home *** CD-ROM | disk | FTP | other *** search
- /* igam.c
- *
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igam();
- *
- * y = igam( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 4000 4.4e-15 6.3e-16
- * IEEE 0,30 10000 3.6e-14 5.1e-15
- *
- */
- /* igamc()
- *
- * Complemented incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igamc();
- *
- * y = igamc( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 2000 2.7e-15 4.0e-16
- * IEEE 0,30 60000 1.4e-12 6.3e-15
- *
- */
-
- /*
- Cephes Math Library Release 2.0: April, 1987
- Copyright 1985, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- #include "mconf.h"
-
- #define BIG 1.44115188075855872E+17
- extern double MACHEP, MAXLOG;
-
- double igamc( a, x )
- double a, x;
- {
- double ans, c, yc, ax, y, z;
- double pk, pkm1, pkm2, qk, qkm1, qkm2;
- double r, t;
- double lgam(), exp(), log(), fabs();
- double igam();
- static double big = BIG;
-
- if( (x <= 0) || ( a <= 0) )
- return( 1.0 );
-
- if( (x < 1.0) || (x < a) )
- return( 1.0 - igam(a,x) );
-
- ax = a * log(x) - x - lgam(a);
- if( ax < -MAXLOG )
- {
- mtherr( "igamc", UNDERFLOW );
- return( 0.0 );
- }
- ax = exp(ax);
-
- /* continued fraction */
- y = 1.0 - a;
- z = x + y + 1.0;
- c = 0.0;
- pkm2 = 1.0;
- qkm2 = x;
- pkm1 = x + 1.0;
- qkm1 = z * x;
- ans = pkm1/qkm1;
-
- do
- {
- c += 1.0;
- y += 1.0;
- z += 2.0;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if( qk != 0 )
- {
- r = pk/qk;
- t = fabs( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if( fabs(pk) > big )
- {
- pkm2 /= big;
- pkm1 /= big;
- qkm2 /= big;
- qkm1 /= big;
- }
- }
- while( t > MACHEP );
-
- return( ans * ax );
- }
-
-
-
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
- *
- */
-
- double igam( a, x )
- double a, x;
- {
- double ans, ax, c, r, t;
- double lgam(), exp(), log();
- double igamc();
- static double big = BIG;
-
- if( (x <= 0) || ( a <= 0) )
- return( 0.0 );
-
- if( (x > 1.0) && (x > a ) )
- return( 1.0 - igamc(a,x) );
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * log(x) - x - lgam(a);
- if( ax < -MAXLOG )
- {
- mtherr( "igam", UNDERFLOW );
- return( 0.0 );
- }
- ax = exp(ax);
-
- /* power series */
- r = a;
- c = 1.0;
- ans = 1.0;
-
- do
- {
- r += 1.0;
- c *= x/r;
- ans += c;
- }
- while( c/ans > MACHEP );
-
- return( ans * ax/a );
- }
-