home *** CD-ROM | disk | FTP | other *** search
- /* ellie.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * double phi, m, y, ellie();
- *
- * y = ellie( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi_\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,2 2000 1.9e-16 3.4e-17
- * IEEE 0,2 10000 2.2e-15 2.1e-16
- *
- *
- */
-
-
- /*
- Cephes Math Library Release 2.0: April, 1987
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- /* Incomplete elliptic integral of second kind */
-
- extern double PI, PIO2, MACHEP;
-
- double ellie( phi, m )
- double phi, m;
- {
- double a, b, c, e, temp;
- double lphi, t, step;
- double sqrt(), fabs(), log(), sin(), tan(), atan();
- double ellpe(), ellpk();
- int d, mod, sign;
-
- if( m == 0.0 )
- return( phi );
- if( m == 1.0 )
- return( sin(phi) );
- lphi = phi;
- if( lphi < 0.0 )
- lphi = -lphi;
- a = 1.0;
- b = 1.0 - m;
- b = sqrt(b);
- c = sqrt(m);
- d = 1;
- e = 0.0;
- t = tan( lphi );
- mod = (lphi + PIO2)/PI;
-
- while( fabs(c/a) > MACHEP )
- {
- temp = b/a;
- lphi = lphi + atan(t*temp) + mod * PI;
- mod = (lphi + PIO2)/PI;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = ( a - b )/2.0;
- temp = sqrt( a * b );
- a = ( a + b )/2.0;
- b = temp;
- d += d;
- e += c * sin(lphi);
- }
-
- b = 1.0 - m;
- temp = ellpe(b)/ellpk(b);
- temp *= (atan(t) + mod * PI)/(d * a);
- temp += e;
- if( phi < 0.0 )
- temp = -temp;
- return( temp );
- }
-