home *** CD-ROM | disk | FTP | other *** search
- //$$ fft.cxx Fast fourier transform
-
- // Copyright (C) 1991: R B Davies and DSIR
-
-
- #define WANT_MATH
-
- #include "include.hxx"
-
- #include "newmatap.hxx"
-
-
- static void cossin(int n, int d, real& c, real& s)
- // calculate cos(twopi*n/d) and sin(twopi*n/d)
- // minimise roundoff error
- {
- long n4 = n * 4; int sector = (int)floor( (real)n4 / (real)d + 0.5 );
- n4 -= sector * d;
- if (sector < 0) sector = 3 - (3 - sector) % 4; else sector %= 4;
- real ratio = 1.5707963267948966192 * (real)n4 / (real)d;
-
- switch (sector)
- {
- case 0: c = cos(ratio); s = sin(ratio); break;
- case 1: c = -sin(ratio); s = cos(ratio); break;
- case 2: c = -cos(ratio); s = -sin(ratio); break;
- case 3: c = sin(ratio); s = -cos(ratio); break;
- }
- }
-
- static void fftstep(ColumnVector& A, ColumnVector& B, ColumnVector& X,
- ColumnVector& Y, int after, int now, int before)
- {
- // const real twopi = 6.2831853071795864769;
- const int gamma = after * before; const int delta = now * after;
- // const real angle = twopi / delta; real temp;
- // real r_omega = cos(angle); real i_omega = -sin(angle);
- real r_arg = 1.0; real i_arg = 0.0;
- real* x = X.Store(); real* y = Y.Store(); // pointers to array storage
- const int m = A.Nrows() - gamma;
-
- for (int j = 0; j < now; j++)
- {
- real* a = A.Store(); real* b = B.Store(); // pointers to array storage
- real* x1 = x; real* y1 = y; x += after; y += after;
- for (int ia = 0; ia < after; ia++)
- {
- // generate sins & cosines explicitly rather than iteratively
- // for more accuracy; but slower
- cossin(-(j*after+ia), delta, r_arg, i_arg);
-
- real* a1 = a++; real* b1 = b++; real* x2 = x1++; real* y2 = y1++;
- if (now==2)
- {
- int ib = before; while (ib--)
- {
- real* a2 = m + a1; real* b2 = m + b1; a1 += after; b1 += after;
- real r_value = *a2; real i_value = *b2;
- *x2 = r_value * r_arg - i_value * i_arg + *(a2-gamma);
- *y2 = r_value * i_arg + i_value * r_arg + *(b2-gamma);
- x2 += delta; y2 += delta;
- }
- }
- else
- {
- int ib = before; while (ib--)
- {
- real* a2 = m + a1; real* b2 = m + b1; a1 += after; b1 += after;
- real r_value = *a2; real i_value = *b2;
- int in = now-1; while (in--)
- {
- // it should be possible to make this faster
- // hand code for now = 2,3,4,5,8
- // use symmetry to halve number of operations
- a2 -= gamma; b2 -= gamma; real temp = r_value;
- r_value = r_value * r_arg - i_value * i_arg + *a2;
- i_value = temp * i_arg + i_value * r_arg + *b2;
- }
- *x2 = r_value; *y2 = i_value; x2 += delta; y2 += delta;
- }
- }
-
- // temp = r_arg;
- // r_arg = r_arg * r_omega - i_arg * i_omega;
- // i_arg = temp * i_omega + i_arg * r_omega;
-
- }
- }
- }
-
-
- void FFT(const ColumnVector& U, const ColumnVector& V,
- ColumnVector& X, ColumnVector& Y)
- {
- // from Carl de Boor (1980), Siam J Sci Stat Comput, 1 173-8
- const int n = U.Nrows(); // length of arrays
- if (n != V.Nrows()) MatrixError("FFT - vector lengths unequal");
- if (n == 0) MatrixError("FFT - vector length zero");
- #ifdef __ZTC__
- ColumnVector A = U.c(); ColumnVector B = V.c();
- #else
- ColumnVector A = U; ColumnVector B = V;
- #endif
- X.ReDimension(n); Y.ReDimension(n);
- const int nextmx = 8;
- #ifndef ATandT
- int prime[8] = { 2,3,5,7,11,13,17,19 };
- #else
- int prime[8];
- prime[0]=2; prime[1]=3; prime[2]=5; prime[3]=7;
- prime[4]=11; prime[5]=13; prime[6]=17; prime[7]=19;
- #endif
- int after = 1; int before = n; int next = 0; BOOL inzee = TRUE;
-
- do
- {
- int now, b1;
- for (;;)
- {
- if (next < nextmx) now = prime[next];
- b1 = before / now; if (b1 * now == before) break;
- next++; now += 2;
- }
- before = b1;
-
- if (inzee) fftstep(A, B, X, Y, after, now, before);
- else fftstep(X, Y, A, B, after, now, before);
-
- inzee = !inzee; after *= now;
- }
- while (before != 1);
-
- if (inzee) { A.Release(); X = A; B.Release(); Y = B; }
- }
-
-
-