home *** CD-ROM | disk | FTP | other *** search
- /* incbi()
- *
- * Inverse of imcomplete beta integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, b, x, y, incbi();
- *
- * x = incbi( a, b, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * incbet( a, b, x ) = y.
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of incbet(a,b,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * x a,b
- * arithmetic domain domain # trials peak rms
- * DEC 0,1 0,100 2500 2.9e-13 5.9e-15
- * IEEE 0,1 0,100 5000 8.3e-13 1.7e-14
- *
- * Larger errors were observed for a near zero and b large.
- */
-
-
- /*
- Cephes Math Library Release 2.2: July, 1992
- Copyright 1984, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- #include "mconf.h"
-
- extern double MACHEP, MAXNUM, MAXLOG, MINLOG;
-
- double incbi( aa, bb, yy0 )
- double aa, bb, yy0;
- {
- double a, b, y0;
- double d, y, x, x0, x1, lgm, yp, di;
- int i, n, rflg;
- double incbet();
- double ndtri(), exp(), fabs(), log(), sqrt(), lgam();
-
-
- if( yy0 <= 0 )
- return(0.0);
- if( yy0 >= 1.0 )
- return(1.0);
-
- /* approximation to inverse function */
-
- yp = -ndtri(yy0);
-
- if( yy0 > 0.5 )
- {
- rflg = 1;
- a = bb;
- b = aa;
- y0 = 1.0 - yy0;
- yp = -yp;
- }
- else
- {
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- }
-
-
- if( (aa <= 1.0) || (bb <= 1.0) )
- {
- y = yp * yp / 2.0;
- }
- else
- {
- lgm = (yp * yp - 3.0)/6.0;
- x0 = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) );
- y = yp * sqrt( x0 + lgm ) / x0
- - ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) )
- * (lgm + 5.0/6.0 - 2.0/(3.0*x0));
- y = 2.0 * y;
- if( y < MINLOG )
- {
- x0 = 1.0;
- goto under;
- }
- }
-
- x = a/( a + b * exp(y) );
- y = incbet( a, b, x );
- yp = (y - y0)/y0;
- if( fabs(yp) < 1.0e-1 )
- goto newt;
-
- /* Resort to interval halving if not close enough */
- x0 = 0.0;
- x1 = 1.0;
- di = 0.5;
-
- for( i=0; i<20; i++ )
- {
- if( i != 0 )
- {
- x = di * x1 + (1.0-di) * x0;
- y = incbet( a, b, x );
- yp = (y - y0)/y0;
- if( fabs(yp) < 1.0e-3 )
- goto newt;
- }
-
- if( y < y0 )
- {
- x0 = x;
- di = 0.5;
- }
- else
- {
- x1 = x;
- di *= di;
- if( di == 0.0 )
- di = 0.5;
- }
- }
-
- if( x0 == 0.0 )
- {
- under:
- mtherr( "incbi", UNDERFLOW );
- goto done;
- }
-
- newt:
-
- x0 = x;
- lgm = lgam(a+b) - lgam(a) - lgam(b);
-
- for( i=0; i<10; i++ )
- {
- /* compute the function at this point */
- if( i != 0 )
- y = incbet(a,b,x0);
- /* compute the derivative of the function at this point */
- d = (a - 1.0) * log(x0) + (b - 1.0) * log(1.0-x0) + lgm;
- if( d < MINLOG )
- {
- x0 = 0.0;
- goto under;
- }
- d = exp(d);
- /* compute the step to the next approximation of x */
- d = (y - y0)/d;
- x = x0;
- x0 = x0 - d;
- if( x0 <= 0.0 )
- {
- x0 = 0.0;
- goto under;
- }
- if( x0 >= 1.0 )
- {
- x0 = 1.0;
- goto under;
- }
- if( i < 2 )
- continue;
- if( fabs(d/x0) < 256.0 * MACHEP )
- goto done;
- }
-
- done:
- if( rflg )
- x0 = 1.0 - x0;
- return( x0 );
- }
-