home *** CD-ROM | disk | FTP | other *** search
- \bigskip
- \bigskip
- {\magonebf 5.13 Miscellaneous}
- \bigskip
- {\bf 5.13.1 Some useful functions}
- \bigskip
-
- \cleartabs
- \+$void$ complete\_graph($graph\&\ G,\ int\ n$) &\cr
- \+ &creates a complete graph $G$ with $n$ nodes.\cr
- \+\cr
- \+$void$ random\_graph($graph\&\ G,\ int\ n,\ int\ m$)\cr
- \+ &creates a random graph $G$ with $n$ nodes\cr
- \+ &and $m$ edges.\cr
- \+\cr
- \+$void$ test\_graph($graph\&\ G$)
- &creates interactively a user defined graph $G$.\cr
- \+\cr
- \+$void$ test\_bigraph($graph\&\ G,\ nodelist\&\ A,\ nodelist\&\ B$)\cr
- \+ &creates interactively a user defined bipartite\cr
- \+ &graph $G$ with sides $A$ and $B$. All edges are\cr
- \+ &directed from $A$ to $B$.\cr
- \+\cr
- \+$bool$ compute\_correspondence($graph\&\ G,\ edge\_array(edge)\&\ reversal$)\cr
- \+ &computes for every edge $e = (v,w)$ in $G$ its\cr
- \+ &reversal $reversal[e] = (w,v)$ in $G$ ( nil if\cr
- \+ ¬ present). Returns true if every edge has a\cr
- \+ &reversal and false otherwise.\cr
- \+\cr
- \+$void$ eliminate\_parallel\_edges($graph\&\ G$)\cr
- \+ &removes all parallel edges from $G$.\cr
-
-
- \bigskip
- {\bf 5.13.2 Predefined parameterized types}
- \cleartabs
- \+\hskip 8truecm &\cr
- \+$list(node)$ &$list(edge)$\cr
- \+\cr
- \+$node\_array(int)$ &$edge\_array(int)$\cr
- \+$node\_array(bool)$ &$edge\_array(bool)$\cr
- \+$node\_array(real)$ &$edge\_array(real)$\cr
- \+$node\_array(node)$ &$edge\_array(node)$\cr
- \+$node\_array(edge)$ &$edge\_array(edge)$\cr
- \+\cr
- \+$node\_matrix(int)$\cr
- \+$node\_matrix(bool)$\cr
- \+$node\_matrix(real)$\cr
-
- \vfill\eject
-
-