home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip 2001 September
/
Chip_2001-09_cd1.bin
/
zkuste
/
delphi
/
unity
/
d5
/
JRZIP.ZIP
/
Zlib
/
ZUTIL.PAS
< prev
Wrap
Pascal/Delphi Source File
|
2000-05-01
|
13KB
|
547 lines
Unit ZUtil;
{
Copyright (C) 1998 by Jacques Nomssi Nzali
For conditions of distribution and use, see copyright notice in readme.txt
}
interface
{$I zconf.inc}
{ Type declarations }
type
{Byte = usigned char; 8 bits}
Bytef = byte;
charf = byte;
{$IFDEF FPC}
int = longint;
{$ELSE}
int = integer;
{$ENDIF}
intf = int;
{$IFDEF MSDOS}
uInt = Word;
{$ELSE}
{$IFDEF FPC}
uInt = longint; { 16 bits or more }
{$INFO Cardinal}
{$ELSE}
uInt = cardinal; { 16 bits or more }
{$ENDIF}
{$ENDIF}
uIntf = uInt;
Long = longint;
{$ifdef Delphi5}
uLong = Cardinal;
{$else}
// uLong = LongInt; { 32 bits or more }
uLong = LongWord; { DelphiGzip: LongInt is Signed, longword not }
{$endif}
uLongf = uLong;
voidp = pointer;
voidpf = voidp;
pBytef = ^Bytef;
pIntf = ^intf;
puIntf = ^uIntf;
puLong = ^uLongf;
ptr2int = uInt;
{ a pointer to integer casting is used to do pointer arithmetic.
ptr2int must be an integer type and sizeof(ptr2int) must be less
than sizeof(pointer) - Nomssi }
const
{$IFDEF MAXSEG_64K}
MaxMemBlock = $FFFF;
{$ELSE}
MaxMemBlock = MaxInt;
{$ENDIF}
type
zByteArray = array[0..(MaxMemBlock div SizeOf(Bytef))-1] of Bytef;
pzByteArray = ^zByteArray;
type
zIntfArray = array[0..(MaxMemBlock div SizeOf(Intf))-1] of Intf;
pzIntfArray = ^zIntfArray;
type
zuIntArray = array[0..(MaxMemBlock div SizeOf(uInt))-1] of uInt;
PuIntArray = ^zuIntArray;
{ Type declarations - only for deflate }
type
uch = Byte;
uchf = uch; { FAR }
ush = Word;
ushf = ush;
ulg = LongInt;
unsigned = uInt;
pcharf = ^charf;
puchf = ^uchf;
pushf = ^ushf;
type
zuchfArray = zByteArray;
puchfArray = ^zuchfArray;
type
zushfArray = array[0..(MaxMemBlock div SizeOf(ushf))-1] of ushf;
pushfArray = ^zushfArray;
procedure zmemcpy(destp : pBytef; sourcep : pBytef; len : uInt);
function zmemcmp(s1p, s2p : pBytef; len : uInt) : int;
procedure zmemzero(destp : pBytef; len : uInt);
procedure zcfree(opaque : voidpf; ptr : voidpf);
function zcalloc (opaque : voidpf; items : uInt; size : uInt) : voidpf;
implementation
{$ifdef ver80}
{$define Delphi16}
{$endif}
{$ifdef ver70}
{$define HugeMem}
{$endif}
{$ifdef ver60}
{$define HugeMem}
{$endif}
{$IFDEF CALLDOS}
uses
WinDos;
{$ENDIF}
{$IFDEF Delphi16}
uses
WinTypes,
WinProcs;
{$ENDIF}
{$IFNDEF FPC}
{$IFDEF DPMI}
uses
WinAPI;
{$ENDIF}
{$ENDIF}
{$IFDEF CALLDOS}
{ reduce your application memory footprint with $M before using this }
function dosAlloc (Size : Longint) : Pointer;
var
regs: TRegisters;
begin
regs.bx := (Size + 15) div 16; { number of 16-bytes-paragraphs }
regs.ah := $48; { Allocate memory block }
msdos(regs);
if regs.Flags and FCarry <> 0 then
DosAlloc := NIL
else
DosAlloc := Ptr(regs.ax, 0);
end;
function dosFree(P : pointer) : boolean;
var
regs: TRegisters;
begin
dosFree := FALSE;
regs.bx := Seg(P^); { segment }
if Ofs(P) <> 0 then
exit;
regs.ah := $49; { Free memory block }
msdos(regs);
dosFree := (regs.Flags and FCarry = 0);
end;
{$ENDIF}
type
LH = record
L, H : word;
end;
{$IFDEF HugeMem}
{$define HEAP_LIST}
{$endif}
{$IFDEF HEAP_LIST} {--- to avoid Mark and Release --- }
const
MaxAllocEntries = 50;
type
TMemRec = record
orgvalue,
value : pointer;
size: longint;
end;
const
allocatedCount : 0..MaxAllocEntries = 0;
var
allocatedList : array[0..MaxAllocEntries-1] of TMemRec;
function NewAllocation(ptr0, ptr : pointer; memsize : longint) : boolean;
begin
if (allocatedCount < MaxAllocEntries) and (ptr0 <> NIL) then
begin
with allocatedList[allocatedCount] do
begin
orgvalue := ptr0;
value := ptr;
size := memsize;
end;
Inc(allocatedCount); { we don't check for duplicate }
NewAllocation := TRUE;
end
else
NewAllocation := FALSE;
end;
{$ENDIF}
{$IFDEF HugeMem}
{ The code below is extremely version specific to the TP 6/7 heap manager!!}
type
PFreeRec = ^TFreeRec;
TFreeRec = record
next: PFreeRec;
size: Pointer;
end;
type
HugePtr = voidpf;
procedure IncPtr(var p:pointer;count:word);
{ Increments pointer }
begin
inc(LH(p).L,count);
if LH(p).L < count then
inc(LH(p).H,SelectorInc); { $1000 }
end;
procedure DecPtr(var p:pointer;count:word);
{ decrements pointer }
begin
if count > LH(p).L then
dec(LH(p).H,SelectorInc);
dec(LH(p).L,Count);
end;
procedure IncPtrLong(var p:pointer;count:longint);
{ Increments pointer; assumes count > 0 }
begin
inc(LH(p).H,SelectorInc*LH(count).H);
inc(LH(p).L,LH(Count).L);
if LH(p).L < LH(count).L then
inc(LH(p).H,SelectorInc);
end;
procedure DecPtrLong(var p:pointer;count:longint);
{ Decrements pointer; assumes count > 0 }
begin
if LH(count).L > LH(p).L then
dec(LH(p).H,SelectorInc);
dec(LH(p).L,LH(Count).L);
dec(LH(p).H,SelectorInc*LH(Count).H);
end;
{ The next section is for real mode only }
function Normalized(p : pointer) : pointer;
var
count : word;
begin
count := LH(p).L and $FFF0;
Normalized := Ptr(LH(p).H + (count shr 4), LH(p).L and $F);
end;
procedure FreeHuge(var p:HugePtr; size : longint);
const
blocksize = $FFF0;
var
block : word;
begin
while size > 0 do
begin
{ block := minimum(size, blocksize); }
if size > blocksize then
block := blocksize
else
block := size;
dec(size,block);
freemem(p,block);
IncPtr(p,block); { we may get ptr($xxxx, $fff8) and 31 bytes left }
p := Normalized(p); { to free, so we must normalize }
end;
end;
function FreeMemHuge(ptr : pointer) : boolean;
var
i : integer; { -1..MaxAllocEntries }
begin
FreeMemHuge := FALSE;
i := allocatedCount - 1;
while (i >= 0) do
begin
if (ptr = allocatedList[i].value) then
begin
with allocatedList[i] do
FreeHuge(orgvalue, size);
Move(allocatedList[i+1], allocatedList[i],
SizeOf(TMemRec)*(allocatedCount - 1 - i));
Dec(allocatedCount);
FreeMemHuge := TRUE;
break;
end;
Dec(i);
end;
end;
procedure GetMemHuge(var p:HugePtr;memsize:Longint);
const
blocksize = $FFF0;
var
size : longint;
prev,free : PFreeRec;
save,temp : pointer;
block : word;
begin
p := NIL;
{ Handle the easy cases first }
if memsize > maxavail then
exit
else
if memsize <= blocksize then
begin
getmem(p, memsize);
if not NewAllocation(p, p, memsize) then
begin
FreeMem(p, memsize);
p := NIL;
end;
end
else
begin
size := memsize + 15;
{ Find the block that has enough space }
prev := PFreeRec(@freeList);
free := prev^.next;
while (free <> heapptr) and (ptr2int(free^.size) < size) do
begin
prev := free;
free := prev^.next;
end;
{ Now free points to a region with enough space; make it the first one and
multiple allocations will be contiguous. }
save := freelist;
freelist := free;
{ In TP 6, this works; check against other heap managers }
while size > 0 do
begin
{ block := minimum(size, blocksize); }
if size > blocksize then
block := blocksize
else
block := size;
dec(size,block);
getmem(temp,block);
end;
{ We've got what we want now; just sort things out and restore the
free list to normal }
p := free;
if prev^.next <> freelist then
begin
prev^.next := freelist;
freelist := save;
end;
if (p <> NIL) then
begin
{ return pointer with 0 offset }
temp := p;
if Ofs(p^)<>0 Then
p := Ptr(Seg(p^)+1,0); { hack }
if not NewAllocation(temp, p, memsize + 15) then
begin
FreeHuge(temp, size);
p := NIL;
end;
end;
end;
end;
{$ENDIF}
procedure zmemcpy(destp : pBytef; sourcep : pBytef; len : uInt);
begin
Move(sourcep^, destp^, len);
end;
function zmemcmp(s1p, s2p : pBytef; len : uInt) : int;
var
j : uInt;
source,
dest : pBytef;
begin
source := s1p;
dest := s2p;
for j := 0 to pred(len) do
begin
if (source^ <> dest^) then
begin
zmemcmp := 2*Ord(source^ > dest^)-1;
exit;
end;
Inc(source);
Inc(dest);
end;
zmemcmp := 0;
end;
procedure zmemzero(destp : pBytef; len : uInt);
begin
FillChar(destp^, len, 0);
end;
procedure zcfree(opaque : voidpf; ptr : voidpf);
{$ifdef Delphi16}
var
Handle : THandle;
{$endif}
{$IFDEF FPC}
var
memsize : uint;
{$ENDIF}
begin
{$IFDEF DPMI}
{h :=} GlobalFreePtr(ptr);
{$ELSE}
{$IFDEF CALL_DOS}
dosFree(ptr);
{$ELSE}
{$ifdef HugeMem}
FreeMemHuge(ptr);
{$else}
{$ifdef Delphi16}
Handle := GlobalHandle(LH(ptr).H); { HiWord(LongInt(ptr)) }
GlobalUnLock(Handle);
GlobalFree(Handle);
{$else}
{$IFDEF FPC}
Dec(puIntf(ptr));
memsize := puIntf(ptr)^;
FreeMem(ptr, memsize+SizeOf(uInt));
{$ELSE}
FreeMem(ptr); { Delphi 2,3,4 }
{$ENDIF}
{$endif}
{$endif}
{$ENDIF}
{$ENDIF}
end;
function zcalloc (opaque : voidpf; items : uInt; size : uInt) : voidpf;
var
p : voidpf;
memsize : uLong;
{$ifdef Delphi16}
handle : THandle;
{$endif}
begin
memsize := uLong(items) * size;
{$IFDEF DPMI}
p := GlobalAllocPtr(gmem_moveable, memsize);
{$ELSE}
{$IFDEF CALLDOS}
p := dosAlloc(memsize);
{$ELSE}
{$ifdef HugeMem}
GetMemHuge(p, memsize);
{$else}
{$ifdef Delphi16}
Handle := GlobalAlloc(HeapAllocFlags, memsize);
p := GlobalLock(Handle);
{$else}
{$IFDEF FPC}
GetMem(p, memsize+SizeOf(uInt));
puIntf(p)^:= memsize;
Inc(puIntf(p));
{$ELSE}
GetMem(p, memsize); { Delphi: p := AllocMem(memsize); }
{$ENDIF}
{$endif}
{$endif}
{$ENDIF}
{$ENDIF}
zcalloc := p;
end;
{$WARNINGS OFF}
end.
{ edited from a SWAG posting:
In Turbo Pascal 6, the heap is the memory allocated when using the Procedures 'New' and
'GetMem'. The heap starts at the address location pointed to by 'Heaporg' and
grows to higher addresses as more memory is allocated. The top of the heap,
the first address of allocatable memory space above the allocated memory
space, is pointed to by 'HeapPtr'.
Memory is deallocated by the Procedures 'Dispose' and 'FreeMem'. As memory
blocks are deallocated more memory becomes available, but..... When a block
of memory, which is not the top-most block in the heap is deallocated, a gap
in the heap will appear. to keep track of these gaps Turbo Pascal maintains
a so called free list.
The Function 'MaxAvail' holds the size of the largest contiguous free block
_in_ the heap. The Function 'MemAvail' holds the sum of all free blocks in
the heap.
TP6.0 keeps track of the free blocks by writing a 'free list Record' to the
first eight Bytes of the freed memory block! A (TP6.0) free-list Record
contains two four Byte Pointers of which the first one points to the next
free memory block, the second Pointer is not a Real Pointer but contains the
size of the memory block.
Summary
TP6.0 maintains a linked list with block sizes and Pointers to the _next_
free block. An extra heap Variable 'Heapend' designate the end of the heap.
When 'HeapPtr' and 'FreeList' have the same value, the free list is empty.
TP6.0 Heapend
┌─────────┐ <────
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │ HeapPtr
┌─>├─────────┤ <────
│ │ │
│ ├─────────┤
└──│ Free │
┌─>├─────────┤
│ │ │
│ ├─────────┤
└──│ Free │ FreeList
├─────────┤ <────
│ │ Heaporg
├─────────┤ <────
}
{$WARNINGS ON}