61 6c 20 6c |etchy:ve|rtical l|
|00001ba0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00001bb0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00001bc0| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 56 65 |kmathspa|ce # &Ve|
|00001bd0| 72 74 69 63 61 6c 53 65 | 70 61 72 61 74 6f 72 3b |rticalSe|parator;|
|00001be0| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 30 30 32 46 |.operato|r.\u002F|
|00001bf0| 5c 75 30 30 32 46 2e 69 | 6e 66 69 78 20 3d 20 6c |\u002F.i|nfix = l|
|00001c00| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00001c10| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00001c20| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 2f 2f 0d |kmathspa|ce # //.|
|00001c30| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 33 37 2e |operator|.\u2237.|
|00001c40| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|00001c50| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00001c60| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00001c70| 61 63 65 20 23 20 26 43 | 6f 6c 6f 6e 3b 20 26 50 |ace # &C|olon; &P|
|00001c80| 72 6f 70 6f 72 74 69 6f | 6e 3b 0d 6f 70 65 72 61 |roportio|n;.opera|
|00001c90| 74 6f 72 2e 5c 75 30 30 | 32 36 2e 70 72 65 66 69 |tor.\u00|26.prefi|
|00001ca0| 78 20 3d 20 6c 73 70 61 | 63 65 3a 30 65 6d 20 72 |x = lspa|ce:0em r|
|00001cb0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00001cc0| 70 61 63 65 20 23 20 26 | 61 6d 70 3b 0d 6f 70 65 |pace # &|amp;.ope|
|00001cd0| 72 61 74 6f 72 2e 5c 75 | 30 30 32 36 2e 70 6f 73 |rator.\u|0026.pos|
|00001ce0| 74 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |tfix = l|space:th|
|00001cf0| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00001d00| 61 63 65 3a 30 65 6d 20 | 23 20 26 61 6d 70 3b 0d |ace:0em |# &amp;.|
|00001d10| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 30 30 32 41 5c |operator|.\u002A\|
|00001d20| 75 30 30 33 44 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u003D.in|fix = ls|
|00001d30| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00001d40| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00001d50| 6d 61 74 68 73 70 61 63 | 65 20 23 20 2a 3d 0d 6f |mathspac|e # *=.o|
|00001d60| 70 65 72 61 74 6f 72 2e | 5c 75 30 30 32 44 5c 75 |perator.|\u002D\u|
|00001d70| 30 30 33 44 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |003D.inf|ix = lsp|
|00001d80| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00001d90| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|00001da0| 61 74 68 73 70 61 63 65 | 20 23 20 2d 3d 0d 6f 70 |athspace| # -=.op|
|00001db0| 65 72 61 74 6f 72 2e 5c | 75 30 30 32 42 5c 75 30 |erator.\|u002B\u0|
|00001dc0| 30 33 44 2e 69 6e 66 69 | 78 20 3d 20 6c 73 70 61 |03D.infi|x = lspa|
|00001dd0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00001de0| 65 20 72 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |e rspace|:thickma|
|00001df0| 74 68 73 70 61 63 65 20 | 23 20 2b 3d 0d 6f 70 65 |thspace |# +=.ope|
|00001e00| 72 61 74 6f 72 2e 5c 75 | 30 30 32 46 5c 75 30 30 |rator.\u|002F\u00|
|00001e10| 33 44 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |3D.infix| = lspac|
|00001e20| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00001e30| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00001e40| 68 73 70 61 63 65 20 23 | 20 2f 3d 0d 6f 70 65 72 |hspace #| /=.oper|
|00001e50| 61 74 6f 72 2e 5c 75 30 | 30 32 44 5c 75 30 30 33 |ator.\u0|02D\u003|
|00001e60| 45 2e 69 6e 66 69 78 20 | 3d 20 6c 73 70 61 63 65 |E.infix |= lspace|
|00001e70| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00001e80| 72 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |rspace:t|hickmath|
|00001e90| 73 70 61 63 65 20 23 20 | 2d 3e 0d 6f 70 65 72 61 |space # |->.opera|
|00001ea0| 74 6f 72 2e 5c 75 30 30 | 33 41 2e 69 6e 66 69 78 |tor.\u00|3A.infix|
|00001eb0| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00001ec0| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00001ed0| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00001ee0| 20 3a 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 30 30 | :.opera|tor.\u00|
|00001ef0| 32 45 5c 75 30 30 32 45 | 2e 70 6f 73 74 66 69 78 |2E\u002E|.postfix|
|00001f00| 20 3d 20 6c 73 70 61 63 | 65 3a 6d 65 64 69 75 6d | = lspac|e:medium|
|00001f10| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00001f20| 3a 30 65 6d 20 23 20 2e | 2e 0d 6f 70 65 72 61 74 |:0em # .|..operat|
|00001f30| 6f 72 2e 5c 75 30 30 32 | 45 5c 75 30 30 32 45 5c |or.\u002|E\u002E\|
|00001f40| 75 30 30 32 45 2e 70 6f | 73 74 66 69 78 20 3d 20 |u002E.po|stfix = |
|00001f50| 6c 73 70 61 63 65 3a 6d | 65 64 69 75 6d 6d 61 74 |lspace:m|ediummat|
|00001f60| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 30 65 |hspace r|space:0e|
|00001f70| 6d 20 23 20 2e 2e 2e 0d | 6f 70 65 72 61 74 6f 72 |m # ....|operator|
|00001f80| 2e 5c 75 32 32 30 42 2e | 69 6e 66 69 78 20 3d 20 |.\u220B.|infix = |
|00001f90| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00001fa0| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00001fb0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 53 |ckmathsp|ace # &S|
|00001fc0| 75 63 68 54 68 61 74 3b | 20 26 52 65 76 65 72 73 |uchThat;| &Revers|
|00001fd0| 65 45 6c 65 6d 65 6e 74 | 3b 0d 6f 70 65 72 61 74 |eElement|;.operat|
|00001fe0| 6f 72 2e 5c 75 32 41 45 | 34 2e 69 6e 66 69 78 20 |or.\u2AE|4.infix |
|00001ff0| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00002000| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00002010| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00002020| 26 44 6f 75 62 6c 65 4c | 65 66 74 54 65 65 3b 0d |&DoubleL|eftTee;.|
|00002030| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 41 38 2e |operator|.\u22A8.|
|00002040| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|00002050| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00002060| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00002070| 61 63 65 20 23 20 26 44 | 6f 75 62 6c 65 52 69 67 |ace # &D|oubleRig|
|00002080| 68 74 54 65 65 3b 0d 6f | 70 65 72 61 74 6f 72 2e |htTee;.o|perator.|
|00002090| 5c 75 32 32 41 34 2e 69 | 6e 66 69 78 20 3d 20 6c |\u22A4.i|nfix = l|
|000020a0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000020b0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|000020c0| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 44 6f |kmathspa|ce # &Do|
|000020d0| 77 6e 54 65 65 3b 0d 6f | 70 65 72 61 74 6f 72 2e |wnTee;.o|perator.|
|000020e0| 5c 75 32 32 41 33 2e 69 | 6e 66 69 78 20 3d 20 6c |\u22A3.i|nfix = l|
|000020f0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00002100| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00002110| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 4c 65 |kmathspa|ce # &Le|
|00002120| 66 74 54 65 65 3b 0d 6f | 70 65 72 61 74 6f 72 2e |ftTee;.o|perator.|
|00002130| 5c 75 32 32 41 32 2e 69 | 6e 66 69 78 20 3d 20 6c |\u22A2.i|nfix = l|
|00002140| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00002150| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00002160| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 52 69 |kmathspa|ce # &Ri|
|00002170| 67 68 74 54 65 65 3b 0d | 6f 70 65 72 61 74 6f 72 |ghtTee;.|operator|
|00002180| 2e 5c 75 32 31 44 32 2e | 69 6e 66 69 78 20 3d 20 |.\u21D2.|infix = |
|00002190| 73 74 72 65 74 63 68 79 | 3a 68 6f 72 69 7a 6f 6e |stretchy|:horizon|
|000021a0| 74 61 6c 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |tal lspa|ce:thick|
|000021b0| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|000021c0| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|000021d0| 23 20 26 49 6d 70 6c 69 | 65 73 3b 20 26 44 6f 75 |# &Impli|es; &Dou|
|000021e0| 62 6c 65 52 69 67 68 74 | 41 72 72 6f 77 3b 0d 6f |bleRight|Arrow;.o|
|000021f0| 70 65 72 61 74 6f 72 2e | 5c 75 32 39 37 30 2e 69 |perator.|\u2970.i|
|00002200| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00002210| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00002220| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00002230| 63 65 20 23 20 26 52 6f | 75 6e 64 49 6d 70 6c 69 |ce # &Ro|undImpli|
|00002240| 65 73 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 30 |es;.oper|ator.\u0|
|00002250| 30 37 43 5c 75 30 30 37 | 43 2e 69 6e 66 69 78 20 |07C\u007|C.infix |
|00002260| 3d 20 6c 73 70 61 63 65 | 3a 6d 65 64 69 75 6d 6d |= lspace|:mediumm|
|00002270| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00002280| 6d 65 64 69 75 6d 6d 61 | 74 68 73 70 61 63 65 20 |mediumma|thspace |
|00002290| 23 20 7c 7c 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |# ||.ope|rator.\u|
|000022a0| 32 41 35 34 2e 69 6e 66 | 69 78 20 3d 20 73 74 72 |2A54.inf|ix = str|
|000022b0| 65 74 63 68 79 3a 76 65 | 72 74 69 63 61 6c 20 6c |etchy:ve|rtical l|
|000022c0| 73 70 61 63 65 3a 6d 65 | 64 69 75 6d 6d 61 74 68 |space:me|diummath|
|000022d0| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 6d 65 64 |space rs|pace:med|
|000022e0| 69 75 6d 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |iummaths|pace # &|
|000022f0| 4f 72 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 30 |Or;.oper|ator.\u0|
|00002300| 30 32 36 5c 75 30 30 32 | 36 2e 69 6e 66 69 78 20 |026\u002|6.infix |
|00002310| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00002320| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00002330| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00002340| 26 61 6d 70 3b 26 61 6d | 70 3b 0d 6f 70 65 72 61 |&amp;&am|p;.opera|
|00002350| 74 6f 72 2e 5c 75 32 41 | 35 33 2e 69 6e 66 69 78 |tor.\u2A|53.infix|
|00002360| 20 3d 20 73 74 72 65 74 | 63 68 79 3a 76 65 72 74 | = stret|chy:vert|
|00002370| 69 63 61 6c 20 6c 73 70 | 61 63 65 3a 6d 65 64 69 |ical lsp|ace:medi|
|00002380| 75 6d 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ummathsp|ace rspa|
|00002390| 63 65 3a 6d 65 64 69 75 | 6d 6d 61 74 68 73 70 61 |ce:mediu|mmathspa|
|000023a0| 63 65 20 23 20 26 41 6e | 64 3b 0d 6f 70 65 72 61 |ce # &An|d;.opera|
|000023b0| 74 6f 72 2e 5c 75 30 30 | 32 36 2e 69 6e 66 69 78 |tor.\u00|26.infix|
|000023c0| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|000023d0| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|000023e0| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|000023f0| 20 26 61 6d 70 3b 0d 6f | 70 65 72 61 74 6f 72 2e | &amp;.o|perator.|
|00002400| 5c 75 30 30 32 31 2e 70 | 72 65 66 69 78 20 3d 20 |\u0021.p|refix = |
|00002410| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|00002420| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00002430| 20 23 20 21 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 | # !.ope|rator.\u|
|00002440| 32 41 45 43 2e 70 72 65 | 66 69 78 20 3d 20 6c 73 |2AEC.pre|fix = ls|
|00002450| 70 61 63 65 3a 30 65 6d | 20 72 73 70 61 63 65 3a |pace:0em| rspace:|
|00002460| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00002470| 20 26 4e 6f 74 3b 0d 6f | 70 65 72 61 74 6f 72 2e | &Not;.o|perator.|
|00002480| 5c 75 32 32 30 33 2e 70 | 72 65 66 69 78 20 3d 20 |\u2203.p|refix = |
|00002490| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|000024a0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|000024b0| 20 23 20 26 45 78 69 73 | 74 73 3b 0d 6f 70 65 72 | # &Exis|ts;.oper|
|000024c0| 61 74 6f 72 2e 5c 75 32 | 32 30 30 2e 70 72 65 66 |ator.\u2|200.pref|
|000024d0| 69 78 20 3d 20 6c 73 70 | 61 63 65 3a 30 65 6d 20 |ix = lsp|ace:0em |
|000024e0| 72 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |rspace:t|hickmath|
|000024f0| 73 70 61 63 65 20 23 20 | 26 46 6f 72 41 6c 6c 3b |space # |&ForAll;|
|00002500| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 32 30 34 |.operato|r.\u2204|
|00002510| 2e 70 72 65 66 69 78 20 | 3d 20 6c 73 70 61 63 65 |.prefix |= lspace|
|00002520| 3a 30 65 6d 20 72 73 70 | 61 63 65 3a 74 68 69 63 |:0em rsp|ace:thic|
|00002530| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 4e 6f |kmathspa|ce # &No|
|00002540| 74 45 78 69 73 74 73 3b | 0d 6f 70 65 72 61 74 6f |tExists;|.operato|
|00002550| 72 2e 5c 75 32 32 30 38 | 2e 69 6e 66 69 78 20 3d |r.\u2208|.infix =|
|00002560| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|00002570| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|00002580| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|00002590| 45 6c 65 6d 65 6e 74 3b | 0d 6f 70 65 72 61 74 6f |Element;|.operato|
|000025a0| 72 2e 5c 75 32 32 30 39 | 2e 69 6e 66 69 78 20 3d |r.\u2209|.infix =|
|000025b0| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|000025c0| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|000025d0| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|000025e0| 4e 6f 74 45 6c 65 6d 65 | 6e 74 3b 0d 6f 70 65 72 |NotEleme|nt;.oper|
|000025f0| 61 74 6f 72 2e 5c 75 32 | 32 30 43 2e 69 6e 66 69 |ator.\u2|20C.infi|
|00002600| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00002610| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00002620| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00002630| 23 20 26 4e 6f 74 52 65 | 76 65 72 73 65 45 6c 65 |# &NotRe|verseEle|
|00002640| 6d 65 6e 74 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |ment;.op|erator.\|
|00002650| 75 45 46 31 43 2e 69 6e | 66 69 78 20 3d 20 6c 73 |uEF1C.in|fix = ls|
|00002660| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00002670| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00002680| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 4e 6f 74 |mathspac|e # &Not|
|00002690| 53 71 75 61 72 65 53 75 | 62 73 65 74 3b 0d 6f 70 |SquareSu|bset;.op|
|000026a0| 65 72 61 74 6f 72 2e 5c | 75 32 32 45 32 2e 69 6e |erator.\|u22E2.in|
|000026b0| 66 69 78 20 3d 20 6c 73 | 70 61 63 65 3a 74 68 69 |fix = ls|pace:thi|
|000026c0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|000026d0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|000026e0| 65 20 23 20 26 4e 6f 74 | 53 71 75 61 72 65 53 75 |e # &Not|SquareSu|
|000026f0| 62 73 65 74 45 71 75 61 | 6c 3b 0d 6f 70 65 72 61 |bsetEqua|l;.opera|
|00002700| 74 6f 72 2e 5c 75 45 46 | 31 44 2e 69 6e 66 69 78 |tor.\uEF|1D.infix|
|00002710| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00002720| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00002730| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00002740| 20 26 4e 6f 74 53 71 75 | 61 72 65 53 75 70 65 72 | &NotSqu|areSuper|
|00002750| 73 65 74 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |set;.ope|rator.\u|
|00002760| 32 32 45 33 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |22E3.inf|ix = lsp|
|00002770| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00002780| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|00002790| 61 74 68 73 70 61 63 65 | 20 23 20 26 4e 6f 74 53 |athspace| # &NotS|
|000027a0| 71 75 61 72 65 53 75 70 | 65 72 73 65 74 45 71 75 |quareSup|ersetEqu|
|000027b0| 61 6c 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 |al;.oper|ator.\u2|
|000027c0| 32 38 34 2e 69 6e 66 69 | 78 20 3d 20 6c 73 70 61 |284.infi|x = lspa|
|000027d0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|000027e0| 65 20 72 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |e rspace|:thickma|
|000027f0| 74 68 73 70 61 63 65 20 | 23 20 26 4e 6f 74 53 75 |thspace |# &NotSu|
|00002800| 62 73 65 74 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |bset;.op|erator.\|
|00002810| 75 32 32 38 38 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u2288.in|fix = ls|
|00002820| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00002830| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00002840| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 4e 6f 74 |mathspac|e # &Not|
|00002850| 53 75 62 73 65 74 45 71 | 75 61 6c 3b 0d 6f 70 65 |SubsetEq|ual;.ope|
|00002860| 72 61 74 6f 72 2e 5c 75 | 32 32 38 35 2e 69 6e 66 |rator.\u|2285.inf|
|00002870| 69 78 20 3d 20 6c 73 70 | 61 63 65 3a 74 68 69 63 |ix = lsp|ace:thic|
|00002880| 6b 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |kmathspa|ce rspac|
|00002890| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|000028a0| 20 23 20 26 4e 6f 74 53 | 75 70 65 72 73 65 74 3b | # &NotS|uperset;|
|000028b0| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 32 38 39 |.operato|r.\u2289|
|000028c0| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|000028d0| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|000028e0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000028f0| 70 61 63 65 20 23 20 26 | 4e 6f 74 53 75 70 65 72 |pace # &|NotSuper|
|00002900| 73 65 74 45 71 75 61 6c | 3b 0d 6f 70 65 72 61 74 |setEqual|;.operat|
|00002910| 6f 72 2e 5c 75 32 32 38 | 46 2e 69 6e 66 69 78 20 |or.\u228|F.infix |
|00002920| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00002930| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00002940| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00002950| 26 53 71 75 61 72 65 53 | 75 62 73 65 74 3b 0d 6f |&SquareS|ubset;.o|
|00002960| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 39 31 2e 69 |perator.|\u2291.i|
|00002970| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00002980| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00002990| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|000029a0| 63 65 20 23 20 26 53 71 | 75 61 72 65 53 75 62 73 |ce # &Sq|uareSubs|
|000029b0| 65 74 45 71 75 61 6c 3b | 0d 6f 70 65 72 61 74 6f |etEqual;|.operato|
|000029c0| 72 2e 5c 75 32 32 39 30 | 2e 69 6e 66 69 78 20 3d |r.\u2290|.infix =|
|000029d0| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|000029e0| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|000029f0| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|00002a00| 53 71 75 61 72 65 53 75 | 70 65 72 73 65 74 3b 0d |SquareSu|perset;.|
|00002a10| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 39 32 2e |operator|.\u2292.|
|00002a20| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|00002a30| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00002a40| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00002a50| 61 63 65 20 23 20 26 53 | 71 75 61 72 65 53 75 70 |ace # &S|quareSup|
|00002a60| 65 72 73 65 74 45 71 75 | 61 6c 3b 0d 6f 70 65 72 |ersetEqu|al;.oper|
|00002a70| 61 74 6f 72 2e 5c 75 32 | 32 44 30 2e 69 6e 66 69 |ator.\u2|2D0.infi|
|00002a80| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00002a90| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00002aa0| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00002ab0| 23 20 26 53 75 62 73 65 | 74 3b 0d 6f 70 65 72 61 |# &Subse|t;.opera|
|00002ac0| 74 6f 72 2e 5c 75 32 32 | 38 36 2e 69 6e 66 69 78 |tor.\u22|86.infix|
|00002ad0| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00002ae0| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00002af0| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00002b00| 20 26 53 75 62 73 65 74 | 45 71 75 61 6c 3b 0d 6f | &Subset|Equal;.o|
|00002b10| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 38 33 2e 69 |perator.|\u2283.i|
|00002b20| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00002b30| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00002b40| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00002b50| 63 65 20 23 20 26 53 75 | 70 65 72 73 65 74 3b 0d |ce # &Su|perset;.|
|00002b60| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 38 37 2e |operator|.\u2287.|
|00002b70| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|00002b80| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00002b90| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00002ba0| 61 63 65 20 23 20 26 53 | 75 70 65 72 73 65 74 45 |ace # &S|upersetE|
|00002bb0| 71 75 61 6c 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |qual;.op|erator.\|
|00002bc0| 75 32 31 44 30 2e 69 6e | 66 69 78 20 3d 20 73 74 |u21D0.in|fix = st|
|00002bd0| 72 65 74 63 68 79 3a 68 | 6f 72 69 7a 6f 6e 74 61 |retchy:h|orizonta|
|00002be0| 6c 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |l lspace|:thickma|
|00002bf0| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00002c00| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00002c10| 26 44 6f 75 62 6c 65 4c | 65 66 74 41 72 72 6f 77 |&DoubleL|eftArrow|
|00002c20| 3b 0d 6f 70 65 72 61 74 | 6f 72 2e 5c 75 32 31 44 |;.operat|or.\u21D|
|00002c30| 34 2e 69 6e 66 69 78 20 | 3d 20 73 74 72 65 74 63 |4.infix |= stretc|
|00002c40| 68 79 3a 68 6f 72 69 7a | 6f 6e 74 61 6c 20 6c 73 |hy:horiz|ontal ls|
|00002c50| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00002c60| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00002c70| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 44 6f 75 |mathspac|e # &Dou|
|00002c80| 62 6c 65 4c 65 66 74 52 | 69 67 68 74 41 72 72 6f |bleLeftR|ightArro|
|00002c90| 77 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 39 |w;.opera|tor.\u29|
|00002ca0| 35 30 2e 69 6e 66 69 78 | 20 3d 20 73 74 72 65 74 |50.infix| = stret|
|00002cb0| 63 68 79 3a 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 6c |chy:hori|zontal l|
|00002cc0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00002cd0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00002ce0| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 44 6f |kmathspa|ce # &Do|
|00002cf0| 77 6e 4c 65 66 74 52 69 | 67 68 74 56 65 63 74 6f |wnLeftRi|ghtVecto|
|00002d00| 72 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 39 |r;.opera|tor.\u29|
|00002d10| 35 45 2e 69 6e 66 69 78 | 20 3d 20 73 74 72 65 74 |5E.infix| = stret|
|00002d20| 63 68 79 3a 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 6c |chy:hori|zontal l|
|00002d30| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00002d40| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00002d50| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 44 6f |kmathspa|ce # &Do|
|00002d60| 77 6e 4c 65 66 74 54 65 | 65 56 65 63 74 6f 72 3b |wnLeftTe|eVector;|
|00002d70| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 31 42 44 |.operato|r.\u21BD|
|00002d80| 2e 69 6e 66 69 78 20 3d | 20 73 74 72 65 74 63 68 |.infix =| stretch|
|00002d90| 79 3a 68 6f 72 69 7a 6f | 6e 74 61 6c 20 6c 73 70 |y:horizo|ntal lsp|
|00002da0| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00002db0| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|00002dc0| 61 74 68 73 70 61 63 65 | 20 23 20 26 44 6f 77 6e |athspace| # &Down|
|00002dd0| 4c 65 66 74 56 65 63 74 | 6f 72 3b 0d 6f 70 65 72 |LeftVect|or;.oper|
|00002de0| 61 74 6f 72 2e 5c 75 32 | 39 35 36 2e 69 6e 66 69 |ator.\u2|956.infi|
|00002df0| 78 20 3d 20 73 74 72 65 | 74 63 68 79 3a 68 6f 72 |x = stre|tchy:hor|
|00002e00| 69 7a 6f 6e 74 61 6c 20 | 6c 73 70 61 63 65 3a 74 |izontal |lspace:t|
|00002e10| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00002e20| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00002e30| 61 63 65 20 23 20 26 44 | 6f 77 6e 4c 65 66 74 56 |ace # &D|ownLeftV|
|00002e40| 65 63 74 6f 72 42 61 72 | 3b 0d 6f 70 65 72 61 74 |ectorBar|;.operat|
|00002e50| 6f 72 2e 5c 75 32 39 35 | 46 2e 69 6e 66 69 78 20 |or.\u295|F.infix |
|00002e60| 3d 20 73 74 72 65 74 63 | 68 79 3a 68 6f 72 69 7a |= stretc|hy:horiz|
|00002e70| 6f 6e 74 61 6c 20 6c 73 | 70 61 63 65 3a 74 68 69 |ontal ls|pace:thi|
|00002e80| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|00002e90| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00002ea0| 65 20 23 20 26 44 6f 77 | 6e 52 69 67 68 74 54 65 |e # &Dow|nRightTe|
|00002eb0| 65 56 65 63 74 6f 72 3b | 0d 6f 70 65 72 61 74 6f |eVector;|.operato|
|00002ec0| 72 2e 5c 75 32 31 43 31 | 2e 69 6e 66 69 78 20 3d |r.\u21C1|.infix =|
|00002ed0| 20 73 74 72 65 74 63 68 | 79 3a 68 6f 72 69 7a 6f | stretch|y:horizo|
|00002ee0| 6e 74 61 6c 20 6c 73 70 | 61 63 65 3a 74 68 69 63 |ntal lsp|ace:thic|
|00002ef0| 6b 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |kmathspa|ce rspac|
|00002f00| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00002f10| 20 23 20 26 44 6f 77 6e | 52 69 67 68 74 56 65 63 | # &Down|RightVec|
|00002f20| 74 6f 72 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |tor;.ope|rator.\u|
|00002f30| 32 39 35 37 2e 69 6e 66 | 69 78 20 3d 20 73 74 72 |2957.inf|ix = str|
|00002f40| 65 74 63 68 79 3a 68 6f | 72 69 7a 6f 6e 74 61 6c |etchy:ho|rizontal|
|00002f50| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|00002f60| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|00002f70| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|00002f80| 44 6f 77 6e 52 69 67 68 | 74 56 65 63 74 6f 72 42 |DownRigh|tVectorB|
|00002f90| 61 72 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 |ar;.oper|ator.\u2|
|00002fa0| 31 39 30 2e 69 6e 66 69 | 78 20 3d 20 73 74 72 65 |190.infi|x = stre|
|00002fb0| 74 63 68 79 3a 68 6f 72 | 69 7a 6f 6e 74 61 6c 20 |tchy:hor|izontal |
|00002fc0| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00002fd0| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00002fe0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 4c |ckmathsp|ace # &L|
|00002ff0| 65 66 74 41 72 72 6f 77 | 3b 0d 6f 70 65 72 61 74 |eftArrow|;.operat|
|00003000| 6f 72 2e 5c 75 32 31 45 | 34 2e 69 6e 66 69 78 20 |or.\u21E|4.infix |
|00003010| 3d 20 73 74 72 65 74 63 | 68 79 3a 68 6f 72 69 7a |= stretc|hy:horiz|
|00003020| 6f 6e 74 61 6c 20 6c 73 | 70 61 63 65 3a 74 68 69 |ontal ls|pace:thi|
|00003030| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|00003040| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00003050| 65 20 23 20 26 4c 65 66 | 74 41 72 72 6f 77 42 61 |e # &Lef|tArrowBa|
|00003060| 72 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 31 |r;.opera|tor.\u21|
|00003070| 43 36 2e 69 6e 66 69 78 | 20 3d 20 73 74 72 65 74 |C6.infix| = stret|
|00003080| 63 68 79 3a 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 6c |chy:hori|zontal l|
|00003090| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000030a0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|000030b0| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 4c 65 |kmathspa|ce # &Le|
|000030c0| 66 74 41 72 72 6f 77 52 | 69 67 68 74 41 72 72 6f |ftArrowR|ightArro|
|000030d0| 77 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 31 |w;.opera|tor.\u21|
|000030e0| 39 34 2e 69 6e 66 69 78 | 20 3d 20 73 74 72 65 74 |94.infix| = stret|
|000030f0| 63 68 79 3a 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 6c |chy:hori|zontal l|
|00003100| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00003110| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00003120| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 4c 65 |kmathspa|ce # &Le|
|00003130| 66 74 52 69 67 68 74 41 | 72 72 6f 77 3b 0d 6f 70 |ftRightA|rrow;.op|
|00003140| 65 72 61 74 6f 72 2e 5c | 75 32 39 34 45 2e 69 6e |erator.\|u294E.in|
|00003150| 66 69 78 20 3d 20 73 74 | 72 65 74 63 68 79 3a 68 |fix = st|retchy:h|
|00003160| 6f 72 69 7a 6f 6e 74 61 | 6c 20 6c 73 70 61 63 65 |orizonta|l lspace|
|00003170| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00003180| 72 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |rspace:t|hickmath|
|00003190| 73 70 61 63 65 20 23 20 | 26 4c 65 66 74 52 69 67 |space # |&LeftRig|
|000031a0| 68 74 56 65 63 74 6f 72 | 3b 0d 6f 70 65 72 61 74 |htVector|;.operat|
|000031b0| 6f 72 2e 5c 75 32 31 41 | 34 2e 69 6e 66 69 78 20 |or.\u21A|4.infix |
|000031c0| 3d 20 73 74 72 65 74 63 | 68 79 3a 68 6f 72 69 7a |= stretc|hy:horiz|
|000031d0| 6f 6e 74 61 6c 20 6c 73 | 70 61 63 65 3a 74 68 69 |ontal ls|pace:thi|
|000031e0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|000031f0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00003200| 65 20 23 20 26 4c 65 66 | 74 54 65 65 41 72 72 6f |e # &Lef|tTeeArro|
|00003210| 77 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 39 |w;.opera|tor.\u29|
|00003220| 35 41 2e 69 6e 66 69 78 | 20 3d 20 73 74 72 65 74 |5A.infix| = stret|
|00003230| 63 68 79 3a 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 6c |chy:hori|zontal l|
|00003240| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00003250| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00003260| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 4c 65 |kmathspa|ce # &Le|
|00003270| 66 74 54 65 65 56 65 63 | 74 6f 72 3b 0d 6f 70 65 |ftTeeVec|tor;.ope|
|00003280| 72 61 74 6f 72 2e 5c 75 | 32 31 42 43 2e 69 6e 66 |rator.\u|21BC.inf|
|00003290| 69 78 20 3d 20 73 74 72 | 65 74 63 68 79 3a 68 6f |ix = str|etchy:ho|
|000032a0| 72 69 7a 6f 6e 74 61 6c | 20 6c 73 70 61 63 65 3a |rizontal| lspace:|
|000032b0| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|000032c0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000032d0| 70 61 63 65 20 23 20 26 | 4c 65 66 74 56 65 63 74 |pace # &|LeftVect|
|000032e0| 6f 72 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 |or;.oper|ator.\u2|
|000032f0| 39 35 32 2e 69 6e 66 69 | 78 20 3d 20 73 74 72 65 |952.infi|x = stre|
|00003300| 74 63 68 79 3a 68 6f 72 | 69 7a 6f 6e 74 61 6c 20 |tchy:hor|izontal |
|00003310| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00003320| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00003330| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 4c |ckmathsp|ace # &L|
|00003340| 65 66 74 56 65 63 74 6f | 72 42 61 72 3b 0d 6f 70 |eftVecto|rBar;.op|
|00003350| 65 72 61 74 6f 72 2e 5c | 75 32 31 39 39 2e 69 6e |erator.\|u2199.in|
|00003360| 66 69 78 20 3d 20 73 74 | 72 65 74 63 68 79 3a 68 |fix = st|retchy:h|
|00003370| 6f 72 69 7a 6f 6e 74 61 | 6c 20 6c 73 70 61 63 65 |orizonta|l lspace|
|00003380| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00003390| 72 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |rspace:t|hickmath|
|000033a0| 73 70 61 63 65 20 23 20 | 26 4c 6f 77 65 72 4c 65 |space # |&LowerLe|
|000033b0| 66 74 41 72 72 6f 77 3b | 0d 6f 70 65 72 61 74 6f |ftArrow;|.operato|
|000033c0| 72 2e 5c 75 32 31 39 38 | 2e 69 6e 66 69 78 20 3d |r.\u2198|.infix =|
|000033d0| 20 73 74 72 65 74 63 68 | 79 3a 68 6f 72 69 7a 6f | stretch|y:horizo|
|000033e0| 6e 74 61 6c 20 6c 73 70 | 61 63 65 3a 74 68 69 63 |ntal lsp|ace:thic|
|000033f0| 6b 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |kmathspa|ce rspac|
|00003400| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00003410| 20 23 20 26 4c 6f 77 65 | 72 52 69 67 68 74 41 72 | # &Lowe|rRightAr|
|00003420| 72 6f 77 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |row;.ope|rator.\u|
|00003430| 32 31 39 32 2e 69 6e 66 | 69 78 20 3d 20 73 74 72 |2192.inf|ix = str|
|00003440| 65 74 63 68 79 3a 68 6f | 72 69 7a 6f 6e 74 61 6c |etchy:ho|rizontal|
|00003450| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|00003460| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|00003470| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|00003480| 52 69 67 68 74 41 72 72 | 6f 77 3b 0d 6f 70 65 72 |RightArr|ow;.oper|
|00003490| 61 74 6f 72 2e 5c 75 32 | 31 45 35 2e 69 6e 66 69 |ator.\u2|1E5.infi|
|000034a0| 78 20 3d 20 73 74 72 65 | 74 63 68 79 3a 68 6f 72 |x = stre|tchy:hor|
|000034b0| 69 7a 6f 6e 74 61 6c 20 | 6c 73 70 61 63 65 3a 74 |izontal |lspace:t|
|000034c0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|000034d0| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|000034e0| 61 63 65 20 23 20 26 52 | 69 67 68 74 41 72 72 6f |ace # &R|ightArro|
|000034f0| 77 42 61 72 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |wBar;.op|erator.\|
|00003500| 75 32 31 43 34 2e 69 6e | 66 69 78 20 3d 20 73 74 |u21C4.in|fix = st|
|00003510| 72 65 74 63 68 79 3a 68 | 6f 72 69 7a 6f 6e 74 61 |retchy:h|orizonta|
|00003520| 6c 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |l lspace|:thickma|
|00003530| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00003540| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00003550| 26 52 69 67 68 74 41 72 | 72 6f 77 4c 65 66 74 41 |&RightAr|rowLeftA|
|00003560| 72 72 6f 77 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |rrow;.op|erator.\|
|00003570| 75 32 31 41 36 2e 69 6e | 66 69 78 20 3d 20 73 74 |u21A6.in|fix = st|
|00003580| 72 65 74 63 68 79 3a 68 | 6f 72 69 7a 6f 6e 74 61 |retchy:h|orizonta|
|00003590| 6c 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |l lspace|:thickma|
|000035a0| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|000035b0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|000035c0| 26 52 69 67 68 74 54 65 | 65 41 72 72 6f 77 3b 0d |&RightTe|eArrow;.|
|000035d0| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 39 35 42 2e |operator|.\u295B.|
|000035e0| 69 6e 66 69 78 20 3d 20 | 73 74 72 65 74 63 68 79 |infix = |stretchy|
|000035f0| 3a 68 6f 72 69 7a 6f 6e | 74 61 6c 20 6c 73 70 61 |:horizon|tal lspa|
|00003600| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00003610| 65 20 72 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |e rspace|:thickma|
|00003620| 74 68 73 70 61 63 65 20 | 23 20 26 52 69 67 68 74 |thspace |# &Right|
|00003630| 54 65 65 56 65 63 74 6f | 72 3b 0d 6f 70 65 72 61 |TeeVecto|r;.opera|
|00003640| 74 6f 72 2e 5c 75 32 31 | 43 30 2e 69 6e 66 69 78 |tor.\u21|C0.infix|
|00003650| 20 3d 20 73 74 72 65 74 | 63 68 79 3a 68 6f 72 69 | = stret|chy:hori|
|00003660| 7a 6f 6e 74 61 6c 20 6c | 73 70 61 63 65 3a 74 68 |zontal l|space:th|
|00003670| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00003680| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00003690| 63 65 20 23 20 26 52 69 | 67 68 74 56 65 63 74 6f |ce # &Ri|ghtVecto|
|000036a0| 72 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 39 |r;.opera|tor.\u29|
|000036b0| 35 33 2e 69 6e 66 69 78 | 20 3d 20 73 74 72 65 74 |53.infix| = stret|
|000036c0| 63 68 79 3a 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 6c |chy:hori|zontal l|
|000036d0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000036e0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|000036f0| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 52 69 |kmathspa|ce # &Ri|
|00003700| 67 68 74 56 65 63 74 6f | 72 42 61 72 3b 0d 6f 70 |ghtVecto|rBar;.op|
|00003710| 65 72 61 74 6f 72 2e 5c | 75 45 45 46 37 2e 69 6e |erator.\|uEEF7.in|
|00003720| 66 69 78 20 3d 20 6c 73 | 70 61 63 65 3a 74 68 69 |fix = ls|pace:thi|
|00003730| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|00003740| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00003750| 65 20 23 20 26 53 68 6f | 72 74 4c 65 66 74 41 72 |e # &Sho|rtLeftAr|
|00003760| 72 6f 77 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |row;.ope|rator.\u|
|00003770| 45 45 46 38 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |EEF8.inf|ix = lsp|
|00003780| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00003790| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|000037a0| 61 74 68 73 70 61 63 65 | 20 23 20 26 53 68 6f 72 |athspace| # &Shor|
|000037b0| 74 52 69 67 68 74 41 72 | 72 6f 77 3b 0d 6f 70 65 |tRightAr|row;.ope|
|000037c0| 72 61 74 6f 72 2e 5c 75 | 32 31 39 36 2e 69 6e 66 |rator.\u|2196.inf|
|000037d0| 69 78 20 3d 20 73 74 72 | 65 74 63 68 79 3a 76 65 |ix = str|etchy:ve|
|000037e0| 72 74 69 63 61 6c 20 6c | 73 70 61 63 65 3a 74 68 |rtical l|space:th|
|000037f0| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00003800| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00003810| 63 65 20 23 20 26 55 70 | 70 65 72 4c 65 66 74 41 |ce # &Up|perLeftA|
|00003820| 72 72 6f 77 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |rrow;.op|erator.\|
|00003830| 75 32 31 39 37 2e 69 6e | 66 69 78 20 3d 20 73 74 |u2197.in|fix = st|
|00003840| 72 65 74 63 68 79 3a 76 | 65 72 74 69 63 61 6c 20 |retchy:v|ertical |
|00003850| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00003860| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00003870| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 55 |ckmathsp|ace # &U|
|00003880| 70 70 65 72 52 69 67 68 | 74 41 72 72 6f 77 3b 0d |pperRigh|tArrow;.|
|00003890| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 30 30 33 44 2e |operator|.\u003D.|
|000038a0| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|000038b0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|000038c0| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|000038d0| 61 63 65 20 23 20 3d 0d | 6f 70 65 72 61 74 6f 72 |ace # =.|operator|
|000038e0| 2e 5c 75 30 30 33 43 2e | 69 6e 66 69 78 20 3d 20 |.\u003C.|infix = |
|000038f0| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00003900| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00003910| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 6c |ckmathsp|ace # &l|
|00003920| 74 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 30 30 |t;.opera|tor.\u00|
|00003930| 33 45 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |3E.infix| = lspac|
|00003940| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00003950| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00003960| 68 73 70 61 63 65 20 23 | 20 3e 0d 6f 70 65 72 61 |hspace #| >.opera|
|00003970| 74 6f 72 2e 5c 75 30 30 | 32 31 5c 75 30 30 33 44 |tor.\u00|21\u003D|
|00003980| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00003990| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|000039a0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000039b0| 70 61 63 65 20 23 20 21 | 3d 0d 6f 70 65 72 61 74 |pace # !|=.operat|
|000039c0| 6f 72 2e 5c 75 30 30 33 | 44 5c 75 30 30 33 44 2e |or.\u003|D\u003D.|
|000039d0| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|000039e0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|000039f0| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00003a00| 61 63 65 20 23 20 3d 3d | 0d 6f 70 65 72 61 74 6f |ace # ==|.operato|
|00003a10| 72 2e 5c 75 30 30 33 43 | 5c 75 30 30 33 44 2e 69 |r.\u003C|\u003D.i|
|00003a20| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00003a30| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00003a40| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00003a50| 63 65 20 23 20 26 6c 74 | 3b 3d 0d 6f 70 65 72 61 |ce # &lt|;=.opera|
|00003a60| 74 6f 72 2e 5c 75 30 30 | 33 45 5c 75 30 30 33 44 |tor.\u00|3E\u003D|
|00003a70| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00003a80| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|00003a90| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00003aa0| 70 61 63 65 20 23 20 3e | 3d 0d 6f 70 65 72 61 74 |pace # >|=.operat|
|00003ab0| 6f 72 2e 5c 75 32 32 36 | 31 2e 69 6e 66 69 78 20 |or.\u226|1.infix |
|00003ac0| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00003ad0| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00003ae0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00003af0| 26 43 6f 6e 67 72 75 65 | 6e 74 3b 0d 6f 70 65 72 |&Congrue|nt;.oper|
|00003b00| 61 74 6f 72 2e 5c 75 32 | 32 34 44 2e 69 6e 66 69 |ator.\u2|24D.infi|
|00003b10| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00003b20| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00003b30| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00003b40| 23 20 26 43 75 70 43 61 | 70 3b 0d 6f 70 65 72 61 |# &CupCa|p;.opera|
|00003b50| 74 6f 72 2e 5c 75 32 32 | 35 30 2e 69 6e 66 69 78 |tor.\u22|50.infix|
|00003b60| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00003b70| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00003b80| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00003b90| 20 26 44 6f 74 45 71 75 | 61 6c 3b 0d 6f 70 65 72 | &DotEqu|al;.oper|
|00003ba0| 61 74 6f 72 2e 5c 75 32 | 32 32 35 2e 69 6e 66 69 |ator.\u2|225.infi|
|00003bb0| 78 20 3d 20 73 74 72 65 | 74 63 68 79 3a 76 65 72 |x = stre|tchy:ver|
|00003bc0| 74 69 63 61 6c 20 6c 73 | 70 61 63 65 3a 74 68 69 |tical ls|pace:thi|
|00003bd0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|00003be0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00003bf0| 65 20 23 20 26 44 6f 75 | 62 6c 65 56 65 72 74 69 |e # &Dou|bleVerti|
|00003c00| 63 61 6c 42 61 72 3b 0d | 6f 70 65 72 61 74 6f 72 |calBar;.|operator|
|00003c10| 2e 5c 75 32 41 37 35 2e | 69 6e 66 69 78 20 3d 20 |.\u2A75.|infix = |
|00003c20| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00003c30| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00003c40| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 45 |ckmathsp|ace # &E|
|00003c50| 71 75 61 6c 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |qual;.op|erator.\|
|00003c60| 75 32 32 34 32 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u2242.in|fix = ls|
|00003c70| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00003c80| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00003c90| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 45 71 75 |mathspac|e # &Equ|
|00003ca0| 61 6c 54 69 6c 64 65 3b | 0d 6f 70 65 72 61 74 6f |alTilde;|.operato|
|00003cb0| 72 2e 5c 75 32 31 43 43 | 2e 69 6e 66 69 78 20 3d |r.\u21CC|.infix =|
|00003cc0| 20 73 74 72 65 74 63 68 | 79 3a 68 6f 72 69 7a 6f | stretch|y:horizo|
|00003cd0| 6e 74 61 6c 20 6c 73 70 | 61 63 65 3a 74 68 69 63 |ntal lsp|ace:thic|
|00003ce0| 6b 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |kmathspa|ce rspac|
|00003cf0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00003d00| 20 23 20 26 45 71 75 69 | 6c 69 62 72 69 75 6d 3b | # &Equi|librium;|
|00003d10| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 32 36 35 |.operato|r.\u2265|
|00003d20| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00003d30| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|00003d40| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00003d50| 70 61 63 65 20 23 20 26 | 47 72 65 61 74 65 72 45 |pace # &|GreaterE|
|00003d60| 71 75 61 6c 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |qual;.op|erator.\|
|00003d70| 75 32 32 44 42 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u22DB.in|fix = ls|
|00003d80| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00003d90| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00003da0| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 47 72 65 |mathspac|e # &Gre|
|00003db0| 61 74 65 72 45 71 75 61 | 6c 4c 65 73 73 3b 0d 6f |aterEqua|lLess;.o|
|00003dc0| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 36 37 2e 69 |perator.|\u2267.i|
|00003dd0| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00003de0| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00003df0| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00003e00| 63 65 20 23 20 26 47 72 | 65 61 74 65 72 46 75 6c |ce # &Gr|eaterFul|
|00003e10| 6c 45 71 75 61 6c 3b 0d | 6f 70 65 72 61 74 6f 72 |lEqual;.|operator|
|00003e20| 2e 5c 75 32 41 41 32 2e | 69 6e 66 69 78 20 3d 20 |.\u2AA2.|infix = |
|00003e30| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00003e40| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00003e50| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 47 |ckmathsp|ace # &G|
|00003e60| 72 65 61 74 65 72 47 72 | 65 61 74 65 72 3b 0d 6f |reaterGr|eater;.o|
|00003e70| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 37 37 2e 69 |perator.|\u2277.i|
|00003e80| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00003e90| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00003ea0| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00003eb0| 63 65 20 23 20 26 47 72 | 65 61 74 65 72 4c 65 73 |ce # &Gr|eaterLes|
|00003ec0| 73 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 41 |s;.opera|tor.\u2A|
|00003ed0| 37 45 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |7E.infix| = lspac|
|00003ee0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00003ef0| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00003f00| 68 73 70 61 63 65 20 23 | 20 26 47 72 65 61 74 65 |hspace #| &Greate|
|00003f10| 72 53 6c 61 6e 74 45 71 | 75 61 6c 3b 0d 6f 70 65 |rSlantEq|ual;.ope|
|00003f20| 72 61 74 6f 72 2e 5c 75 | 32 32 37 33 2e 69 6e 66 |rator.\u|2273.inf|
|00003f30| 69 78 20 3d 20 6c 73 70 | 61 63 65 3a 74 68 69 63 |ix = lsp|ace:thic|
|00003f40| 6b 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |kmathspa|ce rspac|
|00003f50| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00003f60| 20 23 20 26 47 72 65 61 | 74 65 72 54 69 6c 64 65 | # &Grea|terTilde|
|00003f70| 3b 0d 6f 70 65 72 61 74 | 6f 72 2e 5c 75 32 32 34 |;.operat|or.\u224|
|00003f80| 45 2e 69 6e 66 69 78 20 | 3d 20 6c 73 70 61 63 65 |E.infix |= lspace|
|00003f90| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00003fa0| 72 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |rspace:t|hickmath|
|00003fb0| 73 70 61 63 65 20 23 20 | 26 48 75 6d 70 44 6f 77 |space # |&HumpDow|
|00003fc0| 6e 48 75 6d 70 3b 0d 6f | 70 65 72 61 74 6f 72 2e |nHump;.o|perator.|
|00003fd0| 5c 75 32 32 34 46 2e 69 | 6e 66 69 78 20 3d 20 6c |\u224F.i|nfix = l|
|00003fe0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00003ff0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00004000| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 48 75 |kmathspa|ce # &Hu|
|00004010| 6d 70 45 71 75 61 6c 3b | 0d 6f 70 65 72 61 74 6f |mpEqual;|.operato|
|00004020| 72 2e 5c 75 32 32 42 32 | 2e 69 6e 66 69 78 20 3d |r.\u22B2|.infix =|
|00004030| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|00004040| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|00004050| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|00004060| 4c 65 66 74 54 72 69 61 | 6e 67 6c 65 3b 0d 6f 70 |LeftTria|ngle;.op|
|00004070| 65 72 61 74 6f 72 2e 5c | 75 32 39 43 46 2e 69 6e |erator.\|u29CF.in|
|00004080| 66 69 78 20 3d 20 6c 73 | 70 61 63 65 3a 74 68 69 |fix = ls|pace:thi|
|00004090| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|000040a0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|000040b0| 65 20 23 20 26 4c 65 66 | 74 54 72 69 61 6e 67 6c |e # &Lef|tTriangl|
|000040c0| 65 42 61 72 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |eBar;.op|erator.\|
|000040d0| 75 32 32 42 34 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u22B4.in|fix = ls|
|000040e0| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|000040f0| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00004100| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 4c 65 66 |mathspac|e # &Lef|
|00004110| 74 54 72 69 61 6e 67 6c | 65 45 71 75 61 6c 3b 0d |tTriangl|eEqual;.|
|00004120| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 36 34 2e |operator|.\u2264.|
|00004130| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|00004140| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00004150| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00004160| 61 63 65 20 23 20 26 6c | 65 3b 0d 6f 70 65 72 61 |ace # &l|e;.opera|
|00004170| 74 6f 72 2e 5c 75 32 32 | 44 41 2e 69 6e 66 69 78 |tor.\u22|DA.infix|
|00004180| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00004190| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|000041a0| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|000041b0| 20 26 4c 65 73 73 45 71 | 75 61 6c 47 72 65 61 74 | &LessEq|ualGreat|
|000041c0| 65 72 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 |er;.oper|ator.\u2|
|000041d0| 32 36 36 2e 69 6e 66 69 | 78 20 3d 20 6c 73 70 61 |266.infi|x = lspa|
|000041e0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|000041f0| 65 20 72 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |e rspace|:thickma|
|00004200| 74 68 73 70 61 63 65 20 | 23 20 26 4c 65 73 73 46 |thspace |# &LessF|
|00004210| 75 6c 6c 45 71 75 61 6c | 3b 0d 6f 70 65 72 61 74 |ullEqual|;.operat|
|00004220| 6f 72 2e 5c 75 32 32 37 | 36 2e 69 6e 66 69 78 20 |or.\u227|6.infix |
|00004230| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00004240| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00004250| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00004260| 26 4c 65 73 73 47 72 65 | 61 74 65 72 3b 0d 6f 70 |&LessGre|ater;.op|
|00004270| 65 72 61 74 6f 72 2e 5c | 75 32 41 41 31 2e 69 6e |erator.\|u2AA1.in|
|00004280| 66 69 78 20 3d 20 6c 73 | 70 61 63 65 3a 74 68 69 |fix = ls|pace:thi|
|00004290| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|000042a0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|000042b0| 65 20 23 20 26 4c 65 73 | 73 4c 65 73 73 3b 0d 6f |e # &Les|sLess;.o|
|000042c0| 70 65 72 61 74 6f 72 2e | 5c 75 32 41 37 44 2e 69 |perator.|\u2A7D.i|
|000042d0| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|000042e0| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|000042f0| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00004300| 63 65 20 23 20 26 4c 65 | 73 73 53 6c 61 6e 74 45 |ce # &Le|ssSlantE|
|00004310| 71 75 61 6c 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |qual;.op|erator.\|
|00004320| 75 32 32 37 32 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u2272.in|fix = ls|
|00004330| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00004340| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00004350| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 4c 65 73 |mathspac|e # &Les|
|00004360| 73 54 69 6c 64 65 3b 0d | 6f 70 65 72 61 74 6f 72 |sTilde;.|operator|
|00004370| 2e 5c 75 32 32 36 42 2e | 69 6e 66 69 78 20 3d 20 |.\u226B.|infix = |
|00004380| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00004390| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|000043a0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 4e |ckmathsp|ace # &N|
|000043b0| 65 73 74 65 64 47 72 65 | 61 74 65 72 47 72 65 61 |estedGre|aterGrea|
|000043c0| 74 65 72 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |ter;.ope|rator.\u|
|000043d0| 32 32 36 41 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |226A.inf|ix = lsp|
|000043e0| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|000043f0| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|00004400| 61 74 68 73 70 61 63 65 | 20 23 20 26 4e 65 73 74 |athspace| # &Nest|
|00004410| 65 64 4c 65 73 73 4c 65 | 73 73 3b 0d 6f 70 65 72 |edLessLe|ss;.oper|
|00004420| 61 74 6f 72 2e 5c 75 32 | 32 36 32 2e 69 6e 66 69 |ator.\u2|262.infi|
|00004430| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00004440| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00004450| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00004460| 23 20 26 4e 6f 74 43 6f | 6e 67 72 75 65 6e 74 3b |# &NotCo|ngruent;|
|00004470| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 32 36 44 |.operato|r.\u226D|
|00004480| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00004490| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|000044a0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000044b0| 70 61 63 65 20 23 20 26 | 4e 6f 74 43 75 70 43 61 |pace # &|NotCupCa|
|000044c0| 70 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |p;.opera|tor.\u22|
|000044d0| 32 36 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |26.infix| = lspac|
|000044e0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|000044f0| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00004500| 68 73 70 61 63 65 20 23 | 20 26 4e 6f 74 44 6f 75 |hspace #| &NotDou|
|00004510| 62 6c 65 56 65 72 74 69 | 63 61 6c 42 61 72 3b 0d |bleVerti|calBar;.|
|00004520| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 36 30 2e |operator|.\u2260.|
|00004530| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|00004540| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00004550| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00004560| 61 63 65 20 23 20 26 4e | 6f 74 45 71 75 61 6c 3b |ace # &N|otEqual;|
|00004570| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 45 46 30 38 |.operato|r.\uEF08|
|00004580| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00004590| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|000045a0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000045b0| 70 61 63 65 20 23 20 26 | 4e 6f 74 45 71 75 61 6c |pace # &|NotEqual|
|000045c0| 54 69 6c 64 65 3b 0d 6f | 70 65 72 61 74 6f 72 2e |Tilde;.o|perator.|
|000045d0| 5c 75 32 32 36 46 2e 69 | 6e 66 69 78 20 3d 20 6c |\u226F.i|nfix = l|
|000045e0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000045f0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00004600| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 4e 6f |kmathspa|ce # &No|
|00004610| 74 47 72 65 61 74 65 72 | 3b 0d 6f 70 65 72 61 74 |tGreater|;.operat|
|00004620| 6f 72 2e 5c 75 45 46 31 | 37 2e 69 6e 66 69 78 20 |or.\uEF1|7.infix |
|00004630| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00004640| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00004650| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00004660| 26 4e 6f 74 47 72 65 61 | 74 65 72 45 71 75 61 6c |&NotGrea|terEqual|
|00004670| 3b 0d 6f 70 65 72 61 74 | 6f 72 2e 5c 75 32 32 37 |;.operat|or.\u227|
|00004680| 30 2e 69 6e 66 69 78 20 | 3d 20 6c 73 70 61 63 65 |0.infix |= lspace|
|00004690| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|000046a0| 72 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |rspace:t|hickmath|
|000046b0| 73 70 61 63 65 20 23 20 | 26 4e 6f 74 47 72 65 61 |space # |&NotGrea|
|000046c0| 74 65 72 46 75 6c 6c 45 | 71 75 61 6c 3b 20 26 4e |terFullE|qual; &N|
|000046d0| 6f 74 4c 65 73 73 53 6c | 61 6e 74 45 71 75 61 6c |otLessSl|antEqual|
|000046e0| 3b 0d 6f 70 65 72 61 74 | 6f 72 2e 5c 75 45 46 31 |;.operat|or.\uEF1|
|000046f0| 35 2e 69 6e 66 69 78 20 | 3d 20 6c 73 70 61 63 65 |5.infix |= lspace|
|00004700| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00004710| 72 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |rspace:t|hickmath|
|00004720| 73 70 61 63 65 20 23 20 | 26 4e 6f 74 47 72 65 61 |space # |&NotGrea|
|00004730| 74 65 72 47 72 65 61 74 | 65 72 3b 0d 6f 70 65 72 |terGreat|er;.oper|
|00004740| 61 74 6f 72 2e 5c 75 32 | 32 37 39 2e 69 6e 66 69 |ator.\u2|279.infi|
|00004750| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00004760| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00004770| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00004780| 23 20 26 4e 6f 74 47 72 | 65 61 74 65 72 4c 65 73 |# &NotGr|eaterLes|
|00004790| 73 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |s;.opera|tor.\u22|
|000047a0| 37 31 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |71.infix| = lspac|
|000047b0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|000047c0| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|000047d0| 68 73 70 61 63 65 20 23 | 20 26 4e 6f 74 47 72 65 |hspace #| &NotGre|
|000047e0| 61 74 65 72 53 6c 61 6e | 74 45 71 75 61 6c 3b 0d |aterSlan|tEqual;.|
|000047f0| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 37 35 2e |operator|.\u2275.|
|00004800| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|00004810| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00004820| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00004830| 61 63 65 20 23 20 26 4e | 6f 74 47 72 65 61 74 65 |ace # &N|otGreate|
|00004840| 72 54 69 6c 64 65 3b 0d | 6f 70 65 72 61 74 6f 72 |rTilde;.|operator|
|00004850| 2e 5c 75 45 46 30 43 2e | 69 6e 66 69 78 20 3d 20 |.\uEF0C.|infix = |
|00004860| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00004870| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00004880| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 4e |ckmathsp|ace # &N|
|00004890| 6f 74 48 75 6d 70 44 6f | 77 6e 48 75 6d 70 3b 0d |otHumpDo|wnHump;.|
|000048a0| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 45 46 30 44 2e |operator|.\uEF0D.|
|000048b0| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|000048c0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|000048d0| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|000048e0| 61 63 65 20 23 20 26 4e | 6f 74 48 75 6d 70 45 71 |ace # &N|otHumpEq|
|000048f0| 75 61 6c 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |ual;.ope|rator.\u|
|00004900| 32 32 45 41 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |22EA.inf|ix = lsp|
|00004910| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00004920| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|00004930| 61 74 68 73 70 61 63 65 | 20 23 20 26 4e 6f 74 4c |athspace| # &NotL|
|00004940| 65 66 74 54 72 69 61 6e | 67 6c 65 3b 0d 6f 70 65 |eftTrian|gle;.ope|
|00004950| 72 61 74 6f 72 2e 5c 75 | 45 46 32 44 2e 69 6e 66 |rator.\u|EF2D.inf|
|00004960| 69 78 20 3d 20 6c 73 70 | 61 63 65 3a 74 68 69 63 |ix = lsp|ace:thic|
|00004970| 6b 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |kmathspa|ce rspac|
|00004980| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00004990| 20 23 20 26 4e 6f 74 4c | 65 66 74 54 72 69 61 6e | # &NotL|eftTrian|
|000049a0| 67 6c 65 42 61 72 3b 0d | 6f 70 65 72 61 74 6f 72 |gleBar;.|operator|
|000049b0| 2e 5c 75 32 32 45 43 2e | 69 6e 66 69 78 20 3d 20 |.\u22EC.|infix = |
|000049c0| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|000049d0| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|000049e0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 4e |ckmathsp|ace # &N|
|000049f0| 6f 74 4c 65 66 74 54 72 | 69 61 6e 67 6c 65 45 71 |otLeftTr|iangleEq|
|00004a00| 75 61 6c 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |ual;.ope|rator.\u|
|00004a10| 32 32 36 45 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |226E.inf|ix = lsp|
|00004a20| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00004a30| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|00004a40| 61 74 68 73 70 61 63 65 | 20 23 20 26 4e 6f 74 4c |athspace| # &NotL|
|00004a50| 65 73 73 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |ess;.ope|rator.\u|
|00004a60| 45 46 31 36 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |EF16.inf|ix = lsp|
|00004a70| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00004a80| 63 65 20 72 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |ce rspac|e:thickm|
|00004a90| 61 74 68 73 70 61 63 65 | 20 23 20 26 4e 6f 74 4c |athspace| # &NotL|
|00004aa0| 65 73 73 45 71 75 61 6c | 3b 0d 23 20 55 4e 52 45 |essEqual|;.# UNRE|
|00004ab0| 53 4f 4c 56 45 44 20 6f | 70 65 72 61 74 6f 72 2e |SOLVED o|perator.|
|00004ac0| 26 4e 6f 74 4c 65 73 73 | 46 75 6c 6c 45 71 75 61 |&NotLess|FullEqua|
|00004ad0| 6c 3b 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |l;.infix| = lspac|
|00004ae0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00004af0| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00004b00| 68 73 70 61 63 65 20 23 | 20 26 4e 6f 74 4c 65 73 |hspace #| &NotLes|
|00004b10| 73 46 75 6c 6c 45 71 75 | 61 6c 3b 0d 6f 70 65 72 |sFullEqu|al;.oper|
|00004b20| 61 74 6f 72 2e 5c 75 32 | 32 37 38 2e 69 6e 66 69 |ator.\u2|278.infi|
|00004b30| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00004b40| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00004b50| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00004b60| 23 20 26 4e 6f 74 4c 65 | 73 73 47 72 65 61 74 65 |# &NotLe|ssGreate|
|00004b70| 72 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 45 46 |r;.opera|tor.\uEF|
|00004b80| 31 33 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |13.infix| = lspac|
|00004b90| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00004ba0| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00004bb0| 68 73 70 61 63 65 20 23 | 20 26 4e 6f 74 4c 65 73 |hspace #| &NotLes|
|00004bc0| 73 4c 65 73 73 3b 0d 6f | 70 65 72 61 74 6f 72 2e |sLess;.o|perator.|
|00004bd0| 5c 75 32 32 37 34 2e 69 | 6e 66 69 78 20 3d 20 6c |\u2274.i|nfix = l|
|00004be0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00004bf0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 74 68 69 63 |pace rsp|ace:thic|
|00004c00| 6b 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 4e 6f |kmathspa|ce # &No|
|00004c10| 74 4c 65 73 73 54 69 6c | 64 65 3b 0d 6f 70 65 72 |tLessTil|de;.oper|
|00004c20| 61 74 6f 72 2e 5c 75 45 | 46 32 41 2e 69 6e 66 69 |ator.\uE|F2A.infi|
|00004c30| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00004c40| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00004c50| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00004c60| 23 20 26 4e 6f 74 4e 65 | 73 74 65 64 47 72 65 61 |# &NotNe|stedGrea|
|00004c70| 74 65 72 47 72 65 61 74 | 65 72 3b 0d 6f 70 65 72 |terGreat|er;.oper|
|00004c80| 61 74 6f 72 2e 5c 75 45 | 46 32 39 2e 69 6e 66 69 |ator.\uE|F29.infi|
|00004c90| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00004ca0| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00004cb0| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00004cc0| 23 20 26 4e 6f 74 4e 65 | 73 74 65 64 4c 65 73 73 |# &NotNe|stedLess|
|00004cd0| 4c 65 73 73 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |Less;.op|erator.\|
|00004ce0| 75 32 32 38 30 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u2280.in|fix = ls|
|00004cf0| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00004d00| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00004d10| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 4e 6f 74 |mathspac|e # &Not|
|00004d20| 50 72 65 63 65 64 65 73 | 3b 0d 6f 70 65 72 61 74 |Precedes|;.operat|
|00004d30| 6f 72 2e 5c 75 45 46 33 | 33 2e 69 6e 66 69 78 20 |or.\uEF3|3.infix |
|00004d40| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00004d50| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00004d60| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00004d70| 26 4e 6f 74 50 72 65 63 | 65 64 65 73 45 71 75 61 |&NotPrec|edesEqua|
|00004d80| 6c 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |l;.opera|tor.\u22|
|00004d90| 45 30 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |E0.infix| = lspac|
|00004da0| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00004db0| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00004dc0| 68 73 70 61 63 65 20 23 | 20 26 4e 6f 74 50 72 65 |hspace #| &NotPre|
|00004dd0| 63 65 64 65 73 53 6c 61 | 6e 74 45 71 75 61 6c 3b |cedesSla|ntEqual;|
|00004de0| 0d 23 20 55 4e 52 45 53 | 4f 4c 56 45 44 20 6f 70 |.# UNRES|OLVED op|
|00004df0| 65 72 61 74 6f 72 2e 26 | 4e 6f 74 50 72 65 63 65 |erator.&|NotPrece|
|00004e00| 64 65 73 54 69 6c 64 65 | 3b 2e 69 6e 66 69 78 20 |desTilde|;.infix |
|00004e10| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00004e20| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00004e30| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00004e40| 26 4e 6f 74 50 72 65 63 | 65 64 65 73 54 69 6c 64 |&NotPrec|edesTild|
|00004e50| 65 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |e;.opera|tor.\u22|
|00004e60| 45 42 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |EB.infix| = lspac|
|00004e70| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00004e80| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00004e90| 68 73 70 61 63 65 20 23 | 20 26 4e 6f 74 52 69 67 |hspace #| &NotRig|
|00004ea0| 68 74 54 72 69 61 6e 67 | 6c 65 3b 0d 6f 70 65 72 |htTriang|le;.oper|
|00004eb0| 61 74 6f 72 2e 5c 75 45 | 46 32 45 2e 69 6e 66 69 |ator.\uE|F2E.infi|
|00004ec0| 78 20 3d 20 6c 73 70 61 | 63 65 3a 74 68 69 63 6b |x = lspa|ce:thick|
|00004ed0| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|00004ee0| 3a 74 68 69 63 6b 6d 61 | 74 68 73 70 61 63 65 20 |:thickma|thspace |
|00004ef0| 23 20 26 4e 6f 74 52 69 | 67 68 74 54 72 69 61 6e |# &NotRi|ghtTrian|
|00004f00| 67 6c 65 42 61 72 3b 0d | 6f 70 65 72 61 74 6f 72 |gleBar;.|operator|
|00004f10| 2e 5c 75 32 32 45 44 2e | 69 6e 66 69 78 20 3d 20 |.\u22ED.|infix = |
|00004f20| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|00004f30| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|00004f40| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 4e |ckmathsp|ace # &N|
|00004f50| 6f 74 52 69 67 68 74 54 | 72 69 61 6e 67 6c 65 45 |otRightT|riangleE|
|00004f60| 71 75 61 6c 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |qual;.op|erator.\|
|00004f70| 75 32 32 38 31 2e 69 6e | 66 69 78 20 3d 20 6c 73 |u2281.in|fix = ls|
|00004f80| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00004f90| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 63 6b |ace rspa|ce:thick|
|00004fa0| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 4e 6f 74 |mathspac|e # &Not|
|00004fb0| 53 75 63 63 65 65 64 73 | 3b 0d 6f 70 65 72 61 74 |Succeeds|;.operat|
|00004fc0| 6f 72 2e 5c 75 45 46 33 | 34 2e 69 6e 66 69 78 20 |or.\uEF3|4.infix |
|00004fd0| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00004fe0| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00004ff0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00005000| 26 4e 6f 74 53 75 63 63 | 65 65 64 73 45 71 75 61 |&NotSucc|eedsEqua|
|00005010| 6c 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |l;.opera|tor.\u22|
|00005020| 45 31 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |E1.infix| = lspac|
|00005030| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00005040| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00005050| 68 73 70 61 63 65 20 23 | 20 26 4e 6f 74 53 75 63 |hspace #| &NotSuc|
|00005060| 63 65 65 64 73 53 6c 61 | 6e 74 45 71 75 61 6c 3b |ceedsSla|ntEqual;|
|00005070| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 45 46 31 38 |.operato|r.\uEF18|
|00005080| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00005090| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|000050a0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000050b0| 70 61 63 65 20 23 20 26 | 4e 6f 74 53 75 63 63 65 |pace # &|NotSucce|
|000050c0| 65 64 73 54 69 6c 64 65 | 3b 0d 6f 70 65 72 61 74 |edsTilde|;.operat|
|000050d0| 6f 72 2e 5c 75 32 32 34 | 31 2e 69 6e 66 69 78 20 |or.\u224|1.infix |
|000050e0| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|000050f0| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00005100| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00005110| 26 4e 6f 74 54 69 6c 64 | 65 3b 0d 6f 70 65 72 61 |&NotTild|e;.opera|
|00005120| 74 6f 72 2e 5c 75 32 32 | 34 34 2e 69 6e 66 69 78 |tor.\u22|44.infix|
|00005130| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00005140| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00005150| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00005160| 20 26 4e 6f 74 54 69 6c | 64 65 45 71 75 61 6c 3b | &NotTil|deEqual;|
|00005170| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 32 34 37 |.operato|r.\u2247|
|00005180| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00005190| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|000051a0| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|000051b0| 70 61 63 65 20 23 20 26 | 4e 6f 74 54 69 6c 64 65 |pace # &|NotTilde|
|000051c0| 46 75 6c 6c 45 71 75 61 | 6c 3b 0d 6f 70 65 72 61 |FullEqua|l;.opera|
|000051d0| 74 6f 72 2e 5c 75 32 32 | 34 39 2e 69 6e 66 69 78 |tor.\u22|49.infix|
|000051e0| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|000051f0| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00005200| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00005210| 20 26 4e 6f 74 54 69 6c | 64 65 54 69 6c 64 65 3b | &NotTil|deTilde;|
|00005220| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 32 32 34 |.operato|r.\u2224|
|00005230| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00005240| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|00005250| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00005260| 70 61 63 65 20 23 20 26 | 4e 6f 74 56 65 72 74 69 |pace # &|NotVerti|
|00005270| 63 61 6c 42 61 72 3b 0d | 6f 70 65 72 61 74 6f 72 |calBar;.|operator|
|00005280| 2e 5c 75 32 32 37 41 2e | 69 6e 66 69 78 20 3d 20 |.\u227A.|infix = |
|00005290| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|000052a0| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|000052b0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 50 |ckmathsp|ace # &P|
|000052c0| 72 65 63 65 64 65 73 3b | 0d 6f 70 65 72 61 74 6f |recedes;|.operato|
|000052d0| 72 2e 5c 75 32 41 41 46 | 2e 69 6e 66 69 78 20 3d |r.\u2AAF|.infix =|
|000052e0| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|000052f0| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|00005300| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|00005310| 50 72 65 63 65 64 65 73 | 45 71 75 61 6c 3b 0d 6f |Precedes|Equal;.o|
|00005320| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 37 43 2e 69 |perator.|\u227C.i|
|00005330| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00005340| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00005350| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00005360| 63 65 20 23 20 26 50 72 | 65 63 65 64 65 73 53 6c |ce # &Pr|ecedesSl|
|00005370| 61 6e 74 45 71 75 61 6c | 3b 0d 6f 70 65 72 61 74 |antEqual|;.operat|
|00005380| 6f 72 2e 5c 75 32 32 37 | 45 2e 69 6e 66 69 78 20 |or.\u227|E.infix |
|00005390| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|000053a0| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|000053b0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|000053c0| 26 50 72 65 63 65 64 65 | 73 54 69 6c 64 65 3b 0d |&Precede|sTilde;.|
|000053d0| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 31 44 2e |operator|.\u221D.|
|000053e0| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|000053f0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|00005400| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|00005410| 61 63 65 20 23 20 26 50 | 72 6f 70 6f 72 74 69 6f |ace # &P|roportio|
|00005420| 6e 61 6c 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |nal;.ope|rator.\u|
|00005430| 32 31 43 42 2e 69 6e 66 | 69 78 20 3d 20 73 74 72 |21CB.inf|ix = str|
|00005440| 65 74 63 68 79 3a 68 6f | 72 69 7a 6f 6e 74 61 6c |etchy:ho|rizontal|
|00005450| 20 6c 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | lspace:|thickmat|
|00005460| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|00005470| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 23 20 26 |ickmaths|pace # &|
|00005480| 52 65 76 65 72 73 65 45 | 71 75 69 6c 69 62 72 69 |ReverseE|quilibri|
|00005490| 75 6d 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 |um;.oper|ator.\u2|
|000054a0| 32 42 33 2e 69 6e 66 69 | 78 20 3d 20 6c 73 70 61 |2B3.infi|x = lspa|
|000054b0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|000054c0| 65 20 72 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |e rspace|:thickma|
|000054d0| 74 68 73 70 61 63 65 20 | 23 20 26 52 69 67 68 74 |thspace |# &Right|
|000054e0| 54 72 69 61 6e 67 6c 65 | 3b 0d 6f 70 65 72 61 74 |Triangle|;.operat|
|000054f0| 6f 72 2e 5c 75 32 39 44 | 30 2e 69 6e 66 69 78 20 |or.\u29D|0.infix |
|00005500| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00005510| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00005520| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|00005530| 26 52 69 67 68 74 54 72 | 69 61 6e 67 6c 65 42 61 |&RightTr|iangleBa|
|00005540| 72 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |r;.opera|tor.\u22|
|00005550| 42 35 2e 69 6e 66 69 78 | 20 3d 20 6c 73 70 61 63 |B5.infix| = lspac|
|00005560| 65 3a 74 68 69 63 6b 6d | 61 74 68 73 70 61 63 65 |e:thickm|athspace|
|00005570| 20 72 73 70 61 63 65 3a | 74 68 69 63 6b 6d 61 74 | rspace:|thickmat|
|00005580| 68 73 70 61 63 65 20 23 | 20 26 52 69 67 68 74 54 |hspace #| &RightT|
|00005590| 72 69 61 6e 67 6c 65 45 | 71 75 61 6c 3b 0d 6f 70 |riangleE|qual;.op|
|000055a0| 65 72 61 74 6f 72 2e 5c | 75 32 32 37 42 2e 69 6e |erator.\|u227B.in|
|000055b0| 66 69 78 20 3d 20 6c 73 | 70 61 63 65 3a 74 68 69 |fix = ls|pace:thi|
|000055c0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|000055d0| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|000055e0| 65 20 23 20 26 53 75 63 | 63 65 65 64 73 3b 0d 6f |e # &Suc|ceeds;.o|
|000055f0| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 37 44 2e 69 |perator.|\u227D.i|
|00005600| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 74 68 |nfix = l|space:th|
|00005610| 69 63 6b 6d 61 74 68 73 | 70 61 63 65 20 72 73 70 |ickmaths|pace rsp|
|00005620| 61 63 65 3a 74 68 69 63 | 6b 6d 61 74 68 73 70 61 |ace:thic|kmathspa|
|00005630| 63 65 20 23 20 26 53 75 | 63 63 65 65 64 73 45 71 |ce # &Su|cceedsEq|
|00005640| 75 61 6c 3b 20 26 53 75 | 63 63 65 65 64 73 53 6c |ual; &Su|cceedsSl|
|00005650| 61 6e 74 45 71 75 61 6c | 3b 0d 6f 70 65 72 61 74 |antEqual|;.operat|
|00005660| 6f 72 2e 5c 75 32 32 37 | 46 2e 69 6e 66 69 78 20 |or.\u227|F.infix |
|00005670| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 63 6b 6d 61 |= lspace|:thickma|
|00005680| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 74 |thspace |rspace:t|
|00005690| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 23 20 |hickmath|space # |
|000056a0| 26 53 75 63 63 65 65 64 | 73 54 69 6c 64 65 3b 0d |&Succeed|sTilde;.|
|000056b0| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 32 32 33 43 2e |operator|.\u223C.|
|000056c0| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 74 |infix = |lspace:t|
|000056d0| 68 69 63 6b 6d 61 74 68 | 73 70 61 63 65 20 72 73 |hickmath|space rs|
|000056e0| 70 61 63 65 3a 74 68 69 | 63 6b 6d 61 74 68 73 70 |pace:thi|ckmathsp|
|000056f0| 61 63 65 20 23 20 26 54 | 69 6c 64 65 3b 0d 6f 70 |ace # &T|ilde;.op|
|00005700| 65 72 61 74 6f 72 2e 5c | 75 32 32 34 33 2e 69 6e |erator.\|u2243.in|
|00005710| 66 69 78 20 3d 20 6c 73 | 70 61 63 65 3a 74 68 69 |fix = ls|pace:thi|
|00005720| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 72 73 70 61 |ckmathsp|ace rspa|
|00005730| 63 65 3a 74 68 69 63 6b | 6d 61 74 68 73 70 61 63 |ce:thick|mathspac|
|00005740| 65 20 23 20 26 54 69 6c | 64 65 45 71 75 61 6c 3b |e # &Til|deEqual;|
|00005750| 0d 6f 70 65 72 61 74 6f | 72 2e 5c 75 32 32 34 35 |.operato|r.\u2245|
|00005760| 2e 69 6e 66 69 78 20 3d | 20 6c 73 70 61 63 65 3a |.infix =| lspace:|
|00005770| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 72 |thickmat|hspace r|
|00005780| 73 70 61 63 65 3a 74 68 | 69 63 6b 6d 61 74 68 73 |space:th|ickmaths|
|00005790| 70 61 63 65 20 23 20 26 | 54 69 6c 64 65 46 75 6c |pace # &|TildeFul|
|000057a0| 6c 45 71 75 61 6c 3b 0d | 6f 70 65 72 61 74 6f 72 |lEqual;.|operator|
|000057b0| 2e 5c 75 32 32 34 38 2e | 69 6e 66 69 78 20 3d 20 |.\u2248.|infix = |
|000057c0| 6c 73 70 61 63 65 3a 74 | 68 69 63 6b 6d 61 74 68 |lspace:t|hickmath|
|000057d0| 73 70 61 63 65 20 72 73 | 70 61 63 65 3a 74 68 69 |space rs|pace:thi|
|000057e0| 63 6b 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 54 |ckmathsp|ace # &T|
|000057f0| 69 6c 64 65 54 69 6c 64 | 65 3b 0d 6f 70 65 72 61 |ildeTild|e;.opera|
|00005800| 74 6f 72 2e 5c 75 32 32 | 41 35 2e 69 6e 66 69 78 |tor.\u22|A5.infix|
|00005810| 20 3d 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d | = lspac|e:thickm|
|00005820| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00005830| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|00005840| 20 26 55 70 54 65 65 3b | 0d 6f 70 65 72 61 74 6f | &UpTee;|.operato|
|00005850| 72 2e 5c 75 32 32 32 33 | 2e 69 6e 66 69 78 20 3d |r.\u2223|.infix =|
|00005860| 20 73 74 72 65 74 63 68 | 79 3a 76 65 72 74 69 63 | stretch|y:vertic|
|00005870| 61 6c 20 6c 73 70 61 63 | 65 3a 74 68 69 63 6b 6d |al lspac|e:thickm|
|00005880| 61 74 68 73 70 61 63 65 | 20 72 73 70 61 63 65 3a |athspace| rspace:|
|00005890| 74 68 69 63 6b 6d 61 74 | 68 73 70 61 63 65 20 23 |thickmat|hspace #|
|000058a0| 20 26 56 65 72 74 69 63 | 61 6c 42 61 72 3b 0d 6f | &Vertic|alBar;.o|
|000058b0| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 39 34 2e 69 |perator.|\u2294.i|
|000058c0| 6e 66 69 78 20 3d 20 73 | 74 72 65 74 63 68 79 3a |nfix = s|tretchy:|
|000058d0| 76 65 72 74 69 63 61 6c | 20 6c 73 70 61 63 65 3a |vertical| lspace:|
|000058e0| 6d 65 64 69 75 6d 6d 61 | 74 68 73 70 61 63 65 20 |mediumma|thspace |
|000058f0| 72 73 70 61 63 65 3a 6d | 65 64 69 75 6d 6d 61 74 |rspace:m|ediummat|
|00005900| 68 73 70 61 63 65 20 23 | 20 26 53 71 75 61 72 65 |hspace #| &Square|
|00005910| 55 6e 69 6f 6e 3b 0d 6f | 70 65 72 61 74 6f 72 2e |Union;.o|perator.|
|00005920| 5c 75 32 32 43 33 2e 69 | 6e 66 69 78 20 3d 20 73 |\u22C3.i|nfix = s|
|00005930| 74 72 65 74 63 68 79 3a | 76 65 72 74 69 63 61 6c |tretchy:|vertical|
|00005940| 20 6c 73 70 61 63 65 3a | 6d 65 64 69 75 6d 6d 61 | lspace:|mediumma|
|00005950| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 6d |thspace |rspace:m|
|00005960| 65 64 69 75 6d 6d 61 74 | 68 73 70 61 63 65 20 23 |ediummat|hspace #|
|00005970| 20 26 55 6e 69 6f 6e 3b | 0d 6f 70 65 72 61 74 6f | &Union;|.operato|
|00005980| 72 2e 5c 75 32 32 38 45 | 2e 69 6e 66 69 78 20 3d |r.\u228E|.infix =|
|00005990| 20 73 74 72 65 74 63 68 | 79 3a 76 65 72 74 69 63 | stretch|y:vertic|
|000059a0| 61 6c 20 6c 73 70 61 63 | 65 3a 6d 65 64 69 75 6d |al lspac|e:medium|
|000059b0| 6d 61 74 68 73 70 61 63 | 65 20 72 73 70 61 63 65 |mathspac|e rspace|
|000059c0| 3a 6d 65 64 69 75 6d 6d | 61 74 68 73 70 61 63 65 |:mediumm|athspace|
|000059d0| 20 23 20 26 55 6e 69 6f | 6e 50 6c 75 73 3b 0d 6f | # &Unio|nPlus;.o|
|000059e0| 70 65 72 61 74 6f 72 2e | 5c 75 30 30 32 44 2e 69 |perator.|\u002D.i|
|000059f0| 6e 66 69 78 20 3d 20 6c | 73 70 61 63 65 3a 6d 65 |nfix = l|space:me|
|00005a00| 64 69 75 6d 6d 61 74 68 | 73 70 61 63 65 20 72 73 |diummath|space rs|
|00005a10| 70 61 63 65 3a 6d 65 64 | 69 75 6d 6d 61 74 68 73 |pace:med|iummaths|
|00005a20| 70 61 63 65 20 23 20 2d | 0d 6f 70 65 72 61 74 6f |pace # -|.operato|
|00005a30| 72 2e 5c 75 30 30 32 42 | 2e 69 6e 66 69 78 20 3d |r.\u002B|.infix =|
|00005a40| 20 6c 73 70 61 63 65 3a | 6d 65 64 69 75 6d 6d 61 | lspace:|mediumma|
|00005a50| 74 68 73 70 61 63 65 20 | 72 73 70 61 63 65 3a 6d |thspace |rspace:m|
|00005a60| 65 64 69 75 6d 6d 61 74 | 68 73 70 61 63 65 20 23 |ediummat|hspace #|
|00005a70| 20 2b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 | +.opera|tor.\u22|
|00005a80| 43 32 2e 69 6e 66 69 78 | 20 3d 20 73 74 72 65 74 |C2.infix| = stret|
|00005a90| 63 68 79 3a 76 65 72 74 | 69 63 61 6c 20 6c 73 70 |chy:vert|ical lsp|
|00005aa0| 61 63 65 3a 6d 65 64 69 | 75 6d 6d 61 74 68 73 70 |ace:medi|ummathsp|
|00005ab0| 61 63 65 20 72 73 70 61 | 63 65 3a 6d 65 64 69 75 |ace rspa|ce:mediu|
|00005ac0| 6d 6d 61 74 68 73 70 61 | 63 65 20 23 20 26 49 6e |mmathspa|ce # &In|
|00005ad0| 74 65 72 73 65 63 74 69 | 6f 6e 3b 0d 6f 70 65 72 |tersecti|on;.oper|
|00005ae0| 61 74 6f 72 2e 5c 75 32 | 32 31 33 2e 69 6e 66 69 |ator.\u2|213.infi|
|00005af0| 78 20 3d 20 6c 73 70 61 | 63 65 3a 6d 65 64 69 75 |x = lspa|ce:mediu|
|00005b00| 6d 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |mmathspa|ce rspac|
|00005b10| 65 3a 6d 65 64 69 75 6d | 6d 61 74 68 73 70 61 63 |e:medium|mathspac|
|00005b20| 65 20 23 20 26 4d 69 6e | 75 73 50 6c 75 73 3b 0d |e # &Min|usPlus;.|
|00005b30| 6f 70 65 72 61 74 6f 72 | 2e 5c 75 30 30 42 31 2e |operator|.\u00B1.|
|00005b40| 69 6e 66 69 78 20 3d 20 | 6c 73 70 61 63 65 3a 6d |infix = |lspace:m|
|00005b50| 65 64 69 75 6d 6d 61 74 | 68 73 70 61 63 65 20 72 |ediummat|hspace r|
|00005b60| 73 70 61 63 65 3a 6d 65 | 64 69 75 6d 6d 61 74 68 |space:me|diummath|
|00005b70| 73 70 61 63 65 20 23 20 | 26 50 6c 75 73 4d 69 6e |space # |&PlusMin|
|00005b80| 75 73 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 |us;.oper|ator.\u2|
|00005b90| 32 39 33 2e 69 6e 66 69 | 78 20 3d 20 73 74 72 65 |293.infi|x = stre|
|00005ba0| 74 63 68 79 3a 76 65 72 | 74 69 63 61 6c 20 6c 73 |tchy:ver|tical ls|
|00005bb0| 70 61 63 65 3a 6d 65 64 | 69 75 6d 6d 61 74 68 73 |pace:med|iummaths|
|00005bc0| 70 61 63 65 20 72 73 70 | 61 63 65 3a 6d 65 64 69 |pace rsp|ace:medi|
|00005bd0| 75 6d 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 53 |ummathsp|ace # &S|
|00005be0| 71 75 61 72 65 49 6e 74 | 65 72 73 65 63 74 69 6f |quareInt|ersectio|
|00005bf0| 6e 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |n;.opera|tor.\u22|
|00005c00| 43 31 2e 70 72 65 66 69 | 78 20 3d 20 73 74 72 65 |C1.prefi|x = stre|
|00005c10| 74 63 68 79 3a 76 65 72 | 74 69 63 61 6c 20 6c 61 |tchy:ver|tical la|
|00005c20| 72 67 65 6f 70 3a 74 72 | 75 65 20 6d 6f 76 61 62 |rgeop:tr|ue movab|
|00005c30| 6c 65 6c 69 6d 69 74 73 | 3a 74 72 75 65 20 6c 73 |lelimits|:true ls|
|00005c40| 70 61 63 65 3a 30 65 6d | 20 72 73 70 61 63 65 3a |pace:0em| rspace:|
|00005c50| 74 68 69 6e 6d 61 74 68 | 73 70 61 63 65 20 23 20 |thinmath|space # |
|00005c60| 26 56 65 65 3b 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |&Vee;.op|erator.\|
|00005c70| 75 32 32 39 36 2e 70 72 | 65 66 69 78 20 3d 20 6c |u2296.pr|efix = l|
|00005c80| 61 72 67 65 6f 70 3a 74 | 72 75 65 20 6d 6f 76 61 |argeop:t|rue mova|
|00005c90| 62 6c 65 6c 69 6d 69 74 | 73 3a 74 72 75 65 20 6c |blelimit|s:true l|
|00005ca0| 73 70 61 63 65 3a 30 65 | 6d 20 72 73 70 61 63 65 |space:0e|m rspace|
|00005cb0| 3a 74 68 69 6e 6d 61 74 | 68 73 70 61 63 65 20 23 |:thinmat|hspace #|
|00005cc0| 20 26 43 69 72 63 6c 65 | 4d 69 6e 75 73 3b 0d 6f | &Circle|Minus;.o|
|00005cd0| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 39 35 2e 70 |perator.|\u2295.p|
|00005ce0| 72 65 66 69 78 20 3d 20 | 6c 61 72 67 65 6f 70 3a |refix = |largeop:|
|00005cf0| 74 72 75 65 20 6d 6f 76 | 61 62 6c 65 6c 69 6d 69 |true mov|ablelimi|
|00005d00| 74 73 3a 74 72 75 65 20 | 6c 73 70 61 63 65 3a 30 |ts:true |lspace:0|
|00005d10| 65 6d 20 72 73 70 61 63 | 65 3a 74 68 69 6e 6d 61 |em rspac|e:thinma|
|00005d20| 74 68 73 70 61 63 65 20 | 23 20 26 43 69 72 63 6c |thspace |# &Circl|
|00005d30| 65 50 6c 75 73 3b 0d 6f | 70 65 72 61 74 6f 72 2e |ePlus;.o|perator.|
|00005d40| 5c 75 32 32 31 31 2e 70 | 72 65 66 69 78 20 3d 20 |\u2211.p|refix = |
|00005d50| 73 74 72 65 74 63 68 79 | 3a 76 65 72 74 69 63 61 |stretchy|:vertica|
|00005d60| 6c 20 6c 61 72 67 65 6f | 70 3a 74 72 75 65 20 6d |l largeo|p:true m|
|00005d70| 6f 76 61 62 6c 65 6c 69 | 6d 69 74 73 3a 74 72 75 |ovableli|mits:tru|
|00005d80| 65 20 6c 73 70 61 63 65 | 3a 30 65 6d 20 72 73 70 |e lspace|:0em rsp|
|00005d90| 61 63 65 3a 74 68 69 6e | 6d 61 74 68 73 70 61 63 |ace:thin|mathspac|
|00005da0| 65 20 23 20 26 53 75 6d | 3b 0d 6f 70 65 72 61 74 |e # &Sum|;.operat|
|00005db0| 6f 72 2e 5c 75 32 32 43 | 33 2e 70 72 65 66 69 78 |or.\u22C|3.prefix|
|00005dc0| 20 3d 20 73 74 72 65 74 | 63 68 79 3a 76 65 72 74 | = stret|chy:vert|
|00005dd0| 69 63 61 6c 20 6c 61 72 | 67 65 6f 70 3a 74 72 75 |ical lar|geop:tru|
|00005de0| 65 20 6d 6f 76 61 62 6c | 65 6c 69 6d 69 74 73 3a |e movabl|elimits:|
|00005df0| 74 72 75 65 20 6c 73 70 | 61 63 65 3a 30 65 6d 20 |true lsp|ace:0em |
|00005e00| 72 73 70 61 63 65 3a 74 | 68 69 6e 6d 61 74 68 73 |rspace:t|hinmaths|
|00005e10| 70 61 63 65 20 23 20 26 | 55 6e 69 6f 6e 3b 0d 6f |pace # &|Union;.o|
|00005e20| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 38 45 2e 70 |perator.|\u228E.p|
|00005e30| 72 65 66 69 78 20 3d 20 | 73 74 72 65 74 63 68 79 |refix = |stretchy|
|00005e40| 3a 76 65 72 74 69 63 61 | 6c 20 6c 61 72 67 65 6f |:vertica|l largeo|
|00005e50| 70 3a 74 72 75 65 20 6d | 6f 76 61 62 6c 65 6c 69 |p:true m|ovableli|
|00005e60| 6d 69 74 73 3a 74 72 75 | 65 20 6c 73 70 61 63 65 |mits:tru|e lspace|
|00005e70| 3a 30 65 6d 20 72 73 70 | 61 63 65 3a 74 68 69 6e |:0em rsp|ace:thin|
|00005e80| 6d 61 74 68 73 70 61 63 | 65 20 23 20 26 55 6e 69 |mathspac|e # &Uni|
|00005e90| 6f 6e 50 6c 75 73 3b 0d | 6f 70 65 72 61 74 6f 72 |onPlus;.|operator|
|00005ea0| 2e 5c 75 30 30 36 43 5c | 75 30 30 36 39 5c 75 30 |.\u006C\|u0069\u0|
|00005eb0| 30 36 44 2e 70 72 65 66 | 69 78 20 3d 20 6d 6f 76 |06D.pref|ix = mov|
|00005ec0| 61 62 6c 65 6c 69 6d 69 | 74 73 3a 74 72 75 65 20 |ablelimi|ts:true |
|00005ed0| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|00005ee0| 65 3a 74 68 69 6e 6d 61 | 74 68 73 70 61 63 65 20 |e:thinma|thspace |
|00005ef0| 23 20 6c 69 6d 0d 6f 70 | 65 72 61 74 6f 72 2e 5c |# lim.op|erator.\|
|00005f00| 75 30 30 36 44 5c 75 30 | 30 36 31 5c 75 30 30 37 |u006D\u0|061\u007|
|00005f10| 38 2e 70 72 65 66 69 78 | 20 3d 20 6d 6f 76 61 62 |8.prefix| = movab|
|00005f20| 6c 65 6c 69 6d 69 74 73 | 3a 74 72 75 65 20 6c 73 |lelimits|:true ls|
|00005f30| 70 61 63 65 3a 30 65 6d | 20 72 73 70 61 63 65 3a |pace:0em| rspace:|
|00005f40| 74 68 69 6e 6d 61 74 68 | 73 70 61 63 65 20 23 20 |thinmath|space # |
|00005f50| 6d 61 78 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 30 |max.oper|ator.\u0|
|00005f60| 30 36 44 5c 75 30 30 36 | 39 5c 75 30 30 36 45 2e |06D\u006|9\u006E.|
|00005f70| 70 72 65 66 69 78 20 3d | 20 6d 6f 76 61 62 6c 65 |prefix =| movable|
|00005f80| 6c 69 6d 69 74 73 3a 74 | 72 75 65 20 6c 73 70 61 |limits:t|rue lspa|
|00005f90| 63 65 3a 30 65 6d 20 72 | 73 70 61 63 65 3a 74 68 |ce:0em r|space:th|
|00005fa0| 69 6e 6d 61 74 68 73 70 | 61 63 65 20 23 20 6d 69 |inmathsp|ace # mi|
|00005fb0| 6e 0d 6f 70 65 72 61 74 | 6f 72 2e 5c 75 32 32 31 |n.operat|or.\u221|
|00005fc0| 32 2e 69 6e 66 69 78 20 | 3d 20 6c 73 70 61 63 65 |2.infix |= lspace|
|00005fd0| 3a 6d 65 64 69 75 6d 6d | 61 74 68 73 70 61 63 65 |:mediumm|athspace|
|00005fe0| 20 72 73 70 61 63 65 3a | 6d 65 64 69 75 6d 6d 61 | rspace:|mediumma|
|00005ff0| 74 68 73 70 61 63 65 20 | 23 20 6f 66 66 69 63 69 |thspace |# offici|
|00006000| 61 6c 20 55 6e 69 63 6f | 64 65 20 6d 69 6e 75 73 |al Unico|de minus|
|00006010| 20 73 69 67 6e 0d 6f 70 | 65 72 61 74 6f 72 2e 5c | sign.op|erator.\|
|00006020| 75 32 32 31 32 2e 70 72 | 65 66 69 78 20 3d 20 6c |u2212.pr|efix = l|
|00006030| 73 70 61 63 65 3a 30 65 | 6d 20 72 73 70 61 63 65 |space:0e|m rspace|
|00006040| 3a 76 65 72 79 76 65 72 | 79 74 68 69 6e 6d 61 74 |:veryver|ythinmat|
|00006050| 68 73 70 61 63 65 20 23 | 20 6f 66 66 69 63 69 61 |hspace #| officia|
|00006060| 6c 20 55 6e 69 63 6f 64 | 65 20 6d 69 6e 75 73 20 |l Unicod|e minus |
|00006070| 73 69 67 6e 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |sign.ope|rator.\u|
|00006080| 32 32 39 36 2e 69 6e 66 | 69 78 20 3d 20 6c 73 70 |2296.inf|ix = lsp|
|00006090| 61 63 65 3a 74 68 69 6e | 6d 61 74 68 73 70 61 63 |ace:thin|mathspac|
|000060a0| 65 20 72 73 70 61 63 65 | 3a 74 68 69 6e 6d 61 74 |e rspace|:thinmat|
|000060b0| 68 73 70 61 63 65 20 23 | 20 26 43 69 72 63 6c 65 |hspace #| &Circle|
|000060c0| 4d 69 6e 75 73 3b 0d 6f | 70 65 72 61 74 6f 72 2e |Minus;.o|perator.|
|000060d0| 5c 75 32 32 39 35 2e 69 | 6e 66 69 78 20 3d 20 6c |\u2295.i|nfix = l|
|000060e0| 73 70 61 63 65 3a 74 68 | 69 6e 6d 61 74 68 73 70 |space:th|inmathsp|
|000060f0| 61 63 65 20 72 73 70 61 | 63 65 3a 74 68 69 6e 6d |ace rspa|ce:thinm|
|00006100| 61 74 68 73 70 61 63 65 | 20 23 20 26 43 69 72 63 |athspace| # &Circ|
|00006110| 6c 65 50 6c 75 73 3b 0d | 6f 70 65 72 61 74 6f 72 |lePlus;.|operator|
|00006120| 2e 5c 75 32 32 33 32 2e | 70 72 65 66 69 78 20 3d |.\u2232.|prefix =|
|00006130| 20 73 74 72 65 74 63 68 | 79 3a 76 65 72 74 69 63 | stretch|y:vertic|
|00006140| 61 6c 20 6c 61 72 67 65 | 6f 70 3a 74 72 75 65 20 |al large|op:true |
|00006150| 6c 73 70 61 63 65 3a 30 | 65 6d 20 72 73 70 61 63 |lspace:0|em rspac|
|00006160| 65 3a 30 65 6d 20 23 20 | 26 43 6c 6f 63 6b 77 69 |e:0em # |&Clockwi|
|00006170| 73 65 43 6f 6e 74 6f 75 | 72 49 6e 74 65 67 72 61 |seContou|rIntegra|
|00006180| 6c 3b 0d 6f 70 65 72 61 | 74 6f 72 2e 5c 75 32 32 |l;.opera|tor.\u22|
|00006190| 32 45 2e 70 72 65 66 69 | 78 20 3d 20 73 74 72 65 |2E.prefi|x = stre|
|000061a0| 74 63 68 79 3a 76 65 72 | 74 69 63 61 6c 20 6c 61 |tchy:ver|tical la|
|000061b0| 72 67 65 6f 70 3a 74 72 | 75 65 20 6c 73 70 61 63 |rgeop:tr|ue lspac|
|000061c0| 65 3a 30 65 6d 20 72 73 | 70 61 63 65 3a 30 65 6d |e:0em rs|pace:0em|
|000061d0| 20 23 20 26 43 6f 6e 74 | 6f 75 72 49 6e 74 65 67 | # &Cont|ourInteg|
|000061e0| 72 61 6c 3b 0d 6f 70 65 | 72 61 74 6f 72 2e 5c 75 |ral;.ope|rator.\u|
|000061f0| 32 32 33 33 2e 70 72 65 | 66 69 78 20 3d 20 73 74 |2233.pre|fix = st|
|00006200| 72 65 74 63 68 79 3a 76 | 65 72 74 69 63 61 6c 20 |retchy:v|ertical |
|00006210| 6c 61 72 67 65 6f 70 3a | 74 72 75 65 20 6c 73 70 |largeop:|true lsp|
|00006220| 61 63 65 3a 30 65 6d 20 | 72 73 70 61 63 65 3a 30 |ace:0em |rspace:0|
|00006230| 65 6d 20 23 20 26 43 6f | 75 6e 74 65 72 43 6c 6f |em # &Co|unterClo|
|00006240| 63 6b 77 69 73 65 43 6f | 6e 74 6f 75 72 49 6e 74 |ckwiseCo|ntourInt|
|00006250| 65 67 72 61 6c 3b 0d 6f | 70 65 72 61 74 6f 72 2e |egral;.o|perator.|
|00006260| 5c 75 32 32 32 46 2e 70 | 72 65 66 69 78 20 3d 20 |\u222F.p|refix = |
|00006270| 73 74 72 65 74 63 68 79 | 3a 76 65 72 74 69 63 61 |stretchy|:vertica|
|00006280| 6c 20 6c 61 72 67 65 6f | 70 3a 74 72 75 65 20 6c |l largeo|p:true l|
|00006290| 73 70 61 63 65 3a 30 65 | 6d 20 72 73 70 61 63 65 |space:0e|m rspace|
|000062a0| 3a 30 65 6d 20 23 20 26 | 44 6f 75 62 6c 65 43 6f |:0em # &|DoubleCo|
|000062b0| 6e 74 6f 75 72 49 6e 74 | 65 67 72 61 6c 3b 0d 6f |ntourInt|egral;.o|
|000062c0| 70 65 72 61 74 6f 72 2e | 5c 75 32 32 32 42 2e 70 |perator.|\u222B.p|
|000062d0| 72 65 66 69 78 20 3d 20 | 73 74 72 65 74 63 68 79 |refix = |stretchy|
|000062e0| 3a 76 65 72 74 69 63 61 | 6c 20 6c 61 72 67 65 6f |:vertica|l largeo|
|000062f0| 70 3a 74 72 75 65 20 6c | 73 70 61 63 65 3a 30 65 |p:true l|space:0e|
|00006300| 6d 20 72 73 70 61 63 65 | 3a 30 65 6d 20 23 20 26 |m rspace|:0em # &|
|00006310| 49 6e 74 65 67 72 61 6c | 3b 0d 6f 70 65 72 61 74 |Integral|;.operat|
|00006320| 6f 72 2e 5c 75 32 32 44 | 33 2e 69 6e 66 69 78 20 |or.\u22D|3.infix |
|00006330| 3d 20 6c 73 70 61 63 65 | 3a 74 68 69 6e 6d 61 74 |= lspace|:thinmat|
|00006340| 68 73 70 61 63 65 20 72 | 73 70 61 63 65 3a 74 68 |hspace r|space:th|
|00006350| 69 6e 6d 61 74 68 73 70 | 61 63 65 20 23 20 26 43 |inmathsp|ace # &C|
|00006360| 75 70 3b 0d 6f 70 65 72 | 61 74 6f 72 2e 5c 75 32 |up;.oper|ator.\u2|
|00006370| 32 44 32 2e 69 6e 66 69 | 78 20 3d 20 6c 73 70 61 |2D2.infi|x = lspa|
|00006380| 63 65 3a 74 68 69 6e 6d | 61 74 68 73 70 61 63 65 |ce:thinm|athspace|
|00006390| 20 72 73 70 61 63 65 3a | 74 68 69 6e 6d 61 74 68 | rspace:|thinmath|
|000063a0| 73 70 61 63 65 20 23 20 | 26 43 61 70 3b 0d 6f 70 |space # |&Cap;.op|
|000063b0| 65 72 61 74 6f 72 2e 5c | 75 32 32 34 30 2e 69 6e |erator.\|u2240.in|
|000063c0| 66 69 78 20 3d 20 6c 73 | 70 61 63 65 3a 74 68 69 |fix = ls|pace:thi|
|000063d0| 6e 6d 61 74 68 73 70 61 | 63 65 20 72 73 70 61 63 |nmathspa|ce rspac|
|000063e0| 65 3a 74 68 69 6e 6d 61 | 74 68 73 70 61 63 65 20 |e:thinma|thspace |
|000063f0| 23 20 26 56 65 72 74 69 | 63 61 6c 54 69 6c 64 65 |# &Verti|calTilde|
+--------+-------------------------+-------------------------+--------+--------+
Only 25.0 KB of data is shown above.