home *** CD-ROM | disk | FTP | other *** search
- /* chdtr.c
- *
- * Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * double df, x, y, chdtr();
- *
- * y = chdtr( df, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the left hand tail (from 0 to x)
- * of the Chi square probability density function with
- * v degrees of freedom.
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * See igam().
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtr domain x < 0 or v < 1 0.0
- */
- /* chdtrc()
- *
- * Complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * double v, x, y, chdtrc();
- *
- * y = chdtrc( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the right hand tail (from x to
- * infinity) of the Chi square probability density function
- * with v degrees of freedom:
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * See igamc().
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtrc domain x < 0 or v < 1 0.0
- */
- /* chdtri()
- *
- * Inverse of complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * double df, x, y, chdtri();
- *
- * x = chdtri( df, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the Chi-square argument x such that the integral
- * from x to infinity of the Chi-square density is equal
- * to the given cumulative probability y.
- *
- * This is accomplished using the inverse gamma integral
- * function and the relation
- *
- * x/2 = igami( df/2, y );
- *
- *
- *
- *
- * ACCURACY:
- *
- * See igami.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtri domain y < 0 or y > 1 0.0
- * v < 1
- *
- */
-
- /* chdtr() */
-
-
- /*
- Cephes Math Library Release 2.0: April, 1987
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- #include "mconf.h"
-
- double chdtrc(df,x)
- double df, x;
- {
- double igamc();
-
- if( (x < 0.0) || (df < 1.0) )
- {
- mtherr( "chdtrc", DOMAIN );
- return(0.0);
- }
- return( igamc( df/2.0, x/2.0 ) );
- }
-
-
-
- double chdtr(df,x)
- double df, x;
- {
- double igam();
-
- if( (x < 0.0) || (df < 1.0) )
- {
- mtherr( "chdtr", DOMAIN );
- return(0.0);
- }
- return( igam( df/2.0, x/2.0 ) );
- }
-
-
-
- double chdtri( df, y )
- double df, y;
- {
- double x;
- double igami();
-
- if( (y < 0.0) || (y > 1.0) || (df < 1.0) )
- {
- mtherr( "chdtri", DOMAIN );
- return(0.0);
- }
-
- x = igami( 0.5 * df, y );
- return( 2.0 * x );
- }
-