home *** CD-ROM | disk | FTP | other *** search
- //$$svd.cxx singular value decomposition
-
- // Copyright (C) 1991: R B Davies and DSIR
-
- #define WANT_MATH
-
- #include "include.hxx"
- #include "newmat.hxx"
- #include "newmatrm.hxx"
- #include "precisio.hxx"
-
-
- void SVD(const Matrix& A, DiagonalMatrix& Q, Matrix& U, Matrix& V,
- BOOL withU, BOOL withV)
- // from Wilkinson and Reinsch: "Handbook of Automatic Computation"
- {
- real eps = FloatingPointPrecision::Epsilon();
- real tol = FloatingPointPrecision::Minimum()/eps;
-
- int m = A.Nrows(); int n = A.Ncols();
- if (m<n) MatrixError("Matrix must have nRows >= nCols in SVD");
-
- U = A.c(); real g = 0.0; real f,h; real x = 0.0;
- RowVector E(n); RectMatrixRow EI(E,0); Q.ReDimension(n);
- RectMatrixCol UCI(U,0); RectMatrixRow URI(U,0,1,n-1);
-
- for (int i=0; i<n; i++)
- {
- EI.First() = g; real ei = g; EI.Right(); real s = UCI.SumSquare();
- if (s<tol) Q.element(i) = 0.0;
- else
- {
- f = UCI.First(); g = -sign(sqrt(s), f); h = f*g-s; UCI.First() = f-g;
- Q.element(i) = g; RectMatrixCol UCJ = UCI; int j=n-i;
- while (--j) { UCJ.Right(); UCJ.AddScaled(UCI, (UCI*UCJ)/h); }
- }
-
- s = URI.SumSquare();
- if (s<tol) g = 0.0;
- else
- {
- f = URI.First(); g = -sign(sqrt(s), f); URI.First() = f-g;
- EI.Divide(URI,f*g-s); RectMatrixRow URJ = URI; int j=m-i;
- while (--j) { URJ.Down(); URJ.AddScaled(EI, URI*URJ); }
- }
-
- real y = fabs(Q.element(i)) + fabs(ei); if (x<y) x = y;
- UCI.DownDiag(); URI.DownDiag();
- }
-
- if (withV)
- {
- V.ReDimension(n,n); V = 0.0; RectMatrixCol VCI(V,n,n,0);
- for (i=n-1; i>=0; i--)
- {
- URI.UpDiag(); VCI.Left();
- if (g!=0.0)
- {
- VCI.Divide(URI, URI.First()*g); int j = n-i;
- RectMatrixCol VCJ = VCI;
- while (--j) { VCJ.Right(); VCJ.AddScaled( VCI, (URI*VCJ) ); }
- }
- VCI.Zero(); VCI.Up(); VCI.First() = 1.0; g=E.element(i);
- }
- }
-
- if (withU)
- {
- for (i=n-1; i>=0; i--)
- {
- UCI.UpDiag(); g = Q.element(i); URI.Reset(U,i,i+1,n-i-1); URI.Zero();
- if (g!=0.0)
- {
- h=UCI.First()*g; int j=n-i; RectMatrixCol UCJ = UCI;
- while (--j)
- {
- UCJ.Right(); UCI.Down(); UCJ.Down(); real s = UCI*UCJ;
- UCI.Up(); UCJ.Up(); UCJ.AddScaled(UCI,s/h);
- }
- UCI.Divide(g);
- }
- else UCI.Zero();
- UCI.First() += 1.0;
- }
- }
-
- eps *= x;
- for (int k=n-1; k>=0; k--)
- {
- real z; real y; int limit = 50; int l;
- while (limit--)
- {
- real c=0.0; real s=1.0; int i; int l1=k; BOOL tfc=FALSE;
- for (l=k; l>=0; l--)
- {
- // if (fabs(E.element(l))<=eps) goto test_f_convergence;
- if (fabs(E.element(l))<=eps) { tfc=TRUE; break; }
- if (fabs(Q.element(l-1))<=eps) { l1=l; break; }
- }
- if (!tfc)
- {
- l=l1; l1=l-1;
- for (i=l; i<=k; i++)
- {
- f = s * E.element(i); E.element(i) *= c;
- // if (fabs(f)<=eps) goto test_f_convergence;
- if (fabs(f)<=eps) break;
- g = Q.element(i); h = sqrt(f*f + g*g); Q.element(i) = h;
- if (withU)
- {
- RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,l1);
- ComplexScale(UCI, UCJ, g/h, -f/h);
- }
- }
- }
- // test_f_convergence: z = Q.element(k); if (l==k) goto convergence;
- z = Q.element(k); if (l==k) break;
-
- x = Q.element(l); y = Q.element(k-1);
- g = E.element(k-1); h = E.element(k);
- f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2*h*y); g = sqrt(f*f + 1);
- f = ((x-z)*(x+z) + h*(y / ((f<0.0) ? f-g : f+g)-h)) / x;
-
- c = 1.0; s = 1.0;
- for (i=l+1; i<=k; i++)
- {
- g = E.element(i); y = Q.element(i); h = s*g; g *= c;
- z = sqrt(f*f + h*h); E.element(i-1) = z; c = f/z; s = h/z;
- f = x*c + g*s; g = -x*s + g*c; h = y*s; y *= c;
- if (withV)
- {
- RectMatrixCol VCI(V,i); RectMatrixCol VCJ(V,i-1);
- ComplexScale(VCI, VCJ, c, s);
- }
- z = sqrt(f*f + h*h); Q.element(i-1) = z; c = f/z; s = h/z;
- f = c*g + s*y; x = -s*g + c*y;
- if (withU)
- {
- RectMatrixCol UCI(U,i); RectMatrixCol UCJ(U,i-1);
- ComplexScale(UCI, UCJ, c, s);
- }
- }
- E.element(l) = 0.0; E.element(k) = f; Q.element(k) = x;
- }
- if (l!=k) MatrixError("SVD convergence fails");
- // convergence:
- if (z < 0.0)
- {
- Q.element(k) = -z;
- if (withV) { RectMatrixCol VCI(V,k); VCI.Negate(); }
- }
- }
- }
-
- void SVD(const Matrix& A, DiagonalMatrix& D)
- { Matrix U; SVD(A, D, U, U, FALSE, FALSE); }
-
-
-