home *** CD-ROM | disk | FTP | other *** search
- /* fdtr.c
- *
- * F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * double x, y, fdtr();
- *
- * y = fdtr( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from zero to x under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density). This is the density
- * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
- * variables having Chi square distributions with df1
- * and df2 degrees of freedom, respectively.
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
- *
- *
- * The arguments a and b are greater than zero, and x
- * x is nonnegative.
- * ACCURACY:
- *
- * See incbet.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtr domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtrc()
- *
- * Complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * double x, y, fdtrc();
- *
- * y = fdtrc( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from x to infinity under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density).
- *
- *
- * inf.
- * -
- * 1 | | a-1 b-1
- * 1-P(x) = ------ | t (1-t) dt
- * B(a,b) | |
- * -
- * x
- *
- * (See fdtr.c.)
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
- *
- *
- * ACCURACY:
- *
- * See incbet.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrc domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtri()
- *
- * Inverse of complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * double df1, df2, x, y, fdtri();
- *
- * x = fdtri( df1, df2, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the F density argument x such that the integral
- * from x to infinity of the F density is equal to the
- * given probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relations
- *
- * z = incbi( df2/2, df1/2, y )
- * x = df2 (1-z) / (df1 z).
- *
- * Note: the following relations hold for the inverse of
- * the uncomplemented F distribution:
- *
- * z = incbi( df1/2, df2/2, y )
- * x = df2 z / (df1 (1-z)).
- *
- *
- *
- * ACCURACY:
- *
- * See incbi.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtri domain y <= 0 or y > 1 0.0
- * v < 1
- *
- */
-
-
- /*
- Cephes Math Library Release 2.0: April, 1987
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
-
- #include "mconf.h"
-
- double fdtrc( ia, ib, x )
- int ia, ib;
- double x;
- {
- double a, b, w;
- double incbet();
-
- if( (ia < 1) || (ib < 1) || (x < 0.0) )
- {
- mtherr( "fdtrc", DOMAIN );
- return( 0.0 );
- }
- a = ia;
- b = ib;
- w = b / (b + a * x);
- return( incbet( b/2.0, a/2.0, w ) );
- }
-
-
-
- double fdtr( ia, ib, x )
- int ia, ib;
- double x;
- {
- double a, b, w;
- double incbet();
-
- if( (ia < 1) || (ib < 1) || (x < 0.0) )
- {
- mtherr( "fdtr", DOMAIN );
- return( 0.0 );
- }
- a = ia;
- b = ib;
- w = a * x;
- w = w / (b + w);
- return( incbet(a/2.0, b/2.0, w) );
- }
-
-
- double fdtri( ia, ib, y )
- int ia, ib;
- double y;
- {
- double a, b, w, x;
- double incbi();
-
- if( (ia < 1) || (ib < 1) || (y <= 0.0) || (y > 1.0) )
- {
- mtherr( "fdtri", DOMAIN );
- return( 0.0 );
- }
- a = ia;
- b = ib;
- w = incbi( 0.5*b, 0.5*a, y );
- x = (b - b*w)/(a*w);
- return(x);
- }
-