home *** CD-ROM | disk | FTP | other *** search
- /*
- * $Header: arclzw.c,v 1.6 88/07/31 18:49:49 hyc Exp $
- */
-
- /*
- * ARC - Archive utility - ARCLZW
- *
- * Version 2.03, created on 10/24/86 at 11:46:22
- *
- * (C) COPYRIGHT 1985,86 by System Enhancement Associates; ALL RIGHTS RESERVED
- *
- * By: Thom Henderson
- *
- * Description: This file contains the routines used to implement Lempel-Zev
- * data compression, which calls for building a coding table on the fly.
- * This form of compression is especially good for encoding files which
- * contain repeated strings, and can often give dramatic improvements over
- * traditional Huffman SQueezing.
- *
- * Language: Computer Innovations Optimizing C86
- *
- * Programming notes: In this section I am drawing heavily on the COMPRESS
- * program from UNIX. The basic method is taken from "A Technique for High
- * Performance Data Compression", Terry A. Welch, IEEE Computer Vol 17, No 6
- * (June 1984), pp 8-19. Also see "Knuth's Fundamental Algorithms", Donald
- * Knuth, Vol 3, Section 6.4.
- *
- * As best as I can tell, this method works by tracing down a hash table of code
- * strings where each entry has the property:
- *
- * if <string> <char> is in the table then <string> is in the table.
- */
- #include <stdio.h>
- #include "arc.h"
-
- void putc_pak(), abort(), putc_ncr();
- int getc_unp();
-
- static void putcode();
- /* definitions for older style crunching */
-
- #define FALSE 0
- #define TRUE !FALSE
- #define TABSIZE 4096
- #define NO_PRED 0xFFFF
- #define EMPTY 0xFFFF
- #define NOT_FND 0xFFFF
-
- static unsigned short inbuf; /* partial input code storage */
- static int sp; /* current stack pointer */
-
- struct entry { /* string table entry format */
- char used; /* true when this entry is in use */
- unsigned char follower; /* char following string */
- unsigned short next; /* ptr to next in collision list */
- unsigned short predecessor; /* code for preceeding string */
- }; /* string_tab[TABSIZE]; the code string table */
-
-
- /* definitions for the new dynamic Lempel-Zev crunching */
-
- #define BITS 12 /* maximum bits per code */
- #define HSIZE 5003 /* 80% occupancy */
- #define INIT_BITS 9 /* initial number of bits/code */
-
- static int n_bits; /* number of bits/code */
- static int maxcode; /* maximum code, given n_bits */
- #define MAXCODE(n) ((1<<(n)) - 1) /* maximum code calculation */
- static int maxcodemax = 1 << BITS; /* largest possible code (+1) */
-
- static char buf[BITS]; /* input/output buffer */
-
- static unsigned char lmask[9] = /* left side masks */
- {
- 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00
- };
- static unsigned char rmask[9] = /* right side masks */
- {
- 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff
- };
-
- static int offset; /* byte offset for code output */
- static long in_count; /* length of input */
- static long bytes_out; /* length of compressed output */
- static long bytes_ref; /* output quality reference */
- static long bytes_last; /* output size at last checkpoint */
- static unsigned short ent;
-
- /*
- * To save much memory (which we badly need at this point), we overlay the
- * table used by the previous version of Lempel-Zev with those used by the
- * new version. Since no two of these routines will be used together, we can
- * safely do this.
- */
-
- extern long htab[HSIZE]; /* hash code table (crunch) */
- extern unsigned short codetab[HSIZE]; /* string code table (crunch) */
- static struct entry *string_tab=(struct entry *)htab; /* old crunch string table */
-
- static unsigned short *prefix=codetab; /* prefix code table (uncrunch) */
- static unsigned char *suffix=(unsigned char *)htab; /* suffix table (uncrunch) */
-
- static int free_ent; /* first unused entry */
- static int firstcmp; /* true at start of compression */
- extern unsigned char stack[HSIZE]; /* local push/pop stack */
-
- /*
- * block compression parameters -- after all codes are used up, and
- * compression rate changes, start over.
- */
-
- static int clear_flg;
- #define CHECK_GAP 2048 /* ratio check interval */
- static long checkpoint;
- void upd_tab();
-
- /*
- * the next two codes should not be changed lightly, as they must not lie
- * within the contiguous general code space.
- */
- #define FIRST 257 /* first free entry */
- #define CLEAR 256 /* table clear output code */
-
- /*
- * The cl_block() routine is called at each checkpoint to determine if
- * compression would likely improve by resetting the code table. The method
- * chosen to determine this is based on empirical observation that, in
- * general, every 2k of input data should compress at least as well as the
- * first 2k of input.
- */
-
- static void
- cl_block(t) /* table clear for block compress */
- FILE *t; /* our output file */
- {
- checkpoint = in_count + CHECK_GAP;
-
- if (bytes_ref) {
- if (bytes_out - bytes_last > bytes_ref) {
- setmem(htab, HSIZE * sizeof(long), 0xff);
- free_ent = FIRST;
- clear_flg = 1;
- putcode(CLEAR, t);
- bytes_ref = 0;
- }
- } else
- bytes_ref = bytes_out - bytes_last;
-
- bytes_last = bytes_out; /* remember where we were */
- }
-
- /*****************************************************************
- *
- * Output a given code.
- * Inputs:
- * code: A n_bits-bit integer. If == -1, then EOF. This assumes
- * that n_bits =< (LONG)wordsize - 1.
- * Outputs:
- * Outputs code to the file.
- * Assumptions:
- * Chars are 8 bits long.
- * Algorithm:
- * Maintain a BITS character long buffer (so that 8 codes will
- * fit in it exactly). When the buffer fills up empty it and start over.
- */
-
- static void
- putcode(code, t) /* output a code */
- int code; /* code to output */
- FILE *t; /* where to put it */
- {
- int r_off = offset; /* right offset */
- int bits = n_bits; /* bits to go */
- char *bp = buf; /* buffer pointer */
- int n; /* index */
-
- register int ztmp;
-
- if (code >= 0) { /* if a real code *//* Get to the first byte. */
- bp += (r_off >> 3);
- r_off &= 7;
-
- /*
- * Since code is always >= 8 bits, only need to mask the
- * first hunk on the left.
- */
- ztmp = (code << r_off) & lmask[r_off];
- *bp = (*bp & rmask[r_off]) | ztmp;
- bp++;
- bits -= (8 - r_off);
- code >>= (8 - r_off);
-
- /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
- if (bits >= 8) {
- *bp++ = code;
- code >>= 8;
- bits -= 8;
- }
- /* Last bits. */
- if (bits)
- *bp = code;
- offset += n_bits;
-
- if (offset == (n_bits << 3)) {
- bp = buf;
- bits = n_bits;
- bytes_out += bits;
- do
- putc_pak(*bp++, t);
- while (--bits);
- offset = 0;
- }
- /*
- * If the next entry is going to be too big for the code
- * size, then increase it, if possible.
- */
- if (free_ent > maxcode || clear_flg > 0) {
- /*
- * Write the whole buffer, because the input side
- * won't discover the size increase until after
- * it has read it.
- */
- if (offset > 0) {
- bp = buf; /* reset pointer for writing */
- bytes_out += n = n_bits;
- while (n--)
- putc_pak(*bp++, t);
- }
- offset = 0;
-
- if (clear_flg) { /* reset if clearing */
- maxcode = MAXCODE(n_bits = INIT_BITS);
- clear_flg = 0;
- } else {/* else use more bits */
- n_bits++;
- if (n_bits == BITS)
- maxcode = maxcodemax;
- else
- maxcode = MAXCODE(n_bits);
- }
- }
- } else { /* dump the buffer on EOF */
- bytes_out += n = (offset + 7) / 8;
-
- if (offset > 0)
- while (n--)
- putc_pak(*bp++, t);
- offset = 0;
- }
- }
-
- /*****************************************************************
- *
- * Read one code from the standard input. If EOF, return -1.
- * Inputs:
- * cmpin
- * Outputs:
- * code or -1 is returned.
- */
-
- static int
- getcode(f) /* get a code */
- FILE *f; /* file to get from */
- {
- int code;
- static int offset = 0, size = 0;
- int r_off, bits;
- unsigned char *bp = (unsigned char *) buf;
-
- if (clear_flg > 0 || offset >= size || free_ent > maxcode) {
- /*
- * If the next entry will be too big for the current code
- * size, then we must increase the size. This implies
- * reading a new buffer full, too.
- */
- if (free_ent > maxcode) {
- n_bits++;
- if (n_bits == BITS)
- maxcode = maxcodemax; /* won't get any bigger
- * now */
- else
- maxcode = MAXCODE(n_bits);
- }
- if (clear_flg > 0) {
- maxcode = MAXCODE(n_bits = INIT_BITS);
- clear_flg = 0;
- }
- for (size = 0; size < n_bits; size++) {
- if ((code = getc_unp(f)) == EOF)
- break;
- else
- buf[size] = (char) code;
- }
- if (size <= 0)
- return -1; /* end of file */
-
- offset = 0;
- /* Round size down to integral number of codes */
- size = (size << 3) - (n_bits - 1);
- }
- r_off = offset;
- bits = n_bits;
-
- /*
- * Get to the first byte.
- */
- bp += (r_off >> 3);
- r_off &= 7;
-
- /* Get first part (low order bits) */
- code = (*bp++ >> r_off);
- bits -= 8 - r_off;
- r_off = 8 - r_off; /* now, offset into code word */
-
- /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
- if (bits >= 8) {
- code |= *bp++ << r_off;
- r_off += 8;
- bits -= 8;
- }
- /* high order bits. */
- code |= (*bp & rmask[bits]) << r_off;
- offset += n_bits;
-
- return code & MAXCODE(BITS);
- }
-
- /*
- * compress a file
- *
- * Algorithm: use open addressing double hashing (no chaining) on the prefix
- * code / next character combination. We do a variant of Knuth's algorithm D
- * (vol. 3, sec. 6.4) along with G. Knott's relatively-prime secondary probe.
- * Here, the modular division first probe is gives way to a faster
- * exclusive-or manipulation. Also do block compression with an adaptive
- * reset, where the code table is cleared when the compression ratio
- * decreases, but after the table fills. The variable-length output codes
- * are re-sized at this point, and a special CLEAR code is generated for the
- * decompressor.
- */
-
- void
- init_cm(t) /* initialize for compression */
- FILE *t; /* where compressed file goes */
- {
- offset = 0;
- bytes_out = bytes_last = 1;
- bytes_ref = 0;
- clear_flg = 0;
- in_count = 1;
- checkpoint = CHECK_GAP;
- maxcode = MAXCODE(n_bits = INIT_BITS);
- free_ent = FIRST;
- setmem(htab, HSIZE * sizeof(long), 0xff);
- n_bits = INIT_BITS; /* set starting code size */
-
- putc_pak(BITS, t); /* note our max code length */
-
- firstcmp = 1; /* next byte will be first */
- }
-
- void
- putc_cm(c, t) /* compress a character */
- unsigned char c; /* character to compress */
- FILE *t; /* where to put it */
- {
- static long fcode;
- static int hshift;
- int i;
- int disp;
-
- if (firstcmp) { /* special case for first byte */
- ent = c; /* remember first byte */
-
- hshift = 0;
-
- fcode = (long) HSIZE;
- while ( fcode < 65536L )
- {
- hshift++;
- fcode += fcode;
- }
-
- /*
- * The following statement (replaced by the preceding) dumps
- * if compiled by the SCO XENIX C compiler (or hangs).
- *
- * for (fcode = (long) HSIZE; fcode < 65536L; fcode *= 2L)
- * hshift++;
- */
-
- hshift = 8 - hshift; /* set hash code range bound */
-
- firstcmp = 0; /* no longer first */
- return;
- }
- in_count++;
-
- fcode = (long) (((long) c << BITS) + ent);
- i = (c << hshift) ^ ent;/* xor hashing */
-
- if (htab[i] == fcode) {
- ent = codetab[i];
- return;
- } else if (htab[i] < 0) /* empty slot */
- goto nomatch;
- disp = HSIZE - i; /* secondary hash (after G.Knott) */
- if (i == 0)
- disp = 1;
-
- probe:
- if ((i -= disp) < 0)
- i += HSIZE;
-
- if (htab[i] == fcode) {
- ent = codetab[i];
- return;
- }
- if (htab[i] > 0)
- goto probe;
-
- nomatch:
- putcode(ent, t);
- ent = c;
- if (free_ent < maxcodemax) {
- codetab[i] = free_ent++; /* code -> hashtable */
- htab[i] = fcode;
- }
- if (in_count >= checkpoint)
- cl_block(t); /* check for adaptive reset */
- }
-
- long
- pred_cm(t) /* finish compressing a file */
- FILE *t; /* where to put it */
- {
- putcode(ent, t); /* put out the final code */
- putcode(-1, t); /* tell output we are done */
-
- return bytes_out; /* say how big it got */
- }
-
- /*
- * Decompress a file. This routine adapts to the codes in the file building
- * the string table on-the-fly; requiring no table to be stored in the
- * compressed file. The tables used herein are shared with those of the
- * compress() routine. See the definitions above.
- */
-
- void
- decomp(f, t) /* decompress a file */
- FILE *f; /* file to read codes from */
- FILE *t; /* file to write text to */
- {
- unsigned char *stackp;
- int finchar;
- int code, oldcode, incode;
-
- if ((code = getc_unp(f)) != BITS)
- abort("File packed with %d bits, I can only handle %d", code, BITS);
-
- n_bits = INIT_BITS; /* set starting code size */
- clear_flg = 0;
-
- /*
- * As above, initialize the first 256 entries in the table.
- */
- maxcode = MAXCODE(n_bits = INIT_BITS);
- setmem(prefix, 256 * sizeof(short), 0); /* reset decode string table */
- for (code = 255; code >= 0; code--)
- suffix[code] = (unsigned char) code;
-
- free_ent = FIRST;
-
- finchar = oldcode = getcode(f);
- if (oldcode == -1) /* EOF already? */
- return; /* Get out of here */
- putc_ncr((unsigned char) finchar, t); /* first code must be 8 bits=char */
- stackp = stack;
-
- while ((code = getcode(f)) > -1) {
- if (code == CLEAR) { /* reset string table */
- setmem(prefix, 256 * sizeof(short), 0);
- clear_flg = 1;
- free_ent = FIRST - 1;
- if ((code = getcode(f)) == -1) /* O, untimely death! */
- break;
- }
- incode = code;
- /*
- * Special case for KwKwK string.
- */
- if (code >= free_ent) {
- if (code > free_ent) {
- if (warn) {
- printf("Corrupted compressed file.\n");
- printf("Invalid code %d when max is %d.\n",
- code, free_ent);
- }
- nerrs++;
- return;
- }
- *stackp++ = finchar;
- code = oldcode;
- }
- /*
- * Generate output characters in reverse order
- */
- while (code >= 256) {
- *stackp++ = suffix[code];
- code = prefix[code];
- }
- *stackp++ = finchar = suffix[code];
-
- /*
- * And put them out in forward order
- */
- do
- putc_ncr(*--stackp, t);
- while (stackp > stack);
-
- /*
- * Generate the new entry.
- */
- if ((code = free_ent) < maxcodemax) {
- prefix[code] = (unsigned short) oldcode;
- suffix[code] = finchar;
- free_ent = code + 1;
- }
- /*
- * Remember previous code.
- */
- oldcode = incode;
- }
- }
-
-
- /*************************************************************************
- * Please note how much trouble it can be to maintain upwards *
- * compatibility. All that follows is for the sole purpose of unpacking *
- * files which were packed using an older method. *
- *************************************************************************/
-
-
- /*
- * The h() pointer points to the routine to use for calculating a hash value.
- * It is set in the init routines to point to either of oldh() or newh().
- *
- * oldh() calculates a hash value by taking the middle twelve bits of the square
- * of the key.
- *
- * newh() works somewhat differently, and was tried because it makes ARC about
- * 23% faster. This approach was abandoned because dynamic Lempel-Zev
- * (above) works as well, and packs smaller also. However, inadvertent
- * release of a developmental copy forces us to leave this in.
- */
-
- static unsigned short(*h) (); /* pointer to hash function */
-
- static unsigned short
- oldh(pred, foll) /* old hash function */
- unsigned short pred; /* code for preceeding string */
- unsigned char foll; /* value of following char */
- {
- long local; /* local hash value */
-
- local = ((pred + foll) | 0x0800) & 0xFFFF; /* create the hash key */
- local *= local; /* square it */
- return (local >> 6) & 0x0FFF; /* return the middle 12 bits */
- }
-
- static unsigned short
- newh(pred, foll) /* new hash function */
- unsigned short pred; /* code for preceeding string */
- unsigned char foll; /* value of following char */
- {
- return (((pred + foll) & 0xFFFF) * 15073) & 0xFFF; /* faster hash */
- }
-
- /*
- * The eolist() function is used to trace down a list of entries with
- * duplicate keys until the last duplicate is found.
- */
-
- static unsigned short
- eolist(index) /* find last duplicate */
- unsigned short index;
- {
- int temp;
-
- while (temp = string_tab[index].next) /* while more duplicates */
- index = temp;
-
- return index;
- }
-
- /*
- * The hash() routine is used to find a spot in the hash table for a new
- * entry. It performs a "hash and linear probe" lookup, using h() to
- * calculate the starting hash value and eolist() to perform the linear
- * probe. This routine DOES NOT detect a table full condition. That MUST be
- * checked for elsewhere.
- */
-
- static unsigned short
- hash(pred, foll) /* find spot in the string table */
- unsigned short pred; /* code for preceeding string */
- unsigned char foll; /* char following string */
- {
- unsigned short local, tempnext; /* scratch storage */
- struct entry *ep; /* allows faster table handling */
-
- local = (*h) (pred, foll); /* get initial hash value */
-
- if (!string_tab[local].used) /* if that spot is free */
- return local; /* then that's all we need */
-
- else { /* else a collision has occured */
- local = eolist(local); /* move to last duplicate */
-
- /*
- * We must find an empty spot. We start looking 101 places
- * down the table from the last duplicate.
- */
-
- tempnext = (local + 101) & 0x0FFF;
- ep = &string_tab[tempnext]; /* initialize pointer */
-
- while (ep->used) { /* while empty spot not found */
- if (++tempnext == TABSIZE) { /* if we are at the end */
- tempnext = 0; /* wrap to beginning of table */
- ep = string_tab;
- } else
- ++ep; /* point to next element in table */
- }
-
- /*
- * local still has the pointer to the last duplicate, while
- * tempnext has the pointer to the spot we found. We use
- * this to maintain the chain of pointers to duplicates.
- */
-
- string_tab[local].next = tempnext;
-
- return tempnext;
- }
- }
-
- /*
- * The init_tab() routine is used to initialize our hash table. You realize,
- * of course, that "initialize" is a complete misnomer.
- */
-
- static void
- init_tab()
- { /* set ground state in hash table */
- unsigned int i; /* table index */
-
- setmem((char *) string_tab, sizeof(string_tab), 0);
-
- for (i = 0; i < 256; i++) /* list all single byte strings */
- upd_tab(NO_PRED, i);
-
- inbuf = EMPTY; /* nothing is in our buffer */
- }
-
- /*
- * The upd_tab routine is used to add a new entry to the string table. As
- * previously stated, no checks are made to ensure that the table has any
- * room. This must be done elsewhere.
- */
-
- void
- upd_tab(pred, foll) /* add an entry to the table */
- unsigned short pred; /* code for preceeding string */
- unsigned short foll; /* character which follows string */
- {
- struct entry *ep; /* pointer to current entry */
-
- /* calculate offset just once */
-
- ep = &string_tab[hash(pred, foll)];
-
- ep->used = TRUE; /* this spot is now in use */
- ep->next = 0; /* no duplicates after this yet */
- ep->predecessor = pred; /* note code of preceeding string */
- ep->follower = foll; /* note char after string */
- }
-
- /*
- * This algorithm encoded a file into twelve bit strings (three nybbles). The
- * gocode() routine is used to read these strings a byte (or two) at a time.
- */
-
- static int
- gocode(fd) /* read in a twelve bit code */
- FILE *fd; /* file to get code from */
- {
- unsigned short localbuf, returnval;
- int temp;
-
- if (inbuf == EMPTY) { /* if on a code boundary */
- if ((temp = getc_unp(fd)) == EOF) /* get start of next
- * code */
- return EOF; /* pass back end of file status */
- localbuf = temp & 0xFF; /* mask down to true byte value */
- if ((temp = getc_unp(fd)) == EOF)
- /* get end of code, * start of next */
- return EOF; /* this should never happen */
- inbuf = temp & 0xFF; /* mask down to true byte value */
-
- returnval = ((localbuf << 4) & 0xFF0) + ((inbuf >> 4) & 0x00F);
- inbuf &= 0x000F;/* leave partial code pending */
- } else { /* buffer contains first nybble */
- if ((temp = getc_unp(fd)) == EOF)
- return EOF;
- localbuf = temp & 0xFF;
-
- returnval = localbuf + ((inbuf << 8) & 0xF00);
- inbuf = EMPTY; /* note no hanging nybbles */
- }
- return returnval; /* pass back assembled code */
- }
-
- static void
- push(c) /* push char onto stack */
- int c; /* character to push */
- {
- stack[sp] = ((char) c); /* coerce integer into a char */
-
- if (++sp >= TABSIZE)
- abort("Stack overflow\n");
- }
-
- static int
- pop()
- { /* pop character from stack */
- if (sp > 0)
- return ((int) stack[--sp]); /* leave ptr at next empty
- * slot */
-
- else
- return EMPTY;
- }
-
- /***** LEMPEL-ZEV DECOMPRESSION *****/
-
- static int code_count; /* needed to detect table full */
- static int firstc; /* true only on first character */
-
- void
- init_ucr(new) /* get set for uncrunching */
- int new; /* true to use new hash function */
- {
- if (new) /* set proper hash function */
- h = newh;
- else
- h = oldh;
-
- sp = 0; /* clear out the stack */
- init_tab(); /* set up atomic code definitions */
- code_count = TABSIZE - 256; /* note space left in table */
- firstc = 1; /* true only on first code */
- }
-
- int
- getc_ucr(f) /* get next uncrunched byte */
- FILE *f; /* file containing crunched data */
- {
- int code, newcode;
- static int oldcode, finchar;
- struct entry *ep; /* allows faster table handling */
-
- if (firstc) { /* first code is always known */
- firstc = FALSE; /* but next will not be first */
- oldcode = gocode(f);
- return finchar = string_tab[oldcode].follower;
- }
- if (!sp) { /* if stack is empty */
- if ((code = newcode = gocode(f)) == EOF)
- return EOF;
-
- ep = &string_tab[code]; /* initialize pointer */
-
- if (!ep->used) {/* if code isn't known */
- code = oldcode;
- ep = &string_tab[code]; /* re-initialize pointer */
- push(finchar);
- }
- while (ep->predecessor != NO_PRED) {
- push(ep->follower); /* decode string backwards */
- code = ep->predecessor;
- ep = &string_tab[code];
- }
-
- push(finchar = ep->follower); /* save first character also */
-
- /*
- * The above loop will terminate, one way or another, with
- * string_tab[code].follower equal to the first character in
- * the string.
- */
-
- if (code_count) { /* if room left in string table */
- upd_tab(oldcode, finchar);
- --code_count;
- }
- oldcode = newcode;
- }
- return pop(); /* return saved character */
- }
-