home *** CD-ROM | disk | FTP | other *** search
- # Source Generated with Decompyle++
- # File: in.pyc (Python 2.4)
-
- '''Random variable generators.
-
- integers
- --------
- uniform within range
-
- sequences
- ---------
- pick random element
- pick random sample
- generate random permutation
-
- distributions on the real line:
- ------------------------------
- uniform
- normal (Gaussian)
- lognormal
- negative exponential
- gamma
- beta
- pareto
- Weibull
-
- distributions on the circle (angles 0 to 2pi)
- ---------------------------------------------
- circular uniform
- von Mises
-
- General notes on the underlying Mersenne Twister core generator:
-
- * The period is 2**19937-1.
- * It is one of the most extensively tested generators in existence
- * Without a direct way to compute N steps forward, the
- semantics of jumpahead(n) are weakened to simply jump
- to another distant state and rely on the large period
- to avoid overlapping sequences.
- * The random() method is implemented in C, executes in
- a single Python step, and is, therefore, threadsafe.
-
- '''
- from warnings import warn as _warn
- from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
- from math import log as _log, exp as _exp, pi as _pi, e as _e
- from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
- from math import floor as _floor
- from os import urandom as _urandom
- from binascii import hexlify as _hexlify
- __all__ = [
- 'Random',
- 'seed',
- 'random',
- 'uniform',
- 'randint',
- 'choice',
- 'sample',
- 'randrange',
- 'shuffle',
- 'normalvariate',
- 'lognormvariate',
- 'expovariate',
- 'vonmisesvariate',
- 'gammavariate',
- 'gauss',
- 'betavariate',
- 'paretovariate',
- 'weibullvariate',
- 'getstate',
- 'setstate',
- 'jumpahead',
- 'WichmannHill',
- 'getrandbits',
- 'SystemRandom']
- NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
- TWOPI = 2.0 * _pi
- LOG4 = _log(4.0)
- SG_MAGICCONST = 1.0 + _log(4.5)
- BPF = 53
- RECIP_BPF = 2 ** (-BPF)
- import _random
-
- class Random(_random.Random):
- """Random number generator base class used by bound module functions.
-
- Used to instantiate instances of Random to get generators that don't
- share state. Especially useful for multi-threaded programs, creating
- a different instance of Random for each thread, and using the jumpahead()
- method to ensure that the generated sequences seen by each thread don't
- overlap.
-
- Class Random can also be subclassed if you want to use a different basic
- generator of your own devising: in that case, override the following
- methods: random(), seed(), getstate(), setstate() and jumpahead().
- Optionally, implement a getrandombits() method so that randrange()
- can cover arbitrarily large ranges.
-
- """
- VERSION = 2
-
- def __init__(self, x = None):
- '''Initialize an instance.
-
- Optional argument x controls seeding, as for Random.seed().
- '''
- self.seed(x)
- self.gauss_next = None
-
-
- def seed(self, a = None):
- '''Initialize internal state from hashable object.
-
- None or no argument seeds from current time or from an operating
- system specific randomness source if available.
-
- If a is not None or an int or long, hash(a) is used instead.
- '''
- if a is None:
-
- try:
- a = long(_hexlify(_urandom(16)), 16)
- except NotImplementedError:
- import time
- a = long(time.time() * 256)
- except:
- None<EXCEPTION MATCH>NotImplementedError
-
-
- None<EXCEPTION MATCH>NotImplementedError
- super(Random, self).seed(a)
- self.gauss_next = None
-
-
- def getstate(self):
- '''Return internal state; can be passed to setstate() later.'''
- return (self.VERSION, super(Random, self).getstate(), self.gauss_next)
-
-
- def setstate(self, state):
- '''Restore internal state from object returned by getstate().'''
- version = state[0]
- if version == 2:
- (version, internalstate, self.gauss_next) = state
- super(Random, self).setstate(internalstate)
- else:
- raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
-
-
- def __getstate__(self):
- return self.getstate()
-
-
- def __setstate__(self, state):
- self.setstate(state)
-
-
- def __reduce__(self):
- return (self.__class__, (), self.getstate())
-
-
- def randrange(self, start, stop = None, step = 1, int = int, default = None, maxwidth = 0x1L << BPF):
- """Choose a random item from range(start, stop[, step]).
-
- This fixes the problem with randint() which includes the
- endpoint; in Python this is usually not what you want.
- Do not supply the 'int', 'default', and 'maxwidth' arguments.
- """
- istart = int(start)
- if istart != start:
- raise ValueError, 'non-integer arg 1 for randrange()'
-
- if stop is default:
- if istart > 0:
- if istart >= maxwidth:
- return self._randbelow(istart)
-
- return int(self.random() * istart)
-
- raise ValueError, 'empty range for randrange()'
-
- istop = int(stop)
- if istop != stop:
- raise ValueError, 'non-integer stop for randrange()'
-
- width = istop - istart
- if step == 1 and width > 0:
- if width >= maxwidth:
- return int(istart + self._randbelow(width))
-
- return int(istart + int(self.random() * width))
-
- if step == 1:
- raise ValueError, 'empty range for randrange() (%d,%d, %d)' % (istart, istop, width)
-
- istep = int(step)
- if istep != step:
- raise ValueError, 'non-integer step for randrange()'
-
- if istep > 0:
- n = (width + istep - 1) // istep
- elif istep < 0:
- n = (width + istep + 1) // istep
- else:
- raise ValueError, 'zero step for randrange()'
- if n <= 0:
- raise ValueError, 'empty range for randrange()'
-
- if n >= maxwidth:
- return istart + self._randbelow(n)
-
- return istart + istep * int(self.random() * n)
-
-
- def randint(self, a, b):
- '''Return random integer in range [a, b], including both end points.
- '''
- return self.randrange(a, b + 1)
-
-
- def _randbelow(self, n, _log = _log, int = int, _maxwidth = 0x1L << BPF, _Method = _MethodType, _BuiltinMethod = _BuiltinMethodType):
- '''Return a random int in the range [0,n)
-
- Handles the case where n has more bits than returned
- by a single call to the underlying generator.
- '''
-
- try:
- getrandbits = self.getrandbits
- except AttributeError:
- pass
-
- if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
- k = int(1.0000100000000001 + _log(n - 1, 2.0))
- r = getrandbits(k)
- while r >= n:
- r = getrandbits(k)
- return r
-
- if n >= _maxwidth:
- _warn('Underlying random() generator does not supply \nenough bits to choose from a population range this large')
-
- return int(self.random() * n)
-
-
- def choice(self, seq):
- '''Choose a random element from a non-empty sequence.'''
- return seq[int(self.random() * len(seq))]
-
-
- def shuffle(self, x, random = None, int = int):
- '''x, random=random.random -> shuffle list x in place; return None.
-
- Optional arg random is a 0-argument function returning a random
- float in [0.0, 1.0); by default, the standard random.random.
-
- Note that for even rather small len(x), the total number of
- permutations of x is larger than the period of most random number
- generators; this implies that "most" permutations of a long
- sequence can never be generated.
- '''
- if random is None:
- random = self.random
-
- for i in reversed(xrange(1, len(x))):
- j = int(random() * (i + 1))
- x[i] = x[j]
- x[j] = x[i]
-
-
-
- def sample(self, population, k):
- '''Chooses k unique random elements from a population sequence.
-
- Returns a new list containing elements from the population while
- leaving the original population unchanged. The resulting list is
- in selection order so that all sub-slices will also be valid random
- samples. This allows raffle winners (the sample) to be partitioned
- into grand prize and second place winners (the subslices).
-
- Members of the population need not be hashable or unique. If the
- population contains repeats, then each occurrence is a possible
- selection in the sample.
-
- To choose a sample in a range of integers, use xrange as an argument.
- This is especially fast and space efficient for sampling from a
- large population: sample(xrange(10000000), 60)
- '''
- n = len(population)
- if k <= k:
- pass
- elif not k <= n:
- raise ValueError, 'sample larger than population'
-
- random = self.random
- _int = int
- result = [
- None] * k
- if n < 6 * k:
- pool = list(population)
- for i in xrange(k):
- j = _int(random() * (n - i))
- result[i] = pool[j]
- pool[j] = pool[n - i - 1]
-
- else:
-
- try:
- if n > 0:
- pass
- (population[0], population[n // 2], population[n - 1])
- except (TypeError, KeyError):
- population = tuple(population)
-
- selected = { }
- for i in xrange(k):
- j = _int(random() * n)
- while j in selected:
- j = _int(random() * n)
- result[i] = selected[j] = population[j]
-
- return result
-
-
- def uniform(self, a, b):
- '''Get a random number in the range [a, b).'''
- return a + (b - a) * self.random()
-
-
- def normalvariate(self, mu, sigma):
- '''Normal distribution.
-
- mu is the mean, and sigma is the standard deviation.
-
- '''
- random = self.random
- while True:
- u1 = random()
- u2 = 1.0 - random()
- z = NV_MAGICCONST * (u1 - 0.5) / u2
- zz = z * z / 4.0
- if zz <= -_log(u2):
- break
- continue
- return mu + z * sigma
-
-
- def lognormvariate(self, mu, sigma):
- """Log normal distribution.
-
- If you take the natural logarithm of this distribution, you'll get a
- normal distribution with mean mu and standard deviation sigma.
- mu can have any value, and sigma must be greater than zero.
-
- """
- return _exp(self.normalvariate(mu, sigma))
-
-
- def expovariate(self, lambd):
- '''Exponential distribution.
-
- lambd is 1.0 divided by the desired mean. (The parameter would be
- called "lambda", but that is a reserved word in Python.) Returned
- values range from 0 to positive infinity.
-
- '''
- random = self.random
- u = random()
- while u <= 9.9999999999999995e-008:
- u = random()
- return -_log(u) / lambd
-
-
- def vonmisesvariate(self, mu, kappa):
- '''Circular data distribution.
-
- mu is the mean angle, expressed in radians between 0 and 2*pi, and
- kappa is the concentration parameter, which must be greater than or
- equal to zero. If kappa is equal to zero, this distribution reduces
- to a uniform random angle over the range 0 to 2*pi.
-
- '''
- random = self.random
- if kappa <= 9.9999999999999995e-007:
- return TWOPI * random()
-
- a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
- b = (a - _sqrt(2.0 * a)) / (2.0 * kappa)
- r = (1.0 + b * b) / (2.0 * b)
- while True:
- u1 = random()
- z = _cos(_pi * u1)
- f = (1.0 + r * z) / (r + z)
- c = kappa * (r - f)
- u2 = random()
- if not u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c):
- break
- continue
- u3 = random()
- if u3 > 0.5:
- theta = mu % TWOPI + _acos(f)
- else:
- theta = mu % TWOPI - _acos(f)
- return theta
-
-
- def gammavariate(self, alpha, beta):
- '''Gamma distribution. Not the gamma function!
-
- Conditions on the parameters are alpha > 0 and beta > 0.
-
- '''
- if alpha <= 0.0 or beta <= 0.0:
- raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
-
- random = self.random
- if alpha > 1.0:
- ainv = _sqrt(2.0 * alpha - 1.0)
- bbb = alpha - LOG4
- ccc = alpha + ainv
- while True:
- u1 = random()
- if u1 < u1:
- pass
- elif not u1 < 0.99999990000000005:
- continue
-
- u2 = 1.0 - random()
- v = _log(u1 / (1.0 - u1)) / ainv
- x = alpha * _exp(v)
- z = u1 * u1 * u2
- r = bbb + ccc * v - x
- if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
- return x * beta
- continue
- 9.9999999999999995e-008
- elif alpha == 1.0:
- u = random()
- while u <= 9.9999999999999995e-008:
- u = random()
- return -_log(u) * beta
- else:
- while True:
- u = random()
- b = (_e + alpha) / _e
- p = b * u
- if p <= 1.0:
- x = pow(p, 1.0 / alpha)
- else:
- x = -_log((b - p) / alpha)
- u1 = random()
- if not (p <= 1.0 or u1 > _exp(-x)) and p > 1 and u1 > pow(x, alpha - 1.0):
- break
- continue
- return x * beta
-
-
- def gauss(self, mu, sigma):
- '''Gaussian distribution.
-
- mu is the mean, and sigma is the standard deviation. This is
- slightly faster than the normalvariate() function.
-
- Not thread-safe without a lock around calls.
-
- '''
- random = self.random
- z = self.gauss_next
- self.gauss_next = None
- if z is None:
- x2pi = random() * TWOPI
- g2rad = _sqrt(-2.0 * _log(1.0 - random()))
- z = _cos(x2pi) * g2rad
- self.gauss_next = _sin(x2pi) * g2rad
-
- return mu + z * sigma
-
-
- def betavariate(self, alpha, beta):
- '''Beta distribution.
-
- Conditions on the parameters are alpha > -1 and beta} > -1.
- Returned values range between 0 and 1.
-
- '''
- y = self.gammavariate(alpha, 1.0)
- if y == 0:
- return 0.0
- else:
- return y / (y + self.gammavariate(beta, 1.0))
-
-
- def paretovariate(self, alpha):
- '''Pareto distribution. alpha is the shape parameter.'''
- u = 1.0 - self.random()
- return 1.0 / pow(u, 1.0 / alpha)
-
-
- def weibullvariate(self, alpha, beta):
- '''Weibull distribution.
-
- alpha is the scale parameter and beta is the shape parameter.
-
- '''
- u = 1.0 - self.random()
- return alpha * pow(-_log(u), 1.0 / beta)
-
-
-
- class WichmannHill(Random):
- VERSION = 1
-
- def seed(self, a = None):
- '''Initialize internal state from hashable object.
-
- None or no argument seeds from current time or from an operating
- system specific randomness source if available.
-
- If a is not None or an int or long, hash(a) is used instead.
-
- If a is an int or long, a is used directly. Distinct values between
- 0 and 27814431486575L inclusive are guaranteed to yield distinct
- internal states (this guarantee is specific to the default
- Wichmann-Hill generator).
- '''
- if a is None:
-
- try:
- a = long(_hexlify(_urandom(16)), 16)
- except NotImplementedError:
- import time
- a = long(time.time() * 256)
- except:
- None<EXCEPTION MATCH>NotImplementedError
-
-
- None<EXCEPTION MATCH>NotImplementedError
- if not isinstance(a, (int, long)):
- a = hash(a)
-
- (a, x) = divmod(a, 30268)
- (a, y) = divmod(a, 30306)
- (a, z) = divmod(a, 30322)
- self._seed = (int(x) + 1, int(y) + 1, int(z) + 1)
- self.gauss_next = None
-
-
- def random(self):
- '''Get the next random number in the range [0.0, 1.0).'''
- (x, y, z) = self._seed
- x = 171 * x % 30269
- y = 172 * y % 30307
- z = 170 * z % 30323
- self._seed = (x, y, z)
- return (x / 30269.0 + y / 30307.0 + z / 30323.0) % 1.0
-
-
- def getstate(self):
- '''Return internal state; can be passed to setstate() later.'''
- return (self.VERSION, self._seed, self.gauss_next)
-
-
- def setstate(self, state):
- '''Restore internal state from object returned by getstate().'''
- version = state[0]
- if version == 1:
- (version, self._seed, self.gauss_next) = state
- else:
- raise ValueError('state with version %s passed to Random.setstate() of version %s' % (version, self.VERSION))
-
-
- def jumpahead(self, n):
- '''Act as if n calls to random() were made, but quickly.
-
- n is an int, greater than or equal to 0.
-
- Example use: If you have 2 threads and know that each will
- consume no more than a million random numbers, create two Random
- objects r1 and r2, then do
- r2.setstate(r1.getstate())
- r2.jumpahead(1000000)
- Then r1 and r2 will use guaranteed-disjoint segments of the full
- period.
- '''
- if not n >= 0:
- raise ValueError('n must be >= 0')
-
- (x, y, z) = self._seed
- x = int(x * pow(171, n, 30269)) % 30269
- y = int(y * pow(172, n, 30307)) % 30307
- z = int(z * pow(170, n, 30323)) % 30323
- self._seed = (x, y, z)
-
-
- def __whseed(self, x = 0, y = 0, z = 0):
- '''Set the Wichmann-Hill seed from (x, y, z).
-
- These must be integers in the range [0, 256).
- '''
- if type(y) == type(y) and type(z) == type(z):
- pass
- elif not type(z) == int:
- raise TypeError('seeds must be integers')
-
- if x <= x:
- pass
- elif x < 256:
- if y <= y:
- pass
- elif y < 256:
- if z <= z:
- pass
- elif not z < 256:
- raise ValueError('seeds must be in range(0, 256)')
-
- if x == x and y == y:
- pass
- elif y == z:
- import time
- t = long(time.time() * 256)
- t = int(t & 16777215 ^ t >> 24)
- (t, x) = divmod(t, 256)
- (t, y) = divmod(t, 256)
- (t, z) = divmod(t, 256)
-
- if not x:
- pass
- if not y:
- pass
- if not z:
- pass
- self._seed = (1, 1, 1)
- self.gauss_next = None
-
-
- def whseed(self, a = None):
- """Seed from hashable object's hash code.
-
- None or no argument seeds from current time. It is not guaranteed
- that objects with distinct hash codes lead to distinct internal
- states.
-
- This is obsolete, provided for compatibility with the seed routine
- used prior to Python 2.1. Use the .seed() method instead.
- """
- if a is None:
- self._WichmannHill__whseed()
- return None
-
- a = hash(a)
- (a, x) = divmod(a, 256)
- (a, y) = divmod(a, 256)
- (a, z) = divmod(a, 256)
- if not (x + a) % 256:
- pass
- x = 1
- if not (y + a) % 256:
- pass
- y = 1
- if not (z + a) % 256:
- pass
- z = 1
- self._WichmannHill__whseed(x, y, z)
-
-
-
- class SystemRandom(Random):
- '''Alternate random number generator using sources provided
- by the operating system (such as /dev/urandom on Unix or
- CryptGenRandom on Windows).
-
- Not available on all systems (see os.urandom() for details).
- '''
-
- def random(self):
- '''Get the next random number in the range [0.0, 1.0).'''
- return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
-
-
- def getrandbits(self, k):
- '''getrandbits(k) -> x. Generates a long int with k random bits.'''
- if k <= 0:
- raise ValueError('number of bits must be greater than zero')
-
- if k != int(k):
- raise TypeError('number of bits should be an integer')
-
- bytes = (k + 7) // 8
- x = long(_hexlify(_urandom(bytes)), 16)
- return x >> bytes * 8 - k
-
-
- def _stub(self, *args, **kwds):
- '''Stub method. Not used for a system random number generator.'''
- pass
-
- seed = jumpahead = _stub
-
- def _notimplemented(self, *args, **kwds):
- '''Method should not be called for a system random number generator.'''
- raise NotImplementedError('System entropy source does not have state.')
-
- getstate = setstate = _notimplemented
-
-
- def _test_generator(n, func, args):
- import time
- print n, 'times', func.__name__
- total = 0.0
- sqsum = 0.0
- smallest = 10000000000.0
- largest = -10000000000.0
- t0 = time.time()
- for i in range(n):
- x = func(*args)
- total += x
- sqsum = sqsum + x * x
- smallest = min(x, smallest)
- largest = max(x, largest)
-
- t1 = time.time()
- print round(t1 - t0, 3), 'sec,',
- avg = total / n
- stddev = _sqrt(sqsum / n - avg * avg)
- print 'avg %g, stddev %g, min %g, max %g' % (avg, stddev, smallest, largest)
-
-
- def _test(N = 2000):
- _test_generator(N, random, ())
- _test_generator(N, normalvariate, (0.0, 1.0))
- _test_generator(N, lognormvariate, (0.0, 1.0))
- _test_generator(N, vonmisesvariate, (0.0, 1.0))
- _test_generator(N, gammavariate, (0.01, 1.0))
- _test_generator(N, gammavariate, (0.10000000000000001, 1.0))
- _test_generator(N, gammavariate, (0.10000000000000001, 2.0))
- _test_generator(N, gammavariate, (0.5, 1.0))
- _test_generator(N, gammavariate, (0.90000000000000002, 1.0))
- _test_generator(N, gammavariate, (1.0, 1.0))
- _test_generator(N, gammavariate, (2.0, 1.0))
- _test_generator(N, gammavariate, (20.0, 1.0))
- _test_generator(N, gammavariate, (200.0, 1.0))
- _test_generator(N, gauss, (0.0, 1.0))
- _test_generator(N, betavariate, (3.0, 3.0))
-
- _inst = Random()
- seed = _inst.seed
- random = _inst.random
- uniform = _inst.uniform
- randint = _inst.randint
- choice = _inst.choice
- randrange = _inst.randrange
- sample = _inst.sample
- shuffle = _inst.shuffle
- normalvariate = _inst.normalvariate
- lognormvariate = _inst.lognormvariate
- expovariate = _inst.expovariate
- vonmisesvariate = _inst.vonmisesvariate
- gammavariate = _inst.gammavariate
- gauss = _inst.gauss
- betavariate = _inst.betavariate
- paretovariate = _inst.paretovariate
- weibullvariate = _inst.weibullvariate
- getstate = _inst.getstate
- setstate = _inst.setstate
- jumpahead = _inst.jumpahead
- getrandbits = _inst.getrandbits
- if __name__ == '__main__':
- _test()
-
-