home *** CD-ROM | disk | FTP | other *** search
- /* stdtr.c
- *
- * Student's t distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * double t, stdtr();
- * short k;
- *
- * y = stdtr( k, t );
- *
- *
- * DESCRIPTION:
- *
- * Computes the integral from minus infinity to t of the Student
- * t distribution with integer k > 0 degrees of freedom:
- *
- * t
- * -
- * | |
- * - | 2 -(k+1)/2
- * | ( (k+1)/2 ) | ( x )
- * ---------------------- | ( 1 + --- ) dx
- * - | ( k )
- * sqrt( k pi ) | ( k/2 ) |
- * | |
- * -
- * -inf.
- *
- * Relation to incomplete beta integral:
- *
- * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
- * where
- * z = k/(k + t**2).
- *
- * For t < -1, this is the method of computation. For higher t,
- * a direct method is derived from integration by parts.
- * Since the function is symmetric about t=0, the area under the
- * right tail of the density is found by calling the function
- * with -t instead of t.
- *
- * ACCURACY:
- *
- * Tested at random 1 <= k <= 25. The "range" refers to t:
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,24 12000 4.7e-17 8.9e-18
- * DEC -24,0 11000 2.3e-15 2.7e-16
- * IEEE 0,24 30000 4.5e-16 8.0e-17
- * IEEE -24,0 30000 1.9e-14 2.3e-15
- */
-
-
- /*
- Cephes Math Library Release 2.0: April, 1987
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- #include "mconf.h"
-
- extern double PI, MACHEP;
-
- double stdtr( k, t )
- int k;
- double t;
- {
- double x, rk, z, f, tz, p, xsqk;
- double sqrt(), atan(), incbet();
- int j;
-
- if( k <= 0 )
- {
- mtherr( "stdtr", DOMAIN );
- return(0.0);
- }
-
- if( t == 0 )
- return( 0.5 );
-
- if( t < -1.0 )
- {
- rk = k;
- z = rk / (rk + t * t);
- p = 0.5 * incbet( 0.5*rk, 0.5, z );
- return( p );
- }
-
- /* compute integral from -t to + t */
-
- if( t < 0 )
- x = -t;
- else
- x = t;
-
- rk = k; /* degrees of freedom */
- z = 1.0 + ( x * x )/rk;
-
- /* test if k is odd or even */
- if( (k & 1) != 0)
- {
-
- /* computation for odd k */
-
- xsqk = x/sqrt(rk);
- p = atan( xsqk );
- if( k > 1 )
- {
- f = 1.0;
- tz = 1.0;
- j = 3;
- while( (j<=(k-2)) && ( (tz/f) > MACHEP ) )
- {
- tz *= (j-1)/( z * j );
- f += tz;
- j += 2;
- }
- p += f * xsqk/z;
- }
- p *= 2.0/PI;
- }
-
-
- else
- {
-
- /* computation for even k */
-
- f = 1.0;
- tz = 1.0;
- j = 2;
-
- while( ( j <= (k-2) ) && ( (tz/f) > MACHEP ) )
- {
- tz *= (j - 1)/( z * j );
- f += tz;
- j += 2;
- }
- p = f * x/sqrt(z*rk);
- }
-
- /* common exit */
-
-
- if( t < 0 )
- p = -p; /* note destruction of relative accuracy */
-
- p = 0.5 + 0.5 * p;
- return(p);
- }
-