home *** CD-ROM | disk | FTP | other *** search
-
-
-
-
- CEPHES MATHEMATICAL FUNCTION LIBRARY
-
-
- This computer software library is a collection of more than
- 400 high quality mathematical routines for scientific and
- engineering applications. All are written entirely in C
- language. Many of the functions are supplied in six different
- arithmetic precisions: 32 bit single (24-bit significand), 64 bit
- IEEE double (53-bit), 64 bit DEC (56-bit), 80 or 96 bit IEEE long
- double (64-bit), and extended precision formats having 144-bit
- and 336-bit significands. The extended precision arithmetic is
- included with the function library.
-
- The library treats about 180 different mathematical
- functions. In addition to the elementary arithmetic and
- transcendental routines, the library includes a substantial
- collection of probability integrals, Bessel functions, and higher
- transcendental functions.
-
- There are complex variable routines covering complex
- arithmetic, complex logarithm and exponential, and complex
- trigonometric functions.
-
- Each function subroutine has been tested by comparing at a
- large number of points against high precision check routines.
- The test programs use floating point arithmetic having 144 bit
- (43 decimal) precision. Thus the actual accuracy of each program
- is reported, not merely the result of a consistency test. Test
- results are given with the description of each routine.
-
- The routines have been characterized and tested in IEEE Std
- 754 double precision arithmetic (both Intel and Motorola
- formats), used on IBM PC and a growing number of other computers,
- and also in the popular DEC/IBM double precision format.
-
- For DEC and IEEE arithmetic, numerical constants and
- approximation coefficients are supplied as integer arrays in
- order to eliminate conversion errors that might be introduced by
- the language compiler. All coefficients are also supplied in the
- normal decimal scientific notation so that the routines can be
- compiled and used on other machines that do not support either of
- the above numeric formats.
-
- A single, common error handling routine is supplied. Error
- conditions produce a display of the function name and error type.
- The user may easily insert modifications to implement any desired
- action on specified types of error.
-
- The following table summarizes the current contents of the
- double precision library. See also the corresponding
- documentation for the single and long double precision libraries.
- Accuracies reported for DEC and IEEE arithmetic are with
- arithmetic rounding precision limited to 56 and 53 bits,
- respectively. Higher precision may be realized if an arithmetic
- unit such as the 8087 or 68881 is used in conjunction with an
- optimizing compiler. The accuracy figures are experimentally
- measured; they are not guaranteed maximum errors.
-
- Documentation is included on the distribution media as
- Unix-style manual pages that describe the functions and their
- invocation. The primary documentation for the library functions
- is the book by Moshier, Methods and Programs for Mathematical
- Functions, Prentice-Hall, 1989.
-
-
- Function Name Accuracy
- -------- ---- DEC IEEE
- ---- ----
- Arithmetic and Algebraic
- Square root sqrt 2e-17 2e-16
- Long integer square root lsqrt 1 1
- Cube root cbrt 2e-17 2e-16
- Evaluate polynomial polevl
- Evaluate Chebyshev series chbevl
- Round to nearest integer value round
- Truncate upward to integer ceil
- Truncate downward to integer floor
- Extract exponent frexp
- Add integer to exponent ldexp
- Absolute value fabs
- Rational arithmetic euclid
- Roots of a polynomial polrt
- Reversion of power series revers
- IEEE 854 arithmetic ieee
- Polynomial arithmetic (polyn.c):
- Add polynomials poladd
- Subtract polynomials polsub
- Multiply polynomials polmul
- Divide polynomials poldiv
- Substitute polynomial variable polsbt
- Evaluate polynomial poleva
- Set all coefficients to zero polclr
- Copy coefficients polmov
- Display coefficients polprt
- Note, polyr.c contains routines corresponding to
- the above for polynomials with rational coefficients.
- Power series manipulations (polmisc.c):
- Square root of a polynomial polsqt
- Arctangent polatn
- Sine polsin
- Reversion of power series revers
-
- Exponential and Trigonometric
- Arc cosine acos 3e-17 3e-16
- Arc hyperbolic cosine acosh 4e-17 5e-16
- Arc hyperbolic sine asinh 5e-17 4e-16
- Arc hyperbolic tangent atanh 3e-17 2e-16
- Arcsine asin 6e-17 5e-16
- Arctangent atan 4e-17 3e-16
- Quadrant correct arctangent atan2 4e-17 4e-16
- Cosine cos 3e-17 2e-16
- Cosine of arg in degrees cosdg 4e-17 2e-16
- Exponential, base e exp 3e-17 2e-16
- Exponential, base 2 exp2 2e-17 2e-16
- Exponential, base 10 exp10 3e-17 2e-16
- Hyperbolic cosine cosh 3e-17 3e-16
- Hyperbolic sine sinh 4e-17 3e-16
- Hyperbolic tangent tanh 3e-17 3e-16
- Logarithm, base e log 2e-17 2e-16
- Logarithm, base 2 log2 2e-16
- Logarithm, base 10 log10 3e-17 2e-16
- Power pow 1e-15 2e-14
- Integer Power powi 9e-14
- Sine sin 3e-17 2e-16
- Sine of arg in degrees sindg 4e-17 2e-16
- Tangent tan 4e-17 3e-16
- Tangent of arg in degrees tandg 3e-17 3e-16
-
- Exponential integral
- Exponential integral expn 2e-16 2e-15
- Hyperbolic cosine integral shichi 9e-17 8e-16
- Hyperbolic sine integral shichi 9e-17 7e-16
- Cosine integral sici 8e-17A 7e-16
- Sine integral sici 4e-17A 4e-16
-
- Gamma
- Beta beta 8e-15 8e-14
- Factorial fac 2e-17 2e-15
- Gamma gamma 1e-16 1e-15
- Logarithm of gamma function lgam 5e-17 5e-16
- Incomplete beta integral incbet 4e-14 4e-13
- Inverse beta integral incbi 3e-13 8e-13
- Incomplete gamma integral igam 5e-15 4e-14
- Complemented gamma integral igamc 3e-15 1e-12
- Inverse gamma integral igami 9e-16 1e-14
- Psi (digamma) function psi 2e-16 1e-15
- Reciprocal Gamma rgamma 1e-16 1e-15
-
- Error function
- Error function erf 5e-17 4e-16
- Complemented error function erfc 5e-16 6e-14
- Dawson's integral dawsn 7e-16 7e-16
- Fresnel integral (C) fresnl 2e-16 2e-15
- Fresnel integral (S) fresnl 2e-16 2e-15
-
- Bessel
- Airy (Ai) airy 6e-16A 2e-15A
- Airy (Ai') airy 6e-16A 5e-15A
- Airy (Bi) airy 6e-16A 4e-15A
- Airy (Bi') airy 6e-16A 5e-15A
- Bessel, order 0 j0 4e-17A 4e-16A
- Bessel, order 1 j1 4e-17A 3e-16A
- Bessel, order n jn 7e-17A 2e-15A
- Bessel, noninteger order jv 5e-15A
- Bessel, second kind, order 0 y0 7e-17A 1e-15A
- Bessel, second kind, order 1 y1 9e-17A 1e-15A
- Bessel, second kind, order n yn 3e-16A 3e-15A
- Bessel, noninteger order yv see struve.c
- Modified Bessel, order 0 i0 8e-17 6e-16
- Exponentially scaled i0 i0e 8e-17 5e-16
- Modified Bessel, order 1 i1 1e-16 2e-15
- Exponentially scaled i1 i1e 1e-16 2e-15
- Modified Bessel, nonint. order iv 3e-15 2e-14
- Mod. Bessel, 3rd kind, order 0 k0 1e-16 1e-15
- Exponentially scaled k0 k0e 1e-16 1e-15
- Mod. Bessel, 3rd kind, order 1 k1 9e-17 1e-15
- Exponentially scaled k1 k1e 9e-17 8e-16
- Mod. Bessel, 3rd kind, order n kn 1e-9 2e-8
-
- Hypergeometric
- Confluent hypergeometric hyperg 1e-15 2e-14
- Gauss hypergeometric function hyp2f1 4e-11 9e-8
- 2F0 hyp2f0f see hyperg.c
- 1F2 onef2f see struve.c
- 3F0 threef0f see struve.c
-
- Elliptic
- Complete elliptic integral (E) ellpe 3e-17 2e-16
- Incomplete elliptic integral (E) ellie 2e-16 2e-15
- Complete elliptic integral (K) ellpk 4e-17 3e-16
- Incomplete elliptic integral (K) ellik 9e-17 6e-16
- Jacobian elliptic function (sn) ellpj 5e-16A 4e-15A
- Jacobian elliptic function (cn) ellpj 4e-15A
- Jacobian elliptic function (dn) ellpj 1e-12A
- Jacobian elliptic function (phi) ellpj 9e-16
-
- Probability
- Binomial distribution bdtr 4e-14 4e-13
- Complemented binomial bdtrc 4e-14 4e-13
- Inverse binomial bdtri 3e-13 8e-13
- Chi square distribution chdtr 5e-15 3e-14
- Complemented Chi square chdtrc 3e-15 2e-14
- Inverse Chi square chdtri 9e-16 6e-15
- F distribution fdtr 4e-14 4e-13
- Complemented F fdtrc 4e-14 4e-13
- Inverse F distribution fdtri 3e-13 8e-13
- Gamma distribution gdtr 5e-15 3e-14
- Complemented gamma gdtrc 3e-15 2e-14
- Negative binomial distribution nbdtr 4e-14 4e-13
- Complemented negative binomial nbdtrc 4e-14 4e-13
- Normal distribution ndtr 2e-15 3e-14
- Inverse normal distribution ndtri 1e-16 7e-16
- Poisson distribution pdtr 3e-15 2e-14
- Complemented Poisson pdtrc 5e-15 3e-14
- Inverse Poisson distribution pdtri 3e-15 5e-14
- Student's t distribution stdtr 2e-15 2e-14
-
- Miscellaneous
- Dilogarithm spence 3e-16 4e-15
- Riemann Zeta function zetac 1e-16 1e-15
- Two argument zeta function zeta
- Struve function struve
-
- Matrix
- Fast Fourier transform fftr
- Simultaneous linear equations simq
- Simultaneous linear equations gels (symmetric coefficient matrix)
- Matrix inversion minv
- Matrix multiply mmmpy
- Matrix times vector mvmpy
- Matrix transpose mtransp
- Eigenvectors (symmetric matrix) eigens
- Levenberg-Marquardt nonlinear equations lmdif
-
- Numerical Integration
- Simpson's rule simpsn
- Runge-Kutta runge - see de118
- Adams-Bashforth adams - see de118
-
- Complex Arithmetic
- Complex addition cadd 1e-17 1e-16
- Subtraction csub 1e-17 1e-16
- Multiplication cmul 2e-17 2e-16
- Division cdiv 5e-17 4e-16
- Absolute value cabs 3e-17 3e-16
- Square root csqrt 3e-17 3e-16
-
- Complex Exponential and Trigonometric
- Exponential cexp 4e-17 3e-16
- Logarithm clog 9e-17 5e-16A
- Cosine ccos 5e-17 4e-16
- Arc cosine cacos 2e-15 2e-14
- Sine csin 5e-17 4e-16
- Arc sine casin 2e-15 2e-14
- Tangent ctan 7e-17 7e-16
- Arc tangent catan 1e-16 2e-15
- Cotangent ccot 7e-17 9e-16
-
- Applications
- Minimax rational approximations to functions remes
- Digital elliptic filters ellf
- Numerical integration of the Moon and planets de118
- IEEE compliance test for printf(), scanf() ieetst
-
-
-
-
-
-
- Long Double Precision Functions
-
-
-
- Function Name Accuracy
- -------- ---- --------
-
- Arc hyperbolic cosine acoshl 2e-19
- Arc cosine acosl 1e-19
- Arc hyperbolic sine asinhl 2e-19
- Arcsine asinl 3e-19
- Arc hyperbolic tangent atanhl 1e-19
- Arctangent atanl 1e-19
- Quadrant correct arctangent atan2l 2e-19
- Cube root cbrtl 7e-20
- Truncate upward to integer ceill
- Hyperbolic cosine coshl 1e-19
- Cosine cosl 1e-19
- Cotangent cotl 2e-19
- Exponential, base e expl 1e-19
- Exponential, base 2 exp2l 9e-20
- Exponential, base 10 exp10l 1e-19
- Absolute value fabsl
- Truncate downward to integer floorl
- Extract exponent frexpl
- Add integer to exponent ldexpl
- Logarithm, base e logl 9e-20
- Logarithm, base 2 log2l 1e-19
- Logarithm, base 10 log10l 9e-20
- Integer Power powil 4e-17
- Power powl 3e-18
- Hyperbolic sine sinhl 2e-19
- Sine sinl 1e-19
- Square root sqrtl 8e-20
- Hyperbolic tangent tanhl 1e-19
- Tangent tanl 2e-19
-
-
-
-
-
-
-
-
- Single Precision Routines
-
-
- Function Name Accuracy
- -------- ---- --------
-
- Arithmetic
-
- Truncate upward to integer ceilf
- Truncate downward to integer floorf
- Extract exponent frexpf
- Add integer to exponent ldexpf
- Absolute value fabsf
- Square root sqrtf 9e-8
- Cube root cbrtf 8e-8
-
-
- Polynomials and Power Series
-
- Polynomial arithmetic (polynf.c):
- Add polynomials poladdf
- Subtract polynomials polsubf
- Multiply polynomials polmulf
- Divide polynomials poldivf
- Substitute polynomial variable polsbtf
- Evaluate polynomial polevaf
- Set all coefficients to zero polclrf
- Copy coefficients polmovf
- Display coefficients polprtf
- Note, polyr.c contains routines corresponding to
- the above for polynomials with rational coefficients.
- Evaluate polynomial polevlf (coefficients in reverse order)
- Evaluate Chebyshev series chbevlf (coefficients in reverse order)
-
-
- Exponential and Trigonometric
- Arc cosine acosf 1e-7
- Arc hyperbolic cosine acoshf 2e-7
- Arc hyperbolic sine asinhf 2e-7
- Arc hyperbolic tangent atanhf 1e-7
- Arcsine asinf 3e-7
- Arctangent atanf 2e-7
- Quadrant correct arctangent atan2f 2e-7
- Cosine cosf 1e-7
- Cosine of arg in degrees cosdgf 1e-7
- Cotangent cotf 3e-7
- Cotangent of arg in degrees cotdgf 2e-7
- Exponential, base e expf 2e-7
- Exponential, base 2 exp2f 2e-7
- Exponential, base 10 exp10f 1e-7
- Hyperbolic cosine coshf 2e-7
- Hyperbolic sine sinhf 1e-7
- Hyperbolic tangent tanhf 1e-7
- Logarithm, base e logf 8e-8
- Logarithm, base 2 log2f 1e-7
- Logarithm, base 10 log10f 1e-7
- Power powf 1e-6
- Integer Power powif 1e-6
- Sine sinf 1e-7
- Sine of arg in degrees sindgf 1e-7
- Tangent tanf 3e-7
- Tangent of arg in degrees tandgf 2e-7
-
- Exponential integral
-
- Exponential integral expnf 6e-7
- Hyperbolic cosine integral shichif 4e-7A
- Hyperbolic sine integral shichif 4e-7
- Cosine integral sicif 2e-7A
- Sine integral sicif 4e-7A
-
- Gamma
- Beta betaf 4e-5
- Factorial facf 6e-8
- Gamma gammaf 6e-7
- Logarithm of gamma function lgamf 7e-7(A)
- Incomplete beta integral incbetf 2e-4
- Inverse beta integral incbif 3e-4
- Incomplete gamma integral igamf 8e-6
- Complemented gamma integral igamcf 8e-6
- Inverse gamma integral igamif 1e-5
- Psi (digamma) function psif 8e-7
- Reciprocal Gamma rgammaf 9e-7
-
- Error function
-
- Error function erff 2e-7
- Complemented error function erfcf 4e-6
- Dawson's integral dawsnf 4e-7
- Fresnel integral (C) fresnlf 1e-6
- Fresnel integral (S) fresnlf 1e-6
-
- Bessel
-
- Airy (Ai) airyf 1e-5A
- Airy (Ai') airyf 9e-6A
- Airy (Bi) airyf 2e-6A
- Airy (Bi') airyf 2e-6A
- Bessel, order 0 j0f 2e-7A
- Bessel, order 1 j1f 2e-7A
- Bessel, order n jnf 4e-7A
- Bessel, noninteger order jvf 2e-6A
- Bessel, second kind, order 0 y0f 2e-7A
- Bessel, second kind, order 1 y1f 2e-7A
- Bessel, second kind, order n ynf 2e-6A
- Bessel, second kind, order v yvf see struvef.c
- Modified Bessel, order 0 i0f 4e-7
- Exponentially scaled i0 i0ef 4e-7
- Modified Bessel, order 1 i1f 2e-6
- Exponentially scaled i1 i1ef 2e-6
- Modified Bessel, nonint. order ivf 9e-6
- Mod. Bessel, 3rd kind, order 0 k0f 8e-7
- Exponentially scaled k0 k0ef 8e-7
- Mod. Bessel, 3rd kind, order 1 k1f 5e-7
- Exponentially scaled k1 k1ef 5e-7
- Mod. Bessel, 3rd kind, order n knf 2e-4A
-
- Hypergeometric
-
- Confluent hypergeometric 1F1 hypergf 1e-5
- Gauss hypergeometric function hyp2f1f 2e-3
- 2F0 hyp2f0f see hypergf.c
- 1F2 onef2f see struvef.c
- 3F0 threef0f see struvef.c
-
- Elliptic
-
- Complete elliptic integral (E) ellpef 1e-7
- Incomplete elliptic integral (E) ellief 5e-7
- Complete elliptic integral (K) ellpkf 1e-7
- Incomplete elliptic integral (K) ellikf 3e-7
- Jacobian elliptic function (sn) ellpjf 2e-6A
- Jacobian elliptic function (cn) ellpjf 2e-6A
- Jacobian elliptic function (dn) ellpjf 1e-3A
- Jacobian elliptic function (phi) ellpjf 4e-7
-
- Probability
-
- Binomial distribution bdtrf 7e-5
- Complemented binomial bdtrcf 6e-5
- Inverse binomial bdtrif 4e-5
- Chi square distribution chdtrf 3e-5
- Complemented Chi square chdtrcf 3e-5
- Inverse Chi square chdtrif 2e-5
- F distribution fdtrf 2e-5
- Complemented F fdtrcf 7e-5
- Inverse F distribution fdtrif 4e-5A
- Gamma distribution gdtrf 6e-5
- Complemented gamma gdtrcf 9e-5
- Negative binomial distribution nbdtrf 2e-4
- Complemented negative binomial nbdtrcf 1e-4
- Normal distribution ndtrf 2e-5
- Inverse normal distribution ndtrif 4e-7
- Poisson distribution pdtrf 7e-5
- Complemented Poisson pdtrcf 8e-5
- Inverse Poisson distribution pdtrif 9e-6
- Student's t distribution stdtrf 2e-5
-
- Miscellaneous
-
- Dilogarithm spencef 4e-7
- Riemann Zeta function zetacf 6e-7
- Two argument zeta function zetaf 7e-7
- Struve function struvef 9e-5
-
-
- Complex Arithmetic
-
- Complex addition caddf 6e-8
- Subtraction csubf 6e-8
- Multiplication cmulf 1e-7
- Division cdivf 2e-7
- Absolute value cabsf 1e-7
- Square root csqrtf 2e-7
-
- Complex Exponential and Trigonometric
-
- Exponential cexpf 1e-7
- Logarithm clogf 3e-7A
- Cosine ccosf 2e-7
- Arc cosine cacosf 9e-6
- Sine csinf 2e-7
- Arc sine casinf 1e-5
- Tangent ctanf 3e-7
- Arc tangent catanf 2e-6
- Cotangent ccotf 4e-7
-
-
-
-
- QLIB Extended Precision Mathematical Library
-
-
- q100asm.bat Create 100-decimal Q type library (for IBM PC MSDOS)
- q100asm.rsp
-
- qlibasm.bat 43-decimal Q type library (for IBM PC MSDOS)
- qlibasm.rsp
-
- qlib.lib Q type library, 43 decimal
- qlib100.lib Q type library, 100 decimal
- qlib120.lib Q type library, 120 decimal
-
-
- Function calling arguments:
- NQ is the number of 16-bit short integers in a number (see qhead.h)
- short x[NQ], x1[NQ], ... are inputs
- short y[NQ], y1[NQ], ... are outputs
-
- mconf.h Machine configuration file
- mtherr.c Common error handling routine
- qacosh.c Arc hyperbolic cosine
- qacosh( x, y );
- qairy.c Airy functions
- qairy( x, Ai, Ai', Bi, Bi' );
- Also see source program for auxiliary functions.
- qasin.c Arc sine
- qasin( x, y );
- qasinh.c Arc hyperbolic sine
- qasinh( x, y );
- qatanh.c Arc hyperbolic tangent
- qatanh( x, y );
- qatn.c Arc tangent
- qatn( x, y );
- qatn2( x1, x2, y ); y = radian angle whose tangent is x2/x1
- qbeta.c Beta function
- qbeta( x, y );
- qcbrt.c Cube root
- qcbrt( x, y );
- qcmplx.c Complex variable functions:
- qcabs absolute value qcabs( y );
- qcadd add
- qcsub subtract qcsub( a, b, y ); y = b - a
- qcmul multiply
- qcdiv divide qcdiv( d, n, y ); y = n/d
- qcmov move
- qcneg negate qcneg( y );
- qcexp exponential function
- qclog logarithm
- qcsin sine
- qccos cosine
- qcasin arcsine
- qcacos arccosine
- qcsqrt square root
- qctan tangent
- qccot cotangent
- qcatan arctangent
- qcos.c Cosine
- qcosm1( x, y ); y = cos(x) - 1
- qcosh.c Hyperbolic cosine
- qctst1.c Universal function test program for complex variables
- qdawsn.c Dawson's integral
- qellie.c Incomplete elliptic integral (E)
- qellik.c Incomplete elliptic integral (K)
- qellpe.c Complete elliptic integral (E)
- qellpj.c Jacobian elliptic functions sn, cn, dn, phi
- qellpj( u, m, sn, cn, dn, phi ); sn = sn(u|m), etc.
- qellpk.c Complete elliptic integral (K)
- qerf.c Error integral
- qerfc.c Complementary error integral
- qeuclid.c Q type rational arithmetic:
- qradd add fractions
- qrsub subtract fractions
- qrmul multiply fractions
- qrdiv divide fractions
- qreuclid reduce to lowest terms
- qexp.c Exponential function
- qexp10.c Base 10 exponential function
- qexp2.c Base 2 exponential function
- qexp21.c 2**x - 1
- qexpn.c Exponential integral
- qf68k.a Q type arithmetic for 68000 OS-9
- qf68k.asm Q type arithmetic for 68000 (Definicon assembler)
- qf68k.s Q type arithmetic for 68000 (System V Unix)
- qfac.c Factorial
- qfresf.c Fresnel integral S(x)
- Fresnel integral C(x)
- qgamma.c Gamma function
- log Gamma function
- qhead.asm Q type configuration file for assembly language
- qhead.h Q type configuration file for C language
- qhy2f1.c Gauss hypergeometric function
- qhyp.c Confluent hypergeometric function
- qigam.c Incomplete gamma integral
- qigami.c Functional inverse of incomplete gamma integral
- qin.c Bessel function In
- qincb.c Incomplete beta integral
- qincbi.c Functional inverse of incomplete beta integral
- qine.c Exponentially weighted In
- qjn.c Bessel function Jv (noninteger order)
- qhank Hankel's asymptotic expansion
- qjypn.c Auxiliary Bessel functions
- qjyqn.c
- qkn.c modified Bessel function Kn
- qkne.c Exponentially weighted Kn
- qlog.c Natural logarithm
- qlog1.c log(1+x)
- qlog10.c Common logarithm
- qndtr.c Gaussian distribution function
- qndtri.c Functional inverse of Gaussian distribution function
- qpolyr.c Q type polynomial arithmetic, rational coefficients:
- poleva Evaluate polynomial a(t) at t = x.
- polprt Print the coefficients of a to D digits.
- polclr Set a identically equal to zero, up to a[na].
- polmov Set b = a.
- poladd c = b + a, nc = max(na,nb)
- polsub c = b - a, nc = max(na,nb)
- polmul c = b * a, nc = na+nb
- poldiv c = b / a, nc = MAXPOL
- qpow.c Power function, also
- qpowi raise to integer power
- qprob.c Various probability integrals:
- qbdtr binomial distribution
- qbdtrc complemented binomial distribution
- qbdtri inverse of binomial distribution
- qchdtr chi-square distribution
- qchdti inverse of chi-square distribution
- qfdtr F distribution
- qfdtrc complemented F distribution
- qfdtri inverse of F distribution
- qgdtr gamma distribution
- qgdtrc complemented gamma distribution
- qnbdtr negative binomial distribution
- qnbdtc complemented negative binomial
- qpdtr Poisson distribution
- qpdtrc complemented Poisson distribution
- qpdtri inverse of Poisson distribution
- qpsi.c psi function
- qshici.c hyperbolic sine integral
- hyperbolic cosine integral
- qsici.c sine integral
- cosine integral
- qsimq.c solve simultaneous equations
- qsin.c sine
- qsinmx3(x,y); y = sin(x) - x
- qsindg.c sine of arg in degrees
- qsinh.obj hyperbolic sine
- qspenc.c Spence's integral (dilogarithm)
- qsqrt.c square root
- qsqrta.c strictly rounded square root
- qstudt.c Student's t distribution function
- qtan.c tangent
- qtanh.c hyperbolic tangent
- qtst1.c Universal function test program
- qyn.c Bessel function Yn (integer order), also
- qyaux0 auxiliary functions
- qyaux1
- qymod modulus
- qyphase phase
- qzetac.c Riemann zeta function
-
-
- Arithmetic routines
-
- qflt.c Main Q type arithmetic package:
- asctoq decimal ASCII string to Q type
- dtoq DEC double precision to Q type
- etoq IEEE double precision to Q type
- ltoq long integer to Q type
- qabs absolute value
- qadd add
- qclear set to zero
- qcmp compare
- qdiv divide
- qifrac long integer part plus q type fraction
- qinfin set to infinity, leaving its sign alone
- qmov b = a
- qmul multiply
- qmuli multiply by small integer
- qneg negate
- qnrmlz adjust exponent and mantissa
- qsub subtract
- qtoasc Q type to decimal ASCII string
- qtod convert Q type to DEC double precision
- qtoe convert Q type to IEEE double precision
- qflta.c Q type arithmetic, C language loops, strict rounding
- qfltb.c Q type arithmetic, C language faster loops
- mulr.asm Q type multiply, IBM PC assembly language
- divn.asm Q type IBM PC divide routine
- subm.asm Q type assembly language add, subtract for MSDOS
- qfltd.asm Q type arithmetic for 68020 (Definicon assembler)
- qconst.c Q type common constants
- qc120.c 120 decimal version of qconst.c
- mul128.a Fast multiply algorithm (for OS-9 68000)
- mul128ts.c Test program for above
- mul32.a
- mul64.a
- qfloor.c Q type floor(), also
- qround() round to integer
-
-
-
-
- Applications
-
-
- calc100.doc Documentation for 100 digit calculator program
- qcalc.c Command interpreter for calculator program
- qcalc.h Include file for command interpreter
- qcalc120.exe 120 decimal calculator program
- qcalcasm.bat Make calculator program
- qcalclin.bat
- qccalc.mak Make complex variable calculator program
-
-
- qparanoi.c Paranoia arithmetic test for Q type arithmetic
- notes Paranoia documentation
- qparanoi.mak Paranoia makefile
-
-
- etst.c Arithmetic demo program
- etstasm.bat
- etstlink.bat
- dentst.c frexp(), ldexp() tester
-
- qstirling.c Find coefficients for Stirling's formula
-
- qbernum.c Generates Bernoulli numbers
- qbernum.lst
- qbernuma.bat
-
- Calculator programs for qcalc
-
- euler.tak Euler's constant
- gamcof.tak Bernoulli numbers for gamma function
- gamma.tak Gamma function
- lgamnum.doc Stirling's formula
- lgamnum.tak
- zeta.tak zeta function
- ctest.tak exercise complex variable calculator
-
-
-
-
-
- A: absolute error; others are relative error (i.e., % of reading)
-
- Copyright 1984 - 1992 by Stephen L. Moshier
-
- Release 1.0: July, 1984
- Release 1.1: March, 1985
- Release 1.2: May, 1986
- Release 2.0: April, 1987
- Release 2.1: March, 1989
- Release 2.2: July, 1992
-
-