home *** CD-ROM | disk | FTP | other *** search
- /* tanhl.c
- *
- * Hyperbolic tangent, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, tanhl();
- *
- * y = tanhl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic tangent of argument in the range MINLOGL to
- * MAXLOGL.
- *
- * A rational function is used for |x| < 0.625. The form
- * x + x**3 P(x)/Q(x) of Cody _& Waite is employed.
- * Otherwise,
- * tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -2,2 30000 1.3e-19 2.4e-20
- *
- */
-
- /*
- Cephes Math Library Release 2.1: February, 1989
- Copyright 1984, 1987, 1989 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- #include "mconf.h"
-
- #ifdef UNK
- static long double P[] = {
- -6.8473739392677100872869E-5L,
- -9.5658283111794641589011E-1L,
- -8.4053568599672284488465E1L,
- -1.3080425704712825945553E3L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0L,*/
- 9.6259501838840336946872E1L,
- 1.8218117903645559060232E3L,
- 3.9241277114138477845780E3L,
- };
- #endif
-
- #ifdef IBMPC
- static short P[] = {
- 0xd2a4,0x1b0c,0x8f15,0x8f99,0xbff1,
- 0x5959,0x9111,0x9cc7,0xf4e2,0xbffe,
- 0xb576,0xef5e,0x6d57,0xa81b,0xc005,
- 0xe3be,0xbfbd,0x5cbc,0xa381,0xc009,
- };
- static short Q[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0x687f,0xce24,0xdd6c,0xc084,0x4005,
- 0x3793,0xc95f,0xfa2f,0xe3b9,0x4009,
- 0xd5a2,0x1f9c,0x0b1b,0xf542,0x400a,
- };
- #endif
-
- #ifdef MIEEE
- static long P[] = {
- 0xbff10000,0x8f998f15,0x1b0cd2a4,
- 0xbffe0000,0xf4e29cc7,0x91115959,
- 0xc0050000,0xa81b6d57,0xef5eb576,
- 0xc0090000,0xa3815cbc,0xbfbde3be,
- };
- static long Q[] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0x40050000,0xc084dd6c,0xce24687f,
- 0x40090000,0xe3b9fa2f,0xc95f3793,
- 0x400a0000,0xf5420b1b,0x1f9cd5a2,
- };
- #endif
-
- extern long double MAXLOGL;
-
- long double tanhl(x)
- long double x;
- {
- long double s, z;
- long double fabsl(), expl(), polevll(), p1evll();
-
-
- z = fabsl(x);
- if( z > 0.5L * MAXLOGL )
- {
- if( x > 0 )
- return( 1.0L );
- else
- return( -1.0L );
- }
- if( z >= 0.625L )
- {
- s = expl(2.0*z);
- z = 1.0L - 2.0/(s + 1.0L);
- if( x < 0 )
- z = -z;
- }
- else
- {
- s = x * x;
- z = polevll( s, P, 3 )/p1evll(s, Q, 3);
- z = x * s * z;
- z = x + z;
- }
- return( z );
- }
-