home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip 2004 November
/
CMCD1104.ISO
/
Software
/
Complet
/
Apache
/
apache_2.0.52-win32-x86-no_ssl.msi
/
Data.Cab
/
F277203_apr_file_io.h
< prev
next >
Wrap
C/C++ Source or Header
|
2004-09-22
|
32KB
|
765 lines
/* Copyright 2000-2004 The Apache Software Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef APR_FILE_IO_H
#define APR_FILE_IO_H
/**
* @file apr_file_io.h
* @brief APR File I/O Handling
*/
#include "apr.h"
#include "apr_pools.h"
#include "apr_time.h"
#include "apr_errno.h"
#include "apr_file_info.h"
#include "apr_inherit.h"
#define APR_WANT_STDIO /**< for SEEK_* */
#define APR_WANT_IOVEC /**< for apr_file_writev */
#include "apr_want.h"
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/**
* @defgroup apr_file_io File I/O Handling Functions
* @ingroup APR
* @{
*/
/**
* @defgroup apr_file_open_flags File Open Flags/Routines
* @{
*/
/* Note to implementors: Values in the range 0x00100000--0x80000000
are reserved for platform-specific values. */
#define APR_READ 0x00001 /**< Open the file for reading */
#define APR_WRITE 0x00002 /**< Open the file for writing */
#define APR_CREATE 0x00004 /**< Create the file if not there */
#define APR_APPEND 0x00008 /**< Append to the end of the file */
#define APR_TRUNCATE 0x00010 /**< Open the file and truncate to 0 length */
#define APR_BINARY 0x00020 /**< Open the file in binary mode */
#define APR_EXCL 0x00040 /**< Open should fail if APR_CREATE and file
exists. */
#define APR_BUFFERED 0x00080 /**< Open the file for buffered I/O */
#define APR_DELONCLOSE 0x00100 /**< Delete the file after close */
#define APR_XTHREAD 0x00200 /**< Platform dependent tag to open the file
for use across multiple threads */
#define APR_SHARELOCK 0x00400 /**< Platform dependent support for higher
level locked read/write access to support
writes across process/machines */
#define APR_FILE_NOCLEANUP 0x00800 /**< Do not register a cleanup when the file
is opened */
#define APR_SENDFILE_ENABLED 0x01000 /**< Advisory flag that this file should
support apr_sendfile operation */
#define APR_LARGEFILE 0x04000 /**< Platform dependent flag to enable large file
support; WARNING see below. */
/** @warning The APR_LARGEFILE flag only has effect on some platforms
* where sizeof(apr_off_t) == 4. Where implemented, it allows opening
* and writing to a file which exceeds the size which can be
* represented by apr_off_t (2 gigabytes). When a file's size does
* exceed 2Gb, apr_file_info_get() will fail with an error on the
* descriptor, likewise apr_stat()/apr_lstat() will fail on the
* filename. apr_dir_read() will fail with APR_INCOMPLETE on a
* directory entry for a large file depending on the particular
* APR_FINFO_* flags. Generally, it is not recommended to use this
* flag. */
/** @} */
/**
* @defgroup apr_file_seek_flags File Seek Flags
* @{
*/
/* flags for apr_file_seek */
/** Set the file position */
#define APR_SET SEEK_SET
/** Current */
#define APR_CUR SEEK_CUR
/** Go to end of file */
#define APR_END SEEK_END
/** @} */
/**
* @defgroup apr_file_attrs_set_flags File Attribute Flags
* @{
*/
/* flags for apr_file_attrs_set */
#define APR_FILE_ATTR_READONLY 0x01 /**< File is read-only */
#define APR_FILE_ATTR_EXECUTABLE 0x02 /**< File is executable */
#define APR_FILE_ATTR_HIDDEN 0x04 /**< File is hidden */
/** @} */
/** File attributes */
typedef apr_uint32_t apr_fileattrs_t;
/** should be same as whence type in lseek, POSIX defines this as int */
typedef int apr_seek_where_t;
/**
* Structure for referencing files.
*/
typedef struct apr_file_t apr_file_t;
/* File lock types/flags */
/**
* @defgroup apr_file_lock_types File Lock Types
* @{
*/
#define APR_FLOCK_SHARED 1 /**< Shared lock. More than one process
or thread can hold a shared lock
at any given time. Essentially,
this is a "read lock", preventing
writers from establishing an
exclusive lock. */
#define APR_FLOCK_EXCLUSIVE 2 /**< Exclusive lock. Only one process
may hold an exclusive lock at any
given time. This is analogous to
a "write lock". */
#define APR_FLOCK_TYPEMASK 0x000F /**< mask to extract lock type */
#define APR_FLOCK_NONBLOCK 0x0010 /**< do not block while acquiring the
file lock */
/** @} */
/**
* Open the specified file.
* @param newf The opened file descriptor.
* @param fname The full path to the file (using / on all systems)
* @param flag Or'ed value of:
* <PRE>
* APR_READ open for reading
* APR_WRITE open for writing
* APR_CREATE create the file if not there
* APR_APPEND file ptr is set to end prior to all writes
* APR_TRUNCATE set length to zero if file exists
* APR_BINARY not a text file (This flag is ignored on
* UNIX because it has no meaning)
* APR_BUFFERED buffer the data. Default is non-buffered
* APR_EXCL return error if APR_CREATE and file exists
* APR_DELONCLOSE delete the file after closing.
* APR_XTHREAD Platform dependent tag to open the file
* for use across multiple threads
* APR_SHARELOCK Platform dependent support for higher
* level locked read/write access to support
* writes across process/machines
* APR_FILE_NOCLEANUP Do not register a cleanup with the pool
* passed in on the <EM>cont</EM> argument (see below).
* The apr_os_file_t handle in apr_file_t will not
* be closed when the pool is destroyed.
* APR_SENDFILE_ENABLED Open with appropriate platform semantics
* for sendfile operations. Advisory only,
* apr_sendfile does not check this flag.
* </PRE>
* @param perm Access permissions for file.
* @param pool The pool to use.
* @remark If perm is APR_OS_DEFAULT and the file is being created, appropriate
* default permissions will be used. *arg1 must point to a valid file_t,
* or NULL (in which case it will be allocated)
*/
APR_DECLARE(apr_status_t) apr_file_open(apr_file_t **newf, const char *fname,
apr_int32_t flag, apr_fileperms_t perm,
apr_pool_t *pool);
/**
* Close the specified file.
* @param file The file descriptor to close.
*/
APR_DECLARE(apr_status_t) apr_file_close(apr_file_t *file);
/**
* delete the specified file.
* @param path The full path to the file (using / on all systems)
* @param cont The pool to use.
* @remark If the file is open, it won't be removed until all instances are closed.
*/
APR_DECLARE(apr_status_t) apr_file_remove(const char *path, apr_pool_t *cont);
/**
* rename the specified file.
* @param from_path The full path to the original file (using / on all systems)
* @param to_path The full path to the new file (using / on all systems)
* @param pool The pool to use.
* @warning If a file exists at the new location, then it will be overwritten.
* Moving files or directories across devices may not be possible.
*/
APR_DECLARE(apr_status_t) apr_file_rename(const char *from_path,
const char *to_path,
apr_pool_t *pool);
/**
* copy the specified file to another file.
* @param from_path The full path to the original file (using / on all systems)
* @param to_path The full path to the new file (using / on all systems)
* @param perms Access permissions for the new file if it is created.
* In place of the usual or'd combination of file permissions, the
* value APR_FILE_SOURCE_PERMS may be given, in which case the source
* file's permissions are copied.
* @param pool The pool to use.
* @remark The new file does not need to exist, it will be created if required.
* @warning If the new file already exists, its contents will be overwritten.
*/
APR_DECLARE(apr_status_t) apr_file_copy(const char *from_path,
const char *to_path,
apr_fileperms_t perms,
apr_pool_t *pool);
/**
* append the specified file to another file.
* @param from_path The full path to the source file (using / on all systems)
* @param to_path The full path to the destination file (using / on all systems)
* @param perms Access permissions for the destination file if it is created.
* In place of the usual or'd combination of file permissions, the
* value APR_FILE_SOURCE_PERMS may be given, in which case the source
* file's permissions are copied.
* @param pool The pool to use.
* @remark The new file does not need to exist, it will be created if required.
*/
APR_DECLARE(apr_status_t) apr_file_append(const char *from_path,
const char *to_path,
apr_fileperms_t perms,
apr_pool_t *pool);
/**
* Are we at the end of the file
* @param fptr The apr file we are testing.
* @remark Returns APR_EOF if we are at the end of file, APR_SUCCESS otherwise.
*/
APR_DECLARE(apr_status_t) apr_file_eof(apr_file_t *fptr);
/**
* open standard error as an apr file pointer.
* @param thefile The apr file to use as stderr.
* @param cont The pool to allocate the file out of.
*
* @remark The only reason that the apr_file_open_std* functions exist
* is that you may not always have a stderr/out/in on Windows. This
* is generally a problem with newer versions of Windows and services.
*
* The other problem is that the C library functions generally work
* differently on Windows and Unix. So, by using apr_file_open_std*
* functions, you can get a handle to an APR struct that works with
* the APR functions which are supposed to work identically on all
* platforms.
*/
APR_DECLARE(apr_status_t) apr_file_open_stderr(apr_file_t **thefile,
apr_pool_t *cont);
/**
* open standard output as an apr file pointer.
* @param thefile The apr file to use as stdout.
* @param cont The pool to allocate the file out of.
*
* @remark The only reason that the apr_file_open_std* functions exist
* is that you may not always have a stderr/out/in on Windows. This
* is generally a problem with newer versions of Windows and services.
*
* The other problem is that the C library functions generally work
* differently on Windows and Unix. So, by using apr_file_open_std*
* functions, you can get a handle to an APR struct that works with
* the APR functions which are supposed to work identically on all
* platforms.
*/
APR_DECLARE(apr_status_t) apr_file_open_stdout(apr_file_t **thefile,
apr_pool_t *cont);
/**
* open standard input as an apr file pointer.
* @param thefile The apr file to use as stdin.
* @param cont The pool to allocate the file out of.
*
* @remark The only reason that the apr_file_open_std* functions exist
* is that you may not always have a stderr/out/in on Windows. This
* is generally a problem with newer versions of Windows and services.
*
* The other problem is that the C library functions generally work
* differently on Windows and Unix. So, by using apr_file_open_std*
* functions, you can get a handle to an APR struct that works with
* the APR functions which are supposed to work identically on all
* platforms.
*/
APR_DECLARE(apr_status_t) apr_file_open_stdin(apr_file_t **thefile,
apr_pool_t *cont);
/**
* Read data from the specified file.
* @param thefile The file descriptor to read from.
* @param buf The buffer to store the data to.
* @param nbytes On entry, the number of bytes to read; on exit, the number of bytes read.
* @remark apr_file_read will read up to the specified number of bytes, but
* never more. If there isn't enough data to fill that number of
* bytes, all of the available data is read. The third argument is
* modified to reflect the number of bytes read. If a char was put
* back into the stream via ungetc, it will be the first character
* returned.
*
* It is not possible for both bytes to be read and an APR_EOF or other
* error to be returned.
*
* APR_EINTR is never returned.
*/
APR_DECLARE(apr_status_t) apr_file_read(apr_file_t *thefile, void *buf,
apr_size_t *nbytes);
/**
* Write data to the specified file.
* @param thefile The file descriptor to write to.
* @param buf The buffer which contains the data.
* @param nbytes On entry, the number of bytes to write; on exit, the number
* of bytes written.
* @remark apr_file_write will write up to the specified number of bytes, but never
* more. If the OS cannot write that many bytes, it will write as many
* as it can. The third argument is modified to reflect the * number
* of bytes written.
*
* It is possible for both bytes to be written and an error to be returned.
*
* APR_EINTR is never returned.
*/
APR_DECLARE(apr_status_t) apr_file_write(apr_file_t *thefile, const void *buf,
apr_size_t *nbytes);
/**
* Write data from iovec array to the specified file.
* @param thefile The file descriptor to write to.
* @param vec The array from which to get the data to write to the file.
* @param nvec The number of elements in the struct iovec array. This must
* be smaller than APR_MAX_IOVEC_SIZE. If it isn't, the function
* will fail with APR_EINVAL.
* @param nbytes The number of bytes written.
* @remark It is possible for both bytes to be written and an error to be returned.
* APR_EINTR is never returned.
*
* apr_file_writev is available even if the underlying operating system
*
* doesn't provide writev().
*/
APR_DECLARE(apr_status_t) apr_file_writev(apr_file_t *thefile,
const struct iovec *vec,
apr_size_t nvec, apr_size_t *nbytes);
/**
* Read data from the specified file, ensuring that the buffer is filled
* before returning.
* @param thefile The file descriptor to read from.
* @param buf The buffer to store the data to.
* @param nbytes The number of bytes to read.
* @param bytes_read If non-NULL, this will contain the number of bytes read.
* @remark apr_file_read will read up to the specified number of bytes, but never
* more. If there isn't enough data to fill that number of bytes,
* then the process/thread will block until it is available or EOF
* is reached. If a char was put back into the stream via ungetc,
* it will be the first character returned.
*
* It is possible for both bytes to be read and an error to be
* returned. And if *bytes_read is less than nbytes, an
* accompanying error is _always_ returned.
*
* APR_EINTR is never returned.
*/
APR_DECLARE(apr_status_t) apr_file_read_full(apr_file_t *thefile, void *buf,
apr_size_t nbytes,
apr_size_t *bytes_read);
/**
* Write data to the specified file, ensuring that all of the data is
* written before returning.
* @param thefile The file descriptor to write to.
* @param buf The buffer which contains the data.
* @param nbytes The number of bytes to write.
* @param bytes_written If non-NULL, this will contain the number of bytes written.
* @remark apr_file_write will write up to the specified number of bytes, but never
* more. If the OS cannot write that many bytes, the process/thread
* will block until they can be written. Exceptional error such as
* "out of space" or "pipe closed" will terminate with an error.
*
* It is possible for both bytes to be written and an error to be
* returned. And if *bytes_written is less than nbytes, an
* accompanying error is _always_ returned.
*
* APR_EINTR is never returned.
*/
APR_DECLARE(apr_status_t) apr_file_write_full(apr_file_t *thefile, const void *buf,
apr_size_t nbytes,
apr_size_t *bytes_written);
/**
* put a character into the specified file.
* @param ch The character to write.
* @param thefile The file descriptor to write to
*/
APR_DECLARE(apr_status_t) apr_file_putc(char ch, apr_file_t *thefile);
/**
* get a character from the specified file.
* @param ch The character to read into
* @param thefile The file descriptor to read from
*/
APR_DECLARE(apr_status_t) apr_file_getc(char *ch, apr_file_t *thefile);
/**
* put a character back onto a specified stream.
* @param ch The character to write.
* @param thefile The file descriptor to write to
*/
APR_DECLARE(apr_status_t) apr_file_ungetc(char ch, apr_file_t *thefile);
/**
* Get a string from a specified file.
* @param str The buffer to store the string in.
* @param len The length of the string
* @param thefile The file descriptor to read from
* @remark The buffer will be '\0'-terminated if any characters are stored.
*/
APR_DECLARE(apr_status_t) apr_file_gets(char *str, int len, apr_file_t *thefile);
/**
* Put the string into a specified file.
* @param str The string to write.
* @param thefile The file descriptor to write to
*/
APR_DECLARE(apr_status_t) apr_file_puts(const char *str, apr_file_t *thefile);
/**
* Flush the file's buffer.
* @param thefile The file descriptor to flush
*/
APR_DECLARE(apr_status_t) apr_file_flush(apr_file_t *thefile);
/**
* duplicate the specified file descriptor.
* @param new_file The structure to duplicate into.
* @param old_file The file to duplicate.
* @param p The pool to use for the new file.
* @remark *new_file must point to a valid apr_file_t, or point to NULL
*/
APR_DECLARE(apr_status_t) apr_file_dup(apr_file_t **new_file,
apr_file_t *old_file,
apr_pool_t *p);
/**
* duplicate the specified file descriptor and close the original
* @param new_file The old file that is to be closed and reused
* @param old_file The file to duplicate
* @param p The pool to use for the new file
*
* @remark new_file MUST point at a valid apr_file_t. It cannot be NULL
*/
APR_DECLARE(apr_status_t) apr_file_dup2(apr_file_t *new_file,
apr_file_t *old_file,
apr_pool_t *p);
/**
* move the specified file descriptor to a new pool
* @param new_file Pointer in which to return the new apr_file_t
* @param old_file The file to move
* @param p The pool to which the descriptor is to be moved
* @remark Unlike apr_file_dup2(), this function doesn't do an
* OS dup() operation on the underlying descriptor; it just
* moves the descriptor's apr_file_t wrapper to a new pool.
* @remark The new pool need not be an ancestor of old_file's pool.
* @remark After calling this function, old_file may not be used
*/
APR_DECLARE(apr_status_t) apr_file_setaside(apr_file_t **new_file,
apr_file_t *old_file,
apr_pool_t *p);
/**
* Move the read/write file offset to a specified byte within a file.
* @param thefile The file descriptor
* @param where How to move the pointer, one of:
* <PRE>
* APR_SET -- set the offset to offset
* APR_CUR -- add the offset to the current position
* APR_END -- add the offset to the current file size
* </PRE>
* @param offset The offset to move the pointer to.
* @remark The third argument is modified to be the offset the pointer
was actually moved to.
*/
APR_DECLARE(apr_status_t) apr_file_seek(apr_file_t *thefile,
apr_seek_where_t where,
apr_off_t *offset);
/**
* Create an anonymous pipe.
* @param in The file descriptor to use as input to the pipe.
* @param out The file descriptor to use as output from the pipe.
* @param cont The pool to operate on.
*/
APR_DECLARE(apr_status_t) apr_file_pipe_create(apr_file_t **in, apr_file_t **out,
apr_pool_t *cont);
/**
* Create a named pipe.
* @param filename The filename of the named pipe
* @param perm The permissions for the newly created pipe.
* @param cont The pool to operate on.
*/
APR_DECLARE(apr_status_t) apr_file_namedpipe_create(const char *filename,
apr_fileperms_t perm,
apr_pool_t *cont);
/**
* Get the timeout value for a pipe or manipulate the blocking state.
* @param thepipe The pipe we are getting a timeout for.
* @param timeout The current timeout value in microseconds.
*/
APR_DECLARE(apr_status_t) apr_file_pipe_timeout_get(apr_file_t *thepipe,
apr_interval_time_t *timeout);
/**
* Set the timeout value for a pipe or manipulate the blocking state.
* @param thepipe The pipe we are setting a timeout on.
* @param timeout The timeout value in microseconds. Values < 0 mean wait
* forever, 0 means do not wait at all.
*/
APR_DECLARE(apr_status_t) apr_file_pipe_timeout_set(apr_file_t *thepipe,
apr_interval_time_t timeout);
/** file (un)locking functions. */
/**
* Establish a lock on the specified, open file. The lock may be advisory
* or mandatory, at the discretion of the platform. The lock applies to
* the file as a whole, rather than a specific range. Locks are established
* on a per-thread/process basis; a second lock by the same thread will not
* block.
* @param thefile The file to lock.
* @param type The type of lock to establish on the file.
*/
APR_DECLARE(apr_status_t) apr_file_lock(apr_file_t *thefile, int type);
/**
* Remove any outstanding locks on the file.
* @param thefile The file to unlock.
*/
APR_DECLARE(apr_status_t) apr_file_unlock(apr_file_t *thefile);
/**accessor and general file_io functions. */
/**
* return the file name of the current file.
* @param new_path The path of the file.
* @param thefile The currently open file.
*/
APR_DECLARE(apr_status_t) apr_file_name_get(const char **new_path,
apr_file_t *thefile);
/**
* Return the data associated with the current file.
* @param data The user data associated with the file.
* @param key The key to use for retreiving data associated with this file.
* @param file The currently open file.
*/
APR_DECLARE(apr_status_t) apr_file_data_get(void **data, const char *key,
apr_file_t *file);
/**
* Set the data associated with the current file.
* @param file The currently open file.
* @param data The user data to associate with the file.
* @param key The key to use for assocaiteing data with the file.
* @param cleanup The cleanup routine to use when the file is destroyed.
*/
APR_DECLARE(apr_status_t) apr_file_data_set(apr_file_t *file, void *data,
const char *key,
apr_status_t (*cleanup)(void *));
/**
* Write a string to a file using a printf format.
* @param fptr The file to write to.
* @param format The format string
* @param ... The values to substitute in the format string
* @return The number of bytes written
*/
APR_DECLARE_NONSTD(int) apr_file_printf(apr_file_t *fptr,
const char *format, ...)
__attribute__((format(printf,2,3)));
/**
* set the specified file's permission bits.
* @param fname The file (name) to apply the permissions to.
* @param perms The permission bits to apply to the file.
* @warning Some platforms may not be able to apply all of the available
* permission bits; APR_INCOMPLETE will be returned if some permissions
* are specified which could not be set.
*
* Platforms which do not implement this feature will return APR_ENOTIMPL.
*/
APR_DECLARE(apr_status_t) apr_file_perms_set(const char *fname,
apr_fileperms_t perms);
/**
* Set attributes of the specified file.
* @param fname The full path to the file (using / on all systems)
* @param attributes Or'd combination of
* <PRE>
* APR_FILE_ATTR_READONLY - make the file readonly
* APR_FILE_ATTR_EXECUTABLE - make the file executable
* APR_FILE_ATTR_HIDDEN - make the file hidden
* </PRE>
* @param attr_mask Mask of valid bits in attributes.
* @param cont the pool to use.
* @remark This function should be used in preference to explict manipulation
* of the file permissions, because the operations to provide these
* attributes are platform specific and may involve more than simply
* setting permission bits.
* @warning Platforms which do not implement this feature will return
* APR_ENOTIMPL.
*/
APR_DECLARE(apr_status_t) apr_file_attrs_set(const char *fname,
apr_fileattrs_t attributes,
apr_fileattrs_t attr_mask,
apr_pool_t *cont);
/**
* Set the mtime of the specified file.
* @param fname The full path to the file (using / on all systems)
* @param mtime The mtime to apply to the file.
* @param pool The pool to use.
* @warning Platforms which do not implement this feature will return
* APR_ENOTIMPL.
*/
APR_DECLARE(apr_status_t) apr_file_mtime_set(const char *fname,
apr_time_t mtime,
apr_pool_t *pool);
/**
* Create a new directory on the file system.
* @param path the path for the directory to be created. (use / on all systems)
* @param perm Permissions for the new direcoty.
* @param cont the pool to use.
*/
APR_DECLARE(apr_status_t) apr_dir_make(const char *path, apr_fileperms_t perm,
apr_pool_t *cont);
/** Creates a new directory on the file system, but behaves like
* 'mkdir -p'. Creates intermediate directories as required. No error
* will be reported if PATH already exists.
* @param path the path for the directory to be created. (use / on all systems)
* @param perm Permissions for the new direcoty.
* @param pool the pool to use.
*/
APR_DECLARE(apr_status_t) apr_dir_make_recursive(const char *path,
apr_fileperms_t perm,
apr_pool_t *pool);
/**
* Remove directory from the file system.
* @param path the path for the directory to be removed. (use / on all systems)
* @param cont the pool to use.
*/
APR_DECLARE(apr_status_t) apr_dir_remove(const char *path, apr_pool_t *cont);
/**
* get the specified file's stats.
* @param finfo Where to store the information about the file.
* @param wanted The desired apr_finfo_t fields, as a bit flag of APR_FINFO_ values
* @param thefile The file to get information about.
*/
APR_DECLARE(apr_status_t) apr_file_info_get(apr_finfo_t *finfo,
apr_int32_t wanted,
apr_file_t *thefile);
/**
* Truncate the file's length to the specified offset
* @param fp The file to truncate
* @param offset The offset to truncate to.
*/
APR_DECLARE(apr_status_t) apr_file_trunc(apr_file_t *fp, apr_off_t offset);
/**
* Retrieve the flags that were passed into apr_file_open()
* when the file was opened.
* @return apr_int32_t the flags
*/
APR_DECLARE(apr_int32_t) apr_file_flags_get(apr_file_t *f);
/**
* Get the pool used by the file.
*/
APR_POOL_DECLARE_ACCESSOR(file);
/**
* Set a file to be inherited by child processes.
*
*/
APR_DECLARE_INHERIT_SET(file);
/** @deprecated @see apr_file_inherit_set */
APR_DECLARE(void) apr_file_set_inherit(apr_file_t *file);
/**
* Unset a file from being inherited by child processes.
*/
APR_DECLARE_INHERIT_UNSET(file);
/** @deprecated @see apr_file_inherit_unset */
APR_DECLARE(void) apr_file_unset_inherit(apr_file_t *file);
/**
* Open a temporary file
* @param fp The apr file to use as a temporary file.
* @param templ The template to use when creating a temp file.
* @param flags The flags to open the file with. If this is zero,
* the file is opened with
* APR_CREATE | APR_READ | APR_WRITE | APR_EXCL | APR_DELONCLOSE
* @param p The pool to allocate the file out of.
* @remark
* This function generates a unique temporary file name from template.
* The last six characters of template must be XXXXXX and these are replaced
* with a string that makes the filename unique. Since it will be modified,
* template must not be a string constant, but should be declared as a character
* array.
*
*/
APR_DECLARE(apr_status_t) apr_file_mktemp(apr_file_t **fp, char *templ,
apr_int32_t flags, apr_pool_t *p);
/**
* Find an existing directory suitable as a temporary storage location.
* @param temp_dir The temp directory.
* @param p The pool to use for any necessary allocations.
* @remark
* This function uses an algorithm to search for a directory that an
* an application can use for temporary storage. Once such a
* directory is found, that location is cached by the library. Thus,
* callers only pay the cost of this algorithm once if that one time
* is successful.
*
*/
APR_DECLARE(apr_status_t) apr_temp_dir_get(const char **temp_dir,
apr_pool_t *p);
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* ! APR_FILE_IO_H */