home *** CD-ROM | disk | FTP | other *** search
- SUBROUTINE SPTSL(N,D,E,B)
- INTEGER N
- REAL D(1),E(1),B(1)
- C
- C SPTSL GIVEN A POSITIVE DEFINITE TRIDIAGONAL MATRIX AND A RIGHT
- C HAND SIDE WILL FIND THE SOLUTION.
- C
- C ON ENTRY
- C
- C N INTEGER
- C IS THE ORDER OF THE TRIDIAGONAL MATRIX.
- C
- C D REAL(N)
- C IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
- C ON OUTPUT D IS DESTROYED.
- C
- C E REAL(N)
- C IS THE OFFDIAGONAL OF THE TRIDIAGONAL MATRIX.
- C E(1) THROUGH E(N-1) SHOULD CONTAIN THE
- C OFFDIAGONAL.
- C
- C B REAL(N)
- C IS THE RIGHT HAND SIDE VECTOR.
- C
- C ON RETURN
- C
- C B CONTAINS THE SOULTION.
- C
- C LINPACK. THIS VERSION DATED 08/14/78 .
- C JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
- C
- C NO EXTERNALS
- C FORTRAN MOD
- C
- C INTERNAL VARIABLES
- C
- INTEGER K,KBM1,KE,KF,KP1,NM1,NM1D2
- REAL T1,T2
- C
- C CHECK FOR 1 X 1 CASE
- C
- IF (N .NE. 1) GO TO 10
- B(1) = B(1)/D(1)
- GO TO 70
- 10 CONTINUE
- NM1 = N - 1
- NM1D2 = NM1/2
- IF (N .EQ. 2) GO TO 30
- KBM1 = N - 1
- C
- C ZERO TOP HALF OF SUBDIAGONAL AND BOTTOM HALF OF
- C SUPERDIAGONAL
- C
- DO 20 K = 1, NM1D2
- T1 = E(K)/D(K)
- D(K+1) = D(K+1) - T1*E(K)
- B(K+1) = B(K+1) - T1*B(K)
- T2 = E(KBM1)/D(KBM1+1)
- D(KBM1) = D(KBM1) - T2*E(KBM1)
- B(KBM1) = B(KBM1) - T2*B(KBM1+1)
- KBM1 = KBM1 - 1
- 20 CONTINUE
- 30 CONTINUE
- KP1 = NM1D2 + 1
- C
- C CLEAN UP FOR POSSIBLE 2 X 2 BLOCK AT CENTER
- C
- IF (MOD(N,2) .NE. 0) GO TO 40
- T1 = E(KP1)/D(KP1)
- D(KP1+1) = D(KP1+1) - T1*E(KP1)
- B(KP1+1) = B(KP1+1) - T1*B(KP1)
- KP1 = KP1 + 1
- 40 CONTINUE
- C
- C BACK SOLVE STARTING AT THE CENTER, GOING TOWARDS THE TOP
- C AND BOTTOM
- C
- B(KP1) = B(KP1)/D(KP1)
- IF (N .EQ. 2) GO TO 60
- K = KP1 - 1
- KE = KP1 + NM1D2 - 1
- DO 50 KF = KP1, KE
- B(K) = (B(K) - E(K)*B(K+1))/D(K)
- B(KF+1) = (B(KF+1) - E(KF)*B(KF))/D(KF+1)
- K = K - 1
- 50 CONTINUE
- 60 CONTINUE
- IF (MOD(N,2) .EQ. 0) B(1) = (B(1) - E(1)*B(2))/D(1)
- 70 CONTINUE
- RETURN
- END