home *** CD-ROM | disk | FTP | other *** search
/ Source Code 1994 March / Source_Code_CD-ROM_Walnut_Creek_March_1994.iso / compsrcs / x / volume20 / pexdraw / part03 < prev    next >
Encoding:
Text File  |  1993-06-07  |  60.2 KB  |  1,294 lines

  1. Newsgroups: comp.sources.x
  2. From: jch@okimicro.oki.com (Jan Hardenbergh)
  3. Subject: v20i013:  pexdraw - A PEX drawing program, Part03/14
  4. Message-ID: <1993Jun8.150048.18719@sparky.imd.sterling.com>
  5. X-Md4-Signature: 3172cfb31690f255fbb267fa1ec067f0
  6. Sender: chris@sparky.imd.sterling.com (Chris Olson)
  7. Organization: Sterling Software
  8. Date: Tue, 8 Jun 1993 15:00:48 GMT
  9. Approved: chris@sparky.imd.sterling.com
  10.  
  11. Submitted-by: jch@okimicro.oki.com (Jan Hardenbergh)
  12. Posting-number: Volume 20, Issue 13
  13. Archive-name: pexdraw/part03
  14. Environment: X11R5, PEX
  15.  
  16. #! /bin/sh
  17. # This is a shell archive.  Remove anything before this line, then feed it
  18. # into a shell via "sh file" or similar.  To overwrite existing files,
  19. # type "sh file -c".
  20. # Contents:  XMU/StdCmap.c teapotc.1
  21. # Wrapped by chris@sparky on Tue Jun  8 09:46:31 1993
  22. PATH=/bin:/usr/bin:/usr/ucb:/usr/local/bin:/usr/lbin ; export PATH
  23. echo If this archive is complete, you will see the following message:
  24. echo '          "shar: End of archive 3 (of 14)."'
  25. if test -f 'XMU/StdCmap.c' -a "${1}" != "-c" ; then 
  26.   echo shar: Will not clobber existing file \"'XMU/StdCmap.c'\"
  27. else
  28.   echo shar: Extracting \"'XMU/StdCmap.c'\" \(7209 characters\)
  29.   sed "s/^X//" >'XMU/StdCmap.c' <<'END_OF_FILE'
  30. X#ifdef SCCS
  31. Xstatic char sccsid[]="@(#)StdCmap.c    1.2 Oki 92/11/30";
  32. X#endif
  33. X/*
  34. X    This file is under sccs control at Oki in:
  35. X    /nfs/sole/root/sccs1.p/X11R5/mit/lib/Xmu/s.StdCmap.c
  36. X*/
  37. X/* $XConsortium: StdCmap.c,v 1.13 92/11/24 14:16:21 rws Exp $ 
  38. X * 
  39. X * Copyright 1989 by the Massachusetts Institute of Technology
  40. X *
  41. X * Permission to use, copy, modify, and distribute this software and its
  42. X * documentation for any purpose and without fee is hereby granted, provided 
  43. X * that the above copyright notice appear in all copies and that both that 
  44. X * copyright notice and this permission notice appear in supporting 
  45. X * documentation, and that the name of M.I.T. not be used in advertising
  46. X * or publicity pertaining to distribution of the software without specific, 
  47. X * written prior permission. M.I.T. makes no representations about the 
  48. X * suitability of this software for any purpose.  It is provided "as is"
  49. X * without express or implied warranty.
  50. X *
  51. X * M.I.T. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
  52. X * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL M.I.T.
  53. X * BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  54. X * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  55. X * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  56. X * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  57. X *
  58. X * Author:  Donna Converse, MIT X Consortium
  59. X */
  60. X
  61. X#include <stdio.h>
  62. X#include <X11/Xlib.h>
  63. X#include <X11/Xatom.h>
  64. X#include <X11/Xutil.h>
  65. X#include <X11/Xmu/StdCmap.h>
  66. X
  67. X#define lowbit(x) ((x) & (~(x) + 1))
  68. X
  69. Xstatic Status valid_args();        /* argument restrictions */
  70. X
  71. X/*
  72. X * To create any one standard colormap, use XmuStandardColormap().
  73. X *
  74. X * Create a standard colormap for the given screen, visualid, and visual
  75. X * depth, with the given red, green, and blue maximum values, with the
  76. X * given standard property name.  Return a pointer to an XStandardColormap
  77. X * structure which describes the newly created colormap, upon success.
  78. X * Upon failure, return NULL.
  79. X * 
  80. X * XmuStandardColormap() calls XmuCreateColormap() to create the map.
  81. X *
  82. X * Resources created by this function are not made permanent; that is the
  83. X * caller's responsibility.
  84. X */
  85. X
  86. XXStandardColormap *XmuStandardColormap(dpy, screen, visualid, depth, property,
  87. X                       cmap, red_max, green_max, blue_max)
  88. X    Display        *dpy;        /* specifies X server connection */
  89. X    int            screen;     /* specifies display screen */
  90. X    VisualID        visualid;    /* identifies the visual type */
  91. X    unsigned int    depth;        /* identifies the visual type */
  92. X    Atom        property;    /* a standard colormap property */
  93. X    Colormap        cmap;        /* specifies colormap ID or None */
  94. X    unsigned long    red_max, green_max, blue_max;    /* allocations */
  95. X{
  96. X    XStandardColormap    *stdcmap;
  97. X    Status        status;
  98. X    XVisualInfo        vinfo_template, *vinfo;
  99. X    long        vinfo_mask;
  100. X    int            n;
  101. X
  102. X    /* Match the required visual information to an actual visual */
  103. X    vinfo_template.visualid = visualid;    
  104. X    vinfo_template.screen = screen;
  105. X    vinfo_template.depth = depth;
  106. X    vinfo_mask = VisualIDMask | VisualScreenMask | VisualDepthMask;
  107. X    if ((vinfo = XGetVisualInfo(dpy, vinfo_mask, &vinfo_template, &n)) == NULL)
  108. X    return 0;
  109. X
  110. X    /* Check the validity of the combination of visual characteristics,
  111. X     * allocation, and colormap property.  Create an XStandardColormap
  112. X     * structure.
  113. X     */
  114. X
  115. X    if (! valid_args(vinfo, red_max, green_max, blue_max, property)
  116. X    || ((stdcmap = XAllocStandardColormap()) == NULL)) {
  117. X    XFree((char *) vinfo);
  118. X    return 0;
  119. X    }
  120. X
  121. X    /* Fill in the XStandardColormap structure */
  122. X
  123. X    if (cmap == DefaultColormap(dpy, screen)) {
  124. X    /* Allocating out of the default map, cannot use XFreeColormap() */
  125. X    Window win = XCreateWindow(dpy, RootWindow(dpy, screen), 1, 1, 1, 1,
  126. X                   0, 0, InputOnly, vinfo->visual,
  127. X                   (unsigned long) 0,
  128. X                   (XSetWindowAttributes *)NULL);
  129. X    stdcmap->killid  = (XID) XCreatePixmap(dpy, win, 1, 1, depth);
  130. X    XDestroyWindow(dpy, win);
  131. X    stdcmap->colormap = cmap;
  132. X    } else {
  133. X    stdcmap->killid = ReleaseByFreeingColormap;
  134. X    stdcmap->colormap = XCreateColormap(dpy, RootWindow(dpy, screen),
  135. X                        vinfo->visual, AllocNone);
  136. X    }
  137. X    stdcmap->red_max = red_max;
  138. X    stdcmap->green_max = green_max;
  139. X    stdcmap->blue_max = blue_max;
  140. X    if (property == XA_RGB_GRAY_MAP) 
  141. X    stdcmap->red_mult = stdcmap->green_mult = stdcmap->blue_mult = 1;
  142. X    else if (vinfo->class == TrueColor || vinfo->class == DirectColor) {
  143. X    stdcmap->red_mult = lowbit(vinfo->red_mask);
  144. X    stdcmap->green_mult = lowbit(vinfo->green_mask);
  145. X    stdcmap->blue_mult = lowbit(vinfo->blue_mask);
  146. X    } else {
  147. X    stdcmap->red_mult = (red_max > 0)
  148. X        ? (green_max + 1) * (blue_max + 1) : 0;
  149. X    stdcmap->green_mult = (green_max > 0) ? blue_max + 1 : 0;
  150. X    stdcmap->blue_mult = (blue_max > 0) ? 1 : 0;
  151. X    }
  152. X    stdcmap->base_pixel = 0;            /* base pixel may change */
  153. X    stdcmap->visualid = vinfo->visualid;
  154. X
  155. X    /* Make the colormap */
  156. X
  157. X    status = XmuCreateColormap(dpy, stdcmap);
  158. X
  159. X    /* Clean up */
  160. X
  161. X    XFree((char *) vinfo);
  162. X    if (!status) {
  163. X
  164. X    /* Free the colormap or the pixmap, if we created one */
  165. X    if (stdcmap->killid == ReleaseByFreeingColormap)
  166. X        XFreeColormap(dpy, stdcmap->colormap);
  167. X    else if (stdcmap->killid != None)
  168. X        XFreePixmap(dpy, stdcmap->killid);
  169. X    
  170. X    XFree((char *) stdcmap);
  171. X    return (XStandardColormap *) NULL;
  172. X    }
  173. X    return stdcmap;
  174. X}
  175. X
  176. X/****************************************************************************/
  177. Xstatic Status valid_args(vinfo, red_max, green_max, blue_max, property)
  178. X    XVisualInfo        *vinfo;        /* specifies visual */
  179. X    unsigned long    red_max, green_max, blue_max;    /* specifies alloc */
  180. X    Atom        property;    /* specifies property name */
  181. X{
  182. X    unsigned long    ncolors;    /* number of colors requested */
  183. X
  184. X    /* Determine that the number of colors requested is <= map size */
  185. X
  186. X    if ((vinfo->class == DirectColor) || (vinfo->class == TrueColor)) {
  187. X    unsigned long mask;
  188. X
  189. X    mask = vinfo->red_mask;
  190. X    while (!(mask & 1))
  191. X        mask >>= 1;
  192. X    if (red_max > mask)
  193. X        return 0;
  194. X    mask = vinfo->green_mask;
  195. X    while (!(mask & 1))
  196. X        mask >>= 1;
  197. X    if (green_max > mask)
  198. X        return 0;
  199. X    mask = vinfo->blue_mask;
  200. X    while (!(mask & 1))
  201. X        mask >>= 1;
  202. X    if (blue_max > mask)
  203. X        return 0;
  204. X    } else if (property == XA_RGB_GRAY_MAP) {
  205. X    ncolors = red_max + green_max + blue_max + 1;
  206. X    if (ncolors > vinfo->colormap_size)
  207. X        return 0;
  208. X    } else {
  209. X    ncolors = (red_max + 1) * (green_max + 1) * (blue_max + 1);
  210. X    if (ncolors > vinfo->colormap_size)
  211. X        return 0;
  212. X    }
  213. X    
  214. X    /* Determine that the allocation and visual make sense for the property */
  215. X
  216. X    switch (property)
  217. X    {
  218. X      case XA_RGB_DEFAULT_MAP:
  219. X    if (red_max == 0 || green_max == 0 || blue_max == 0)
  220. X        return 0;
  221. X    break;
  222. X      case XA_RGB_RED_MAP:
  223. X    if (red_max == 0)
  224. X        return 0;
  225. X    break;
  226. X      case XA_RGB_GREEN_MAP:
  227. X    if (green_max == 0)
  228. X        return 0;
  229. X    break;
  230. X      case XA_RGB_BLUE_MAP:    
  231. X    if (blue_max == 0)
  232. X        return 0;
  233. X    break;
  234. X      case XA_RGB_BEST_MAP:
  235. X    if (red_max == 0 || green_max == 0 || blue_max == 0)
  236. X        return 0;
  237. X    break;
  238. X      case XA_RGB_GRAY_MAP:
  239. X    if (red_max == 0 || blue_max == 0 || green_max == 0)
  240. X        return 0;
  241. X    break;
  242. X      default:
  243. X    return 0;
  244. X    }
  245. X    return 1;
  246. X}
  247. END_OF_FILE
  248.   if test 7209 -ne `wc -c <'XMU/StdCmap.c'`; then
  249.     echo shar: \"'XMU/StdCmap.c'\" unpacked with wrong size!
  250.   fi
  251.   # end of 'XMU/StdCmap.c'
  252. fi
  253. if test -f 'teapotc.1' -a "${1}" != "-c" ; then 
  254.   echo shar: Will not clobber existing file \"'teapotc.1'\"
  255. else
  256.   echo shar: Extracting \"'teapotc.1'\" \(50546 characters\)
  257.   sed "s/^X//" >'teapotc.1' <<'END_OF_FILE'
  258. X/*
  259. X * teapot.c - RGB Cube
  260. X cc -o teapot teapot.c -lPEX5 -lm -lX11                    -lnsl
  261. X
  262. X            Copyright (c) 1993 by 
  263. X            Oki Electric Industry Co., Ltd.
  264. X            All Rights Reserved
  265. X    
  266. X * Permission to use, copy, modify, and distribute this software and its
  267. X * documentation for any purpose and without fee is hereby granted,
  268. X * provided that the above copyright notice appear in all copies and that
  269. X * both that copyright notice and this permission notice appear in
  270. X * supporting documentation, and that the name of Oki not be
  271. X * used in advertising or publicity pertaining to distribution of the
  272. X * software without specific, written prior permission. Oki
  273. X * makes no representations about the suitability of this software for any
  274. X * purpose.  It is provided "as is" without express or implied warranty.
  275. X*/
  276. X#include <X11/Xlib.h>
  277. X#include <X11/PEX5/PEXlib.h>
  278. X
  279. XPEXVertexNormal pt1[] = {
  280. X{{1.5,0,0.425},
  281. X{0.90286,0,0.429934}},
  282. X{{1.4715,0,0.473214},
  283. X{0.804835,0,0.593498}},
  284. X{{1.44191,0,0.505357},
  285. X{0.639613,0,0.768697}},
  286. X{{1.41472,0,0.521429},
  287. X{0.308043,0,0.951372}},
  288. X{{1.39344,0,0.521429},
  289. X{-0.42399,0,0.905667}},
  290. X{{1.38156,0,0.505357},
  291. X{-0.970272,0,0.242018}},
  292. X{{1.38258,0,0.473214},
  293. X{-0.977666,0,-0.210166}},
  294. X{{1.4,0,0.425},
  295. X{-0.90286,0,-0.429934}},
  296. X{{1.46099,-0.34758,0.425},
  297. X{0.879821,-0.201972,0.430258}},
  298. X{{1.43323,-0.340976,0.473224},
  299. X{0.784168,-0.179963,0.59388}},
  300. X{{1.40441,-0.334119,0.50537},
  301. X{0.623016,-0.142928,0.769041}},
  302. X{{1.37793,-0.32782,0.521441},
  303. X{0.299878,-0.068729,0.951499}},
  304. X{{1.3572,-0.322888,0.521438},
  305. X{-0.412996,0.0948877,0.905776}},
  306. X{{1.34563,-0.320135,0.505362},
  307. X{-0.945617,0.217088,0.242242}},
  308. X{{1.34662,-0.320372,0.473216},
  309. X{-0.952836,0.21873,-0.210382}},
  310. X{{1.36359,-0.324408,0.425},
  311. X{-0.879785,0.201963,-0.430336}},
  312. X{{1.34956,-0.664723,0.425},
  313. X{0.812441,-0.393393,0.430327}},
  314. X{{1.32392,-0.652094,0.473288},
  315. X{0.724043,-0.350366,0.594143}},
  316. X{{1.2973,-0.63898,0.505459},
  317. X{0.574997,-0.27801,0.769473}},
  318. X{{1.27284,-0.626933,0.521527},
  319. X{0.276213,-0.13325,0.951815}},
  320. X{{1.25369,-0.617501,0.521502},
  321. X{-0.381749,0.185206,0.90552}},
  322. X{{1.243,-0.612236,0.505398},
  323. X{-0.873183,0.422858,0.24237}},
  324. X{{1.24392,-0.612689,0.473227},
  325. X{-0.879852,0.42602,-0.210636}},
  326. X{{1.25959,-0.620408,0.425},
  327. X{-0.812174,0.393263,-0.43095}},
  328. X{{1.17411,-0.943032,0.425},
  329. X{0.705562,-0.563871,0.429222}},
  330. X{{1.1518,-0.925115,0.473462},
  331. X{0.629043,-0.502133,0.593437}},
  332. X{{1.12864,-0.906511,0.505701},
  333. X{0.499435,-0.398063,0.769488}},
  334. X{{1.10736,-0.889419,0.521759},
  335. X{0.238926,-0.189642,0.952339}},
  336. X{{1.0907,-0.876039,0.521676},
  337. X{-0.333154,0.267192,0.904222}},
  338. X{{1.0814,-0.86857,0.505495},
  339. X{-0.757916,0.605853,0.241879}},
  340. X{{1.0822,-0.869212,0.473256},
  341. X{-0.763682,0.610283,-0.21058}},
  342. X{{1.09584,-0.880163,0.425},
  343. X{-0.704781,0.563248,-0.431318}},
  344. X{{0.943032,-1.17411,0.425},
  345. X{0.564712,-0.706614,0.426378}},
  346. X{{0.925115,-1.1518,0.473802},
  347. X{0.50411,-0.629487,0.591286}},
  348. X{{0.906511,-1.12864,0.506173},
  349. X{0.400344,-0.498551,0.768877}},
  350. X{{0.889419,-1.10736,0.522212},
  351. X{0.190212,-0.235108,0.953176}},
  352. X{{0.876039,-1.0907,0.522016},
  353. X{-0.269373,0.339151,0.90134}},
  354. X{{0.86857,-1.0814,0.505684},
  355. X{-0.605833,0.758381,0.240467}},
  356. X{{0.869212,-1.0822,0.473312},
  357. X{-0.610415,0.763719,-0.210063}},
  358. X{{0.880163,-1.09584,0.425},
  359. X{-0.563247,0.704781,-0.431319}},
  360. X{{0.664723,-1.34956,0.425},
  361. X{0.395224,-0.816224,0.421398}},
  362. X{{0.652094,-1.32392,0.474362},
  363. X{0.353826,-0.727883,0.587362}},
  364. X{{0.63898,-1.2973,0.506951},
  365. X{0.28142,-0.575922,0.76754}},
  366. X{{0.626933,-1.27284,0.522959},
  367. X{0.132539,-0.267308,0.954453}},
  368. X{{0.617501,-1.25369,0.522576},
  369. X{-0.191407,0.399883,0.896358}},
  370. X{{0.612236,-1.243,0.505995},
  371. X{-0.423025,0.87432,0.237938}},
  372. X{{0.612689,-1.24392,0.473406},
  373. X{-0.426254,0.880127,-0.209005}},
  374. X{{0.620408,-1.25959,0.425},
  375. X{-0.393263,0.812174,-0.43095}},
  376. X{{0.34758,-1.46099,0.425},
  377. X{0.203657,-0.887166,0.414078}},
  378. X{{0.340976,-1.43323,0.475197},
  379. X{0.183696,-0.792542,0.581492}},
  380. X{{0.334119,-1.40441,0.508111},
  381. X{0.147086,-0.626421,0.765481}},
  382. X{{0.32782,-1.37793,0.524072},
  383. X{0.0692139,-0.284013,0.956319}},
  384. X{{0.322888,-1.3572,0.523411},
  385. X{-0.0998522,0.447353,0.888766}},
  386. X{{0.320135,-1.34563,0.506459},
  387. X{-0.217118,0.947631,0.234212}},
  388. X{{0.320372,-1.34662,0.473545},
  389. X{-0.218981,0.953431,-0.207406}},
  390. X{{0.324408,-1.36359,0.425},
  391. X{-0.201963,0.879785,-0.430336}},
  392. X{{0,-1.5,0.425},
  393. X{0,-0.914478,0.404637}},
  394. X{{0,-1.4715,0.476363},
  395. X{0.00219289,-0.818921,0.573902}},
  396. X{{0,-1.44191,0.50973},
  397. X{0.00413234,-0.646388,0.762998}},
  398. X{{0,-1.41472,0.525627},
  399. X{0.00508175,-0.283466,0.958969}},
  400. X{{0,-1.39344,0.524577},
  401. X{0.00354364,0.478261,0.878211}},
  402. X{{0,-1.38156,0.507106},
  403. X{0.000518805,0.973318,0.229458}},
  404. X{{0,-1.38258,0.473739},
  405. X{-0.000139255,0.978665,-0.205461}},
  406. X{{0,-1.4,0.425},
  407. X{0,0.90286,-0.429934}}
  408. X};
  409. X
  410. XPEXVertexNormal pt2[] = {
  411. X{{0,-1.5,0.425},{0,-0.914478,0.404637}},
  412. X{{0,-1.4715,0.476363},{-0.00219289,-0.818921,0.573902}},
  413. X{{0,-1.44191,0.50973},{-0.00413234,-0.646388,0.762998}},
  414. X{{0,-1.41472,0.525627},{-0.00508175,-0.283466,0.958969}},
  415. X{{0,-1.39344,0.524577},{-0.00354364,0.478261,0.878211}},
  416. X{{0,-1.38156,0.507106},{-0.000518805,0.973318,0.229458}},
  417. X{{0,-1.38258,0.473739},{0.000139255,0.978665,-0.205461}},
  418. X{{0,-1.4,0.425},{0,0.90286,-0.429934}},
  419. X{{-0.34758,-1.46099,0.425},{-0.203658,-0.887166,0.414078}},
  420. X{{-0.340976,-1.43323,0.475197},{-0.183697,-0.792542,0.581492}},
  421. X{{-0.334119,-1.40441,0.508111},{-0.147086,-0.626421,0.765481}},
  422. X{{-0.32782,-1.37793,0.524072},{-0.0692139,-0.284013,0.956319}},
  423. X{{-0.322888,-1.3572,0.523411},{0.0998522,0.447353,0.888766}},
  424. X{{-0.320135,-1.34563,0.506459},{0.217118,0.947631,0.234212}},
  425. X{{-0.320372,-1.34662,0.473545},{0.218981,0.953431,-0.207406}},
  426. X{{-0.324408,-1.36359,0.425},{0.201963,0.879785,-0.430336}},
  427. X{{-0.664723,-1.34956,0.425},{-0.395224,-0.816224,0.421398}},
  428. X{{-0.652094,-1.32392,0.474362},{-0.353826,-0.727883,0.587362}},
  429. X{{-0.63898,-1.2973,0.506951},{-0.28142,-0.575922,0.76754}},
  430. X{{-0.626933,-1.27284,0.522959},{-0.132539,-0.267308,0.954453}},
  431. X{{-0.617501,-1.25369,0.522576},{0.191407,0.399883,0.896358}},
  432. X{{-0.612236,-1.243,0.505995},{0.423025,0.87432,0.237938}},
  433. X{{-0.612689,-1.24392,0.473406},{0.426254,0.880127,-0.209005}},
  434. X{{-0.620408,-1.25959,0.425},{0.393263,0.812174,-0.43095}},
  435. X{{-0.943032,-1.17411,0.425},{-0.564712,-0.706613,0.426378}},
  436. X{{-0.925115,-1.1518,0.473802},{-0.50411,-0.629486,0.591287}},
  437. X{{-0.906511,-1.12864,0.506173},{-0.400344,-0.498551,0.768877}},
  438. X{{-0.889419,-1.10736,0.522212},{-0.190212,-0.235108,0.953176}},
  439. X{{-0.876039,-1.0907,0.522016},{0.269374,0.339151,0.90134}},
  440. X{{-0.86857,-1.0814,0.505684},{0.605833,0.758381,0.240467}},
  441. X{{-0.869212,-1.0822,0.473312},{0.610415,0.763719,-0.210063}},
  442. X{{-0.880163,-1.09584,0.425},{0.563248,0.704781,-0.431318}},
  443. X{{-1.17411,-0.943032,0.425},{-0.705562,-0.563871,0.429222}},
  444. X{{-1.1518,-0.925115,0.473462},{-0.629043,-0.502133,0.593437}},
  445. X{{-1.12864,-0.906511,0.505701},{-0.499435,-0.398062,0.769488}},
  446. X{{-1.10736,-0.889419,0.521759},{-0.238926,-0.189642,0.952339}},
  447. X{{-1.0907,-0.876039,0.521676},{0.333154,0.267192,0.904222}},
  448. X{{-1.0814,-0.86857,0.505495},{0.757916,0.605853,0.241879}},
  449. X{{-1.0822,-0.869212,0.473256},{0.763682,0.610283,-0.210581}},
  450. X{{-1.09584,-0.880163,0.425},{0.704781,0.563247,-0.431319}},
  451. X{{-1.34956,-0.664723,0.425},{-0.812441,-0.393393,0.430327}},
  452. X{{-1.32392,-0.652094,0.473288},{-0.724043,-0.350366,0.594143}},
  453. X{{-1.2973,-0.63898,0.505459},{-0.574997,-0.27801,0.769473}},
  454. X{{-1.27284,-0.626933,0.521527},{-0.276213,-0.13325,0.951815}},
  455. X{{-1.25369,-0.617501,0.521502},{0.381749,0.185206,0.90552}},
  456. X{{-1.243,-0.612236,0.505398},{0.873183,0.422858,0.24237}},
  457. X{{-1.24392,-0.612689,0.473227},{0.879852,0.42602,-0.210636}},
  458. X{{-1.25959,-0.620408,0.425},{0.812174,0.393263,-0.43095}},
  459. X{{-1.46099,-0.34758,0.425},{-0.879821,-0.201972,0.430258}},
  460. X{{-1.43323,-0.340976,0.473224},{-0.784168,-0.179963,0.59388}},
  461. X{{-1.40441,-0.334119,0.50537},{-0.623016,-0.142928,0.769041}},
  462. X{{-1.37793,-0.32782,0.521441},{-0.299878,-0.068729,0.951498}},
  463. X{{-1.3572,-0.322888,0.521438},{0.412996,0.0948877,0.905776}},
  464. X{{-1.34563,-0.320135,0.505362},{0.945617,0.217088,0.242242}},
  465. X{{-1.34662,-0.320372,0.473216},{0.952836,0.21873,-0.210382}},
  466. X{{-1.36359,-0.324408,0.425},{0.879785,0.201963,-0.430336}},
  467. X{{-1.5,0,0.425},{-0.90286,0,0.429934}},
  468. X{{-1.4715,0,0.473214},{-0.804835,0,0.593498}},
  469. X{{-1.44191,0,0.505357},{-0.639613,0,0.768697}},
  470. X{{-1.41472,0,0.521429},{-0.308043,0,0.951372}},
  471. X{{-1.39344,0,0.521429},{0.42399,0,0.905667}},
  472. X{{-1.38156,0,0.505357},{0.970272,0,0.242018}},
  473. X{{-1.38258,0,0.473214},{0.977666,0,-0.210166}},
  474. X{{-1.4,0,0.425},{0.90286,0,-0.429934}}};
  475. X
  476. XPEXVertexNormal pt3[] = {
  477. X{{-1.5,0,0.425},{-0.90286,0,0.429934}},
  478. X{{-1.4715,0,0.473214},{-0.804835,0,0.593498}},
  479. X{{-1.44191,0,0.505357},{-0.639613,0,0.768697}},
  480. X{{-1.41472,0,0.521429},{-0.308043,0,0.951372}},
  481. X{{-1.39344,0,0.521429},{0.42399,0,0.905667}},
  482. X{{-1.38156,0,0.505357},{0.970272,0,0.242018}},
  483. X{{-1.38258,0,0.473214},{0.977666,0,-0.210166}},
  484. X{{-1.4,0,0.425},{0.90286,0,-0.429934}},
  485. X{{-1.46099,0.34758,0.425},{-0.879785,0.201963,0.430336}},
  486. X{{-1.43323,0.340976,0.473214},{-0.784115,0.180001,0.593939}},
  487. X{{-1.40441,0.334119,0.505357},{-0.622976,0.14301,0.769058}},
  488. X{{-1.37793,0.32782,0.521429},{-0.299922,0.06885,0.951476}},
  489. X{{-1.3572,0.322888,0.521429},{0.412853,-0.0947744,0.905853}},
  490. X{{-1.34563,0.320135,0.505357},{0.94561,-0.217074,0.24228}},
  491. X{{-1.34662,0.320372,0.473214},{0.952833,-0.218732,-0.210396}},
  492. X{{-1.36359,0.324408,0.425},{0.879785,-0.201963,-0.430336}},
  493. X{{-1.34956,0.664723,0.425},{-0.812174,0.393263,0.43095}},
  494. X{{-1.32392,0.652094,0.473214},{-0.723644,0.350396,0.594611}},
  495. X{{-1.2973,0.63898,0.505357},{-0.574691,0.278272,0.769607}},
  496. X{{-1.27284,0.626933,0.521429},{-0.276525,0.133896,0.951633}},
  497. X{{-1.25369,0.617501,0.521429},{0.380702,-0.18434,0.906137}},
  498. X{{-1.243,0.612236,0.505357},{0.873134,-0.422781,0.242679}},
  499. X{{-1.24392,0.612689,0.473214},{0.879825,-0.42602,-0.210748}},
  500. X{{-1.25959,0.620408,0.425},{0.812174,-0.393263,-0.43095}},
  501. X{{-1.17411,0.943032,0.425},{-0.704781,0.563247,0.431319}},
  502. X{{-1.1518,0.925115,0.473214},{-0.627846,0.501763,0.595015}},
  503. X{{-1.12864,0.906511,0.505357},{-0.498488,0.398382,0.769937}},
  504. X{{-1.10736,0.889419,0.521429},{-0.239779,0.191627,0.951728}},
  505. X{{-1.0907,0.876039,0.521429},{0.330142,-0.263843,0.906308}},
  506. X{{-1.0814,0.86857,0.505357},{0.757782,-0.605605,0.242919}},
  507. X{{-1.0822,0.869212,0.473214},{0.7636,-0.610254,-0.21096}},
  508. X{{-1.09584,0.880163,0.425},{0.704781,-0.563248,-0.431318}},
  509. X{{-0.943032,1.17411,0.425},{-0.563247,0.704782,0.431318}},
  510. X{{-0.925115,1.1518,0.473214},{-0.501763,0.627846,0.595015}},
  511. X{{-0.906511,1.12864,0.505357},{-0.398382,0.498488,0.769937}},
  512. X{{-0.889419,1.10736,0.521429},{-0.191626,0.239779,0.951728}},
  513. X{{-0.876039,1.0907,0.521429},{0.263843,-0.330142,0.906308}},
  514. X{{-0.86857,1.0814,0.505357},{0.605604,-0.757782,0.242919}},
  515. X{{-0.869212,1.0822,0.473214},{0.610254,-0.7636,-0.21096}},
  516. X{{-0.880163,1.09584,0.425},{0.563247,-0.704781,-0.431319}},
  517. X{{-0.664723,1.34956,0.425},{-0.393263,0.812174,0.43095}},
  518. X{{-0.652094,1.32392,0.473214},{-0.350396,0.723644,0.594612}},
  519. X{{-0.63898,1.2973,0.505357},{-0.278272,0.574691,0.769607}},
  520. X{{-0.626933,1.27284,0.521429},{-0.133896,0.276525,0.951633}},
  521. X{{-0.617501,1.25369,0.521429},{0.18434,-0.380702,0.906137}},
  522. X{{-0.612236,1.243,0.505357},{0.422781,-0.873134,0.242679}},
  523. X{{-0.612689,1.24392,0.473214},{0.42602,-0.879825,-0.210748}},
  524. X{{-0.620408,1.25959,0.425},{0.393263,-0.812174,-0.43095}},
  525. X{{-0.34758,1.46099,0.425},{-0.201963,0.879785,0.430336}},
  526. X{{-0.340976,1.43323,0.473214},{-0.180001,0.784115,0.593939}},
  527. X{{-0.334119,1.40441,0.505357},{-0.14301,0.622976,0.769058}},
  528. X{{-0.32782,1.37793,0.521429},{-0.06885,0.299922,0.951476}},
  529. X{{-0.322888,1.3572,0.521429},{0.0947743,-0.412853,0.905853}},
  530. X{{-0.320135,1.34563,0.505357},{0.217074,-0.94561,0.24228}},
  531. X{{-0.320372,1.34662,0.473214},{0.218732,-0.952833,-0.210396}},
  532. X{{-0.324408,1.36359,0.425},{0.201963,-0.879785,-0.430336}},
  533. X{{0,1.5,0.425},{0,0.90286,0.429934}},
  534. X{{0,1.4715,0.473214},{0,0.804835,0.593498}},
  535. X{{0,1.44191,0.505357},{0,0.639613,0.768697}},
  536. X{{0,1.41472,0.521429},{0,0.308043,0.951372}},
  537. X{{0,1.39344,0.521429},{0,-0.42399,0.905667}},
  538. X{{0,1.38156,0.505357},{0,-0.970272,0.242018}},
  539. X{{0,1.38258,0.473214},{0,-0.977666,-0.210166}},
  540. X{{0,1.4,0.425},{0,-0.90286,-0.429934}}
  541. X};
  542. X
  543. XPEXVertexNormal pt4[] = {
  544. X{{0,1.5,0.425},{0,0.90286,0.429934}},
  545. X{{0,1.4715,0.473214},{0,0.804835,0.593498}},
  546. X{{0,1.44191,0.505357},{0,0.639613,0.768697}},
  547. X{{0,1.41472,0.521429},{0,0.308043,0.951372}},
  548. X{{0,1.39344,0.521429},{0,-0.42399,0.905667}},
  549. X{{0,1.38156,0.505357},{0,-0.970272,0.242018}},
  550. X{{0,1.38258,0.473214},{0,-0.977666,-0.210166}},
  551. X{{0,1.4,0.425},{0,-0.90286,-0.429934}},
  552. X{{0.34758,1.46099,0.425},{0.201963,0.879785,0.430336}},
  553. X{{0.340976,1.43323,0.473214},{0.180001,0.784115,0.593939}},
  554. X{{0.334119,1.40441,0.505357},{0.14301,0.622976,0.769058}},
  555. X{{0.32782,1.37793,0.521429},{0.06885,0.299922,0.951476}},
  556. X{{0.322888,1.3572,0.521429},{-0.0947744,-0.412853,0.905853}},
  557. X{{0.320135,1.34563,0.505357},{-0.217074,-0.94561,0.24228}},
  558. X{{0.320372,1.34662,0.473214},{-0.218732,-0.952833,-0.210396}},
  559. X{{0.324408,1.36359,0.425},{-0.201963,-0.879785,-0.430336}},
  560. X{{0.664723,1.34956,0.425},{0.393263,0.812174,0.43095}},
  561. X{{0.652094,1.32392,0.473214},{0.350396,0.723644,0.594611}},
  562. X{{0.63898,1.2973,0.505357},{0.278272,0.574691,0.769607}},
  563. X{{0.626933,1.27284,0.521429},{0.133896,0.276525,0.951633}},
  564. X{{0.617501,1.25369,0.521429},{-0.18434,-0.380702,0.906137}},
  565. X{{0.612236,1.243,0.505357},{-0.422781,-0.873134,0.242679}},
  566. X{{0.612689,1.24392,0.473214},{-0.42602,-0.879825,-0.210748}},
  567. X{{0.620408,1.25959,0.425},{-0.393263,-0.812174,-0.43095}},
  568. X{{0.943032,1.17411,0.425},{0.563247,0.704781,0.431319}},
  569. X{{0.925115,1.1518,0.473214},{0.501763,0.627846,0.595015}},
  570. X{{0.906511,1.12864,0.505357},{0.398382,0.498488,0.769937}},
  571. X{{0.889419,1.10736,0.521429},{0.191627,0.239779,0.951728}},
  572. X{{0.876039,1.0907,0.521429},{-0.263843,-0.330142,0.906308}},
  573. X{{0.86857,1.0814,0.505357},{-0.605605,-0.757782,0.242919}},
  574. X{{0.869212,1.0822,0.473214},{-0.610254,-0.7636,-0.21096}},
  575. X{{0.880163,1.09584,0.425},{-0.563248,-0.704781,-0.431318}},
  576. X{{1.17411,0.943032,0.425},{0.704782,0.563247,0.431318}},
  577. X{{1.1518,0.925115,0.473214},{0.627846,0.501763,0.595015}},
  578. X{{1.12864,0.906511,0.505357},{0.498488,0.398382,0.769937}},
  579. X{{1.10736,0.889419,0.521429},{0.239779,0.191626,0.951728}},
  580. X{{1.0907,0.876039,0.521429},{-0.330142,-0.263843,0.906308}},
  581. X{{1.0814,0.86857,0.505357},{-0.757782,-0.605604,0.242919}},
  582. X{{1.0822,0.869212,0.473214},{-0.7636,-0.610254,-0.21096}},
  583. X{{1.09584,0.880163,0.425},{-0.704781,-0.563247,-0.431319}},
  584. X{{1.34956,0.664723,0.425},{0.812174,0.393263,0.43095}},
  585. X{{1.32392,0.652094,0.473214},{0.723644,0.350396,0.594612}},
  586. X{{1.2973,0.63898,0.505357},{0.574691,0.278272,0.769607}},
  587. X{{1.27284,0.626933,0.521429},{0.276525,0.133896,0.951633}},
  588. X{{1.25369,0.617501,0.521429},{-0.380702,-0.18434,0.906137}},
  589. X{{1.243,0.612236,0.505357},{-0.873134,-0.422781,0.242679}},
  590. X{{1.24392,0.612689,0.473214},{-0.879825,-0.42602,-0.210748}},
  591. X{{1.25959,0.620408,0.425},{-0.812174,-0.393263,-0.43095}},
  592. X{{1.46099,0.34758,0.425},{0.879785,0.201963,0.430336}},
  593. X{{1.43323,0.340976,0.473214},{0.784115,0.180001,0.593939}},
  594. X{{1.40441,0.334119,0.505357},{0.622976,0.14301,0.769058}},
  595. X{{1.37793,0.32782,0.521429},{0.299922,0.06885,0.951476}},
  596. X{{1.3572,0.322888,0.521429},{-0.412853,-0.0947743,0.905853}},
  597. X{{1.34563,0.320135,0.505357},{-0.94561,-0.217074,0.24228}},
  598. X{{1.34662,0.320372,0.473214},{-0.952833,-0.218732,-0.210396}},
  599. X{{1.36359,0.324408,0.425},{-0.879785,-0.201963,-0.430336}},
  600. X{{1.5,0,0.425},{0.90286,0,0.429934}},
  601. X{{1.4715,0,0.473214},{0.804835,0,0.593498}},
  602. X{{1.44191,0,0.505357},{0.639613,0,0.768697}},
  603. X{{1.41472,0,0.521429},{0.308043,0,0.951372}},
  604. X{{1.39344,0,0.521429},{-0.42399,0,0.905667}},
  605. X{{1.38156,0,0.505357},{-0.970272,0,0.242018}},
  606. X{{1.38258,0,0.473214},{-0.977666,0,-0.210166}},
  607. X{{1.4,0,0.425},{-0.90286,0,-0.429934}}
  608. X};
  609. X
  610. XPEXVertexNormal pt5[] = {
  611. X{{2,0,-1.075},{1,0,0}},
  612. X{{1.98542,0,-0.87777},{0.990185,0,0.139765}},
  613. X{{1.94461,0,-0.672668},{0.969783,0,0.243971}},
  614. X{{1.88192,0,-0.461006},{0.94781,0,0.318835}},
  615. X{{1.80175,0,-0.244096},{0.928732,0,0.370751}},
  616. X{{1.70845,0,-0.0232507},{0.914478,0,0.404636}},
  617. X{{1.60641,0,0.200219},{0.905777,0,0.423755}},
  618. X{{1.5,0,0.425},{0.902861,0,0.429934}},
  619. X{{1.94799,-0.46344,-1.075},{0.974649,-0.22374,0}},
  620. X{{1.93379,-0.460062,-0.87777},{0.965061,-0.221539,0.139923}},
  621. X{{1.89404,-0.450604,-0.672668},{0.945133,-0.216964,0.244234}},
  622. X{{1.83298,-0.43608,-0.461006},{0.923674,-0.212038,0.319164}},
  623. X{{1.75489,-0.417502,-0.244096},{0.905045,-0.207762,0.371118}},
  624. X{{1.66403,-0.395883,-0.0232507},{0.891127,-0.204567,0.405024}},
  625. X{{1.56464,-0.372238,0.200219},{0.882632,-0.202617,0.424154}},
  626. X{{1.46099,-0.34758,0.425},{0.879785,-0.201963,0.430335}},
  627. X{{1.79942,-0.886297,-1.075},{0.900039,-0.435809,0}},
  628. X{{1.7863,-0.879838,-0.87777},{0.891155,-0.431506,0.140163}},
  629. X{{1.74958,-0.86175,-0.672668},{0.872692,-0.422567,0.244636}},
  630. X{{1.69318,-0.833972,-0.461006},{0.852815,-0.412942,0.319666}},
  631. X{{1.62105,-0.798443,-0.244096},{0.835562,-0.404588,0.371679}},
  632. X{{1.53711,-0.7571,-0.0232507},{0.822675,-0.398348,0.405617}},
  633. X{{1.4453,-0.71188,0.200219},{0.81481,-0.39454,0.424763}},
  634. X{{1.34956,-0.664723,0.425},{0.812174,-0.393263,0.43095}},
  635. X{{1.56548,-1.25738,-1.075},{0.781181,-0.624305,0}},
  636. X{{1.55407,-1.24821,-0.87777},{0.773454,-0.618129,0.140307}},
  637. X{{1.52212,-1.22255,-0.672668},{0.757397,-0.605297,0.244878}},
  638. X{{1.47306,-1.18314,-0.461006},{0.740113,-0.591484,0.319967}},
  639. X{{1.4103,-1.13274,-0.244096},{0.725113,-0.579496,0.372015}},
  640. X{{1.33728,-1.07409,-0.0232507},{0.71391,-0.570543,0.405973}},
  641. X{{1.25741,-1.00993,0.200219},{0.707073,-0.565079,0.425129}},
  642. X{{1.17411,-0.943032,0.425},{0.704781,-0.563248,0.431318}},
  643. X{{1.25738,-1.56548,-1.075},{0.624304,-0.781181,0}},
  644. X{{1.24821,-1.55407,-0.87777},{0.618129,-0.773454,0.140307}},
  645. X{{1.22255,-1.52212,-0.672668},{0.605297,-0.757397,0.244878}},
  646. X{{1.18314,-1.47306,-0.461006},{0.591484,-0.740113,0.319967}},
  647. X{{1.13274,-1.4103,-0.244096},{0.579496,-0.725113,0.372015}},
  648. X{{1.07408,-1.33728,-0.0232507},{0.570543,-0.71391,0.405973}},
  649. X{{1.00993,-1.25741,0.200219},{0.565079,-0.707073,0.425129}},
  650. X{{0.943032,-1.17411,0.425},{0.563247,-0.704782,0.431318}},
  651. X{{0.886297,-1.79942,-1.075},{0.435809,-0.900039,0}},
  652. X{{0.879837,-1.7863,-0.87777},{0.431506,-0.891155,0.140163}},
  653. X{{0.86175,-1.74958,-0.672668},{0.422566,-0.872692,0.244636}},
  654. X{{0.833972,-1.69318,-0.461006},{0.412942,-0.852815,0.319666}},
  655. X{{0.798443,-1.62105,-0.244096},{0.404588,-0.835562,0.371679}},
  656. X{{0.757099,-1.53711,-0.0232507},{0.398348,-0.822675,0.405617}},
  657. X{{0.71188,-1.4453,0.200219},{0.39454,-0.81481,0.424763}},
  658. X{{0.664723,-1.34956,0.425},{0.393263,-0.812174,0.43095}},
  659. X{{0.46344,-1.94799,-1.075},{0.22374,-0.974649,0}},
  660. X{{0.460062,-1.93379,-0.87777},{0.221539,-0.965061,0.139923}},
  661. X{{0.450604,-1.89404,-0.672668},{0.216964,-0.945133,0.244234}},
  662. X{{0.43608,-1.83298,-0.461006},{0.212038,-0.923674,0.319164}},
  663. X{{0.417501,-1.75489,-0.244096},{0.207762,-0.905045,0.371118}},
  664. X{{0.395883,-1.66403,-0.0232507},{0.204567,-0.891127,0.405024}},
  665. X{{0.372238,-1.56464,0.200219},{0.202617,-0.882632,0.424154}},
  666. X{{0.34758,-1.46099,0.425},{0.201963,-0.879785,0.430335}},
  667. X{{0,-2,-1.075},{0,-1,0}},
  668. X{{0,-1.98542,-0.87777},{0,-0.990185,0.139765}},
  669. X{{0,-1.94461,-0.672668},{0,-0.969783,0.243971}},
  670. X{{0,-1.88192,-0.461006},{0,-0.94781,0.318835}},
  671. X{{0,-1.80175,-0.244096},{0,-0.928732,0.370751}},
  672. X{{0,-1.70845,-0.0232507},{0,-0.914478,0.404636}},
  673. X{{0,-1.60641,0.200219},{0,-0.905777,0.423755}},
  674. X{{0,-1.5,0.425},{0,-0.902861,0.429934}}
  675. X};
  676. X
  677. XPEXVertexNormal pt6[] = {
  678. X{{0,-2,-1.075},{0,-1,0}},
  679. X{{0,-1.98542,-0.87777},{0,-0.990185,0.139765}},
  680. X{{0,-1.94461,-0.672668},{0,-0.969783,0.243971}},
  681. X{{0,-1.88192,-0.461006},{0,-0.94781,0.318835}},
  682. X{{0,-1.80175,-0.244096},{0,-0.928732,0.370751}},
  683. X{{0,-1.70845,-0.0232507},{0,-0.914478,0.404636}},
  684. X{{0,-1.60641,0.200219},{0,-0.905777,0.423755}},
  685. X{{0,-1.5,0.425},{0,-0.902861,0.429934}},
  686. X{{-0.46344,-1.94799,-1.075},{-0.22374,-0.974649,0}},
  687. X{{-0.460062,-1.93379,-0.87777},{-0.221539,-0.965061,0.139923}},
  688. X{{-0.450604,-1.89404,-0.672668},{-0.216964,-0.945133,0.244234}},
  689. X{{-0.43608,-1.83298,-0.461006},{-0.212038,-0.923674,0.319164}},
  690. X{{-0.417502,-1.75489,-0.244096},{-0.207762,-0.905045,0.371118}},
  691. X{{-0.395883,-1.66403,-0.0232507},{-0.204567,-0.891127,0.405024}},
  692. X{{-0.372238,-1.56464,0.200219},{-0.202617,-0.882632,0.424154}},
  693. X{{-0.34758,-1.46099,0.425},{-0.201963,-0.879785,0.430335}},
  694. X{{-0.886297,-1.79942,-1.075},{-0.435809,-0.900039,0}},
  695. X{{-0.879838,-1.7863,-0.87777},{-0.431506,-0.891155,0.140163}},
  696. X{{-0.86175,-1.74958,-0.672668},{-0.422567,-0.872692,0.244636}},
  697. X{{-0.833972,-1.69318,-0.461006},{-0.412942,-0.852815,0.319666}},
  698. X{{-0.798443,-1.62105,-0.244096},{-0.404588,-0.835562,0.371679}},
  699. X{{-0.7571,-1.53711,-0.0232507},{-0.398348,-0.822675,0.405617}},
  700. X{{-0.71188,-1.4453,0.200219},{-0.39454,-0.81481,0.424763}},
  701. X{{-0.664723,-1.34956,0.425},{-0.393263,-0.812174,0.43095}},
  702. X{{-1.25738,-1.56548,-1.075},{-0.624305,-0.781181,0}},
  703. X{{-1.24821,-1.55407,-0.87777},{-0.618129,-0.773454,0.140307}},
  704. X{{-1.22255,-1.52212,-0.672668},{-0.605297,-0.757397,0.244878}},
  705. X{{-1.18314,-1.47306,-0.461006},{-0.591484,-0.740113,0.319967}},
  706. X{{-1.13274,-1.4103,-0.244096},{-0.579496,-0.725113,0.372015}},
  707. X{{-1.07409,-1.33728,-0.0232507},{-0.570543,-0.71391,0.405973}},
  708. X{{-1.00993,-1.25741,0.200219},{-0.565079,-0.707073,0.425129}},
  709. X{{-0.943032,-1.17411,0.425},{-0.563248,-0.704781,0.431318}},
  710. X{{-1.56548,-1.25738,-1.075},{-0.781181,-0.624304,0}},
  711. X{{-1.55407,-1.24821,-0.87777},{-0.773454,-0.618129,0.140307}},
  712. X{{-1.52212,-1.22255,-0.672668},{-0.757397,-0.605297,0.244878}},
  713. X{{-1.47306,-1.18314,-0.461006},{-0.740113,-0.591484,0.319967}},
  714. X{{-1.4103,-1.13274,-0.244096},{-0.725113,-0.579496,0.372015}},
  715. X{{-1.33728,-1.07408,-0.0232507},{-0.71391,-0.570543,0.405973}},
  716. X{{-1.25741,-1.00993,0.200219},{-0.707073,-0.565079,0.425129}},
  717. X{{-1.17411,-0.943032,0.425},{-0.704782,-0.563247,0.431318}},
  718. X{{-1.79942,-0.886297,-1.075},{-0.900039,-0.435809,0}},
  719. X{{-1.7863,-0.879837,-0.87777},{-0.891155,-0.431506,0.140163}},
  720. X{{-1.74958,-0.86175,-0.672668},{-0.872692,-0.422566,0.244636}},
  721. X{{-1.69318,-0.833972,-0.461006},{-0.852815,-0.412942,0.319666}},
  722. X{{-1.62105,-0.798443,-0.244096},{-0.835562,-0.404588,0.371679}},
  723. X{{-1.53711,-0.757099,-0.0232507},{-0.822675,-0.398348,0.405617}},
  724. X{{-1.4453,-0.71188,0.200219},{-0.81481,-0.39454,0.424763}},
  725. X{{-1.34956,-0.664723,0.425},{-0.812174,-0.393263,0.43095}},
  726. X{{-1.94799,-0.46344,-1.075},{-0.974649,-0.22374,0}},
  727. X{{-1.93379,-0.460062,-0.87777},{-0.965061,-0.221539,0.139923}},
  728. X{{-1.89404,-0.450604,-0.672668},{-0.945133,-0.216964,0.244234}},
  729. X{{-1.83298,-0.43608,-0.461006},{-0.923674,-0.212038,0.319164}},
  730. X{{-1.75489,-0.417501,-0.244096},{-0.905045,-0.207762,0.371118}},
  731. X{{-1.66403,-0.395883,-0.0232507},{-0.891127,-0.204567,0.405024}},
  732. X{{-1.56464,-0.372238,0.200219},{-0.882632,-0.202617,0.424154}},
  733. X{{-1.46099,-0.34758,0.425},{-0.879785,-0.201963,0.430335}},
  734. X{{-2,0,-1.075},{-1,0,0}},
  735. X{{-1.98542,0,-0.87777},{-0.990185,0,0.139765}},
  736. X{{-1.94461,0,-0.672668},{-0.969783,0,0.243971}},
  737. X{{-1.88192,0,-0.461006},{-0.94781,0,0.318835}},
  738. X{{-1.80175,0,-0.244096},{-0.928732,0,0.370751}},
  739. X{{-1.70845,0,-0.0232507},{-0.914478,0,0.404636}},
  740. X{{-1.60641,0,0.200219},{-0.905777,0,0.423755}},
  741. X{{-1.5,0,0.425},{-0.902861,0,0.429934}}
  742. X};
  743. X
  744. XPEXVertexNormal pt7[] = {
  745. X{{-2,0,-1.075},{-1,0,0}},
  746. X{{-1.98542,0,-0.87777},{-0.990185,0,0.139765}},
  747. X{{-1.94461,0,-0.672668},{-0.969783,0,0.243971}},
  748. X{{-1.88192,0,-0.461006},{-0.94781,0,0.318835}},
  749. X{{-1.80175,0,-0.244096},{-0.928732,0,0.370751}},
  750. X{{-1.70845,0,-0.0232507},{-0.914478,0,0.404636}},
  751. X{{-1.60641,0,0.200219},{-0.905777,0,0.423755}},
  752. X{{-1.5,0,0.425},{-0.902861,0,0.429934}},
  753. X{{-1.94799,0.46344,-1.075},{-0.974649,0.22374,0}},
  754. X{{-1.93379,0.460062,-0.87777},{-0.965061,0.221539,0.139923}},
  755. X{{-1.89404,0.450604,-0.672668},{-0.945133,0.216964,0.244234}},
  756. X{{-1.83298,0.43608,-0.461006},{-0.923674,0.212038,0.319164}},
  757. X{{-1.75489,0.417502,-0.244096},{-0.905045,0.207762,0.371118}},
  758. X{{-1.66403,0.395883,-0.0232507},{-0.891127,0.204567,0.405024}},
  759. X{{-1.56464,0.372238,0.200219},{-0.882632,0.202617,0.424154}},
  760. X{{-1.46099,0.34758,0.425},{-0.879785,0.201963,0.430335}},
  761. X{{-1.79942,0.886297,-1.075},{-0.900039,0.435809,0}},
  762. X{{-1.7863,0.879838,-0.87777},{-0.891155,0.431506,0.140163}},
  763. X{{-1.74958,0.86175,-0.672668},{-0.872692,0.422567,0.244636}},
  764. X{{-1.69318,0.833972,-0.461006},{-0.852815,0.412942,0.319666}},
  765. X{{-1.62105,0.798443,-0.244096},{-0.835562,0.404588,0.371679}},
  766. X{{-1.53711,0.7571,-0.0232507},{-0.822675,0.398348,0.405617}},
  767. X{{-1.4453,0.71188,0.200219},{-0.81481,0.39454,0.424763}},
  768. X{{-1.34956,0.664723,0.425},{-0.812174,0.393263,0.43095}},
  769. X{{-1.56548,1.25738,-1.075},{-0.781181,0.624305,0}},
  770. X{{-1.55407,1.24821,-0.87777},{-0.773454,0.618129,0.140307}},
  771. X{{-1.52212,1.22255,-0.672668},{-0.757397,0.605297,0.244878}},
  772. X{{-1.47306,1.18314,-0.461006},{-0.740113,0.591484,0.319967}},
  773. X{{-1.4103,1.13274,-0.244096},{-0.725113,0.579496,0.372015}},
  774. X{{-1.33728,1.07409,-0.0232507},{-0.71391,0.570543,0.405973}},
  775. X{{-1.25741,1.00993,0.200219},{-0.707073,0.565079,0.425129}},
  776. X{{-1.17411,0.943032,0.425},{-0.704781,0.563248,0.431318}},
  777. X{{-1.25738,1.56548,-1.075},{-0.624304,0.781181,0}},
  778. X{{-1.24821,1.55407,-0.87777},{-0.618129,0.773454,0.140307}},
  779. X{{-1.22255,1.52212,-0.672668},{-0.605297,0.757397,0.244878}},
  780. X{{-1.18314,1.47306,-0.461006},{-0.591484,0.740113,0.319967}},
  781. X{{-1.13274,1.4103,-0.244096},{-0.579496,0.725113,0.372015}},
  782. X{{-1.07408,1.33728,-0.0232507},{-0.570543,0.71391,0.405973}},
  783. X{{-1.00993,1.25741,0.200219},{-0.565079,0.707073,0.425129}},
  784. X{{-0.943032,1.17411,0.425},{-0.563247,0.704782,0.431318}},
  785. X{{-0.886297,1.79942,-1.075},{-0.435809,0.900039,0}},
  786. X{{-0.879837,1.7863,-0.87777},{-0.431506,0.891155,0.140163}},
  787. X{{-0.86175,1.74958,-0.672668},{-0.422566,0.872692,0.244636}},
  788. X{{-0.833972,1.69318,-0.461006},{-0.412942,0.852815,0.319666}},
  789. X{{-0.798443,1.62105,-0.244096},{-0.404588,0.835562,0.371679}},
  790. X{{-0.757099,1.53711,-0.0232507},{-0.398348,0.822675,0.405617}},
  791. X{{-0.71188,1.4453,0.200219},{-0.39454,0.81481,0.424763}},
  792. X{{-0.664723,1.34956,0.425},{-0.393263,0.812174,0.43095}},
  793. X{{-0.46344,1.94799,-1.075},{-0.22374,0.974649,0}},
  794. X{{-0.460062,1.93379,-0.87777},{-0.221539,0.965061,0.139923}},
  795. X{{-0.450604,1.89404,-0.672668},{-0.216964,0.945133,0.244234}},
  796. X{{-0.43608,1.83298,-0.461006},{-0.212038,0.923674,0.319164}},
  797. X{{-0.417501,1.75489,-0.244096},{-0.207762,0.905045,0.371118}},
  798. X{{-0.395883,1.66403,-0.0232507},{-0.204567,0.891127,0.405024}},
  799. X{{-0.372238,1.56464,0.200219},{-0.202617,0.882632,0.424154}},
  800. X{{-0.34758,1.46099,0.425},{-0.201963,0.879785,0.430335}},
  801. X{{0,2,-1.075},{0,1,0}},
  802. X{{0,1.98542,-0.87777},{0,0.990185,0.139765}},
  803. X{{0,1.94461,-0.672668},{0,0.969783,0.243971}},
  804. X{{0,1.88192,-0.461006},{0,0.94781,0.318835}},
  805. X{{0,1.80175,-0.244096},{0,0.928732,0.370751}},
  806. X{{0,1.70845,-0.0232507},{0,0.914478,0.404636}},
  807. X{{0,1.60641,0.200219},{0,0.905777,0.423755}},
  808. X{{0,1.5,0.425},{0,0.902861,0.429934}}
  809. X};
  810. X
  811. XPEXVertexNormal pt8[] = {
  812. X{{0,2,-1.075},{0,1,0}},
  813. X{{0,1.98542,-0.87777},{0,0.990185,0.139765}},
  814. X{{0,1.94461,-0.672668},{0,0.969783,0.243971}},
  815. X{{0,1.88192,-0.461006},{0,0.94781,0.318835}},
  816. X{{0,1.80175,-0.244096},{0,0.928732,0.370751}},
  817. X{{0,1.70845,-0.0232507},{0,0.914478,0.404636}},
  818. X{{0,1.60641,0.200219},{0,0.905777,0.423755}},
  819. X{{0,1.5,0.425},{0,0.902861,0.429934}},
  820. X{{0.46344,1.94799,-1.075},{0.22374,0.974649,0}},
  821. X{{0.460062,1.93379,-0.87777},{0.221539,0.965061,0.139923}},
  822. X{{0.450604,1.89404,-0.672668},{0.216964,0.945133,0.244234}},
  823. X{{0.43608,1.83298,-0.461006},{0.212038,0.923674,0.319164}},
  824. X{{0.417502,1.75489,-0.244096},{0.207762,0.905045,0.371118}},
  825. X{{0.395883,1.66403,-0.0232507},{0.204567,0.891127,0.405024}},
  826. X{{0.372238,1.56464,0.200219},{0.202617,0.882632,0.424154}},
  827. X{{0.34758,1.46099,0.425},{0.201963,0.879785,0.430335}},
  828. X{{0.886297,1.79942,-1.075},{0.435809,0.900039,0}},
  829. X{{0.879838,1.7863,-0.87777},{0.431506,0.891155,0.140163}},
  830. X{{0.86175,1.74958,-0.672668},{0.422567,0.872692,0.244636}},
  831. X{{0.833972,1.69318,-0.461006},{0.412942,0.852815,0.319666}},
  832. X{{0.798443,1.62105,-0.244096},{0.404588,0.835562,0.371679}},
  833. X{{0.7571,1.53711,-0.0232507},{0.398348,0.822675,0.405617}},
  834. X{{0.71188,1.4453,0.200219},{0.39454,0.81481,0.424763}},
  835. X{{0.664723,1.34956,0.425},{0.393263,0.812174,0.43095}},
  836. X{{1.25738,1.56548,-1.075},{0.624305,0.781181,0}},
  837. X{{1.24821,1.55407,-0.87777},{0.618129,0.773454,0.140307}},
  838. X{{1.22255,1.52212,-0.672668},{0.605297,0.757397,0.244878}},
  839. X{{1.18314,1.47306,-0.461006},{0.591484,0.740113,0.319967}},
  840. X{{1.13274,1.4103,-0.244096},{0.579496,0.725113,0.372015}},
  841. X{{1.07409,1.33728,-0.0232507},{0.570543,0.71391,0.405973}},
  842. X{{1.00993,1.25741,0.200219},{0.565079,0.707073,0.425129}},
  843. X{{0.943032,1.17411,0.425},{0.563248,0.704781,0.431318}},
  844. X{{1.56548,1.25738,-1.075},{0.781181,0.624304,0}},
  845. X{{1.55407,1.24821,-0.87777},{0.773454,0.618129,0.140307}},
  846. X{{1.52212,1.22255,-0.672668},{0.757397,0.605297,0.244878}},
  847. X{{1.47306,1.18314,-0.461006},{0.740113,0.591484,0.319967}},
  848. X{{1.4103,1.13274,-0.244096},{0.725113,0.579496,0.372015}},
  849. X{{1.33728,1.07408,-0.0232507},{0.71391,0.570543,0.405973}},
  850. X{{1.25741,1.00993,0.200219},{0.707073,0.565079,0.425129}},
  851. X{{1.17411,0.943032,0.425},{0.704782,0.563247,0.431318}},
  852. X{{1.79942,0.886297,-1.075},{0.900039,0.435809,0}},
  853. X{{1.7863,0.879837,-0.87777},{0.891155,0.431506,0.140163}},
  854. X{{1.74958,0.86175,-0.672668},{0.872692,0.422566,0.244636}},
  855. X{{1.69318,0.833972,-0.461006},{0.852815,0.412942,0.319666}},
  856. X{{1.62105,0.798443,-0.244096},{0.835562,0.404588,0.371679}},
  857. X{{1.53711,0.757099,-0.0232507},{0.822675,0.398348,0.405617}},
  858. X{{1.4453,0.71188,0.200219},{0.81481,0.39454,0.424763}},
  859. X{{1.34956,0.664723,0.425},{0.812174,0.393263,0.43095}},
  860. X{{1.94799,0.46344,-1.075},{0.974649,0.22374,0}},
  861. X{{1.93379,0.460062,-0.87777},{0.965061,0.221539,0.139923}},
  862. X{{1.89404,0.450604,-0.672668},{0.945133,0.216964,0.244234}},
  863. X{{1.83298,0.43608,-0.461006},{0.923674,0.212038,0.319164}},
  864. X{{1.75489,0.417501,-0.244096},{0.905045,0.207762,0.371118}},
  865. X{{1.66403,0.395883,-0.0232507},{0.891127,0.204567,0.405024}},
  866. X{{1.56464,0.372238,0.200219},{0.882632,0.202617,0.424154}},
  867. X{{1.46099,0.34758,0.425},{0.879785,0.201963,0.430335}},
  868. X{{2,0,-1.075},{1,0,0}},
  869. X{{1.98542,0,-0.87777},{0.990185,0,0.139765}},
  870. X{{1.94461,0,-0.672668},{0.969783,0,0.243971}},
  871. X{{1.88192,0,-0.461006},{0.94781,0,0.318835}},
  872. X{{1.80175,0,-0.244096},{0.928732,0,0.370751}},
  873. X{{1.70845,0,-0.0232507},{0.914478,0,0.404636}},
  874. X{{1.60641,0,0.200219},{0.905777,0,0.423755}},
  875. X{{1.5,0,0.425},{0.902861,0,0.429934}}
  876. X};
  877. X
  878. XPEXVertexNormal pt9[] = {
  879. X{{1.5,0,-1.825},{1,0,0}},
  880. X{{1.5277,0,-1.78345},{0.6981,0,-0.716}},
  881. X{{1.59913,0,-1.72223},{0.632922,0,-0.774216}},
  882. X{{1.69679,0,-1.64001},{0.663783,0,-0.747925}},
  883. X{{1.80321,0,-1.5355},{0.741834,0,-0.670584}},
  884. X{{1.90087,0,-1.40736},{0.84874,0,-0.52881}},
  885. X{{1.9723,0,-1.2543},{0.953469,0,-0.301492}},
  886. X{{2,0,-1.075},{1,0,0}},
  887. X{{1.46099,-0.34758,-1.825},{0.974649,-0.22374,0}},
  888. X{{1.48797,-0.353998,-1.78345},{0.680002,-0.156101,-0.7164}},
  889. X{{1.55754,-0.370549,-1.72223},{0.616452,-0.141513,-0.774571}},
  890. X{{1.65267,-0.393181,-1.64001},{0.646541,-0.14842,-0.748303}},
  891. X{{1.75631,-0.417839,-1.5355},{0.722654,-0.165892,-0.671007}},
  892. X{{1.85144,-0.440471,-1.40736},{0.826958,-0.189836,-0.529247}},
  893. X{{1.92101,-0.457022,-1.2543},{0.9292,-0.213307,-0.301807}},
  894. X{{1.94799,-0.46344,-1.075},{0.974649,-0.22374,0}},
  895. X{{1.34956,-0.664723,-1.825},{0.900039,-0.435809,0}},
  896. X{{1.37448,-0.676997,-1.78345},{0.627384,-0.303786,-0.71701}},
  897. X{{1.43875,-0.70865,-1.72223},{0.568665,-0.275354,-0.775113}},
  898. X{{1.52662,-0.751932,-1.64001},{0.596463,-0.288814,-0.748878}},
  899. X{{1.62236,-0.799089,-1.5355},{0.666809,-0.322876,-0.671653}},
  900. X{{1.71023,-0.84237,-1.40736},{0.76328,-0.369588,-0.529914}},
  901. X{{1.7745,-0.874024,-1.2543},{0.857933,-0.41542,-0.302287}},
  902. X{{1.79942,-0.886297,-1.075},{0.900039,-0.435809,0}},
  903. X{{1.17411,-0.943032,-1.825},{0.781181,-0.624305,0}},
  904. X{{1.19579,-0.960445,-1.78345},{0.544238,-0.434944,-0.717376}},
  905. X{{1.2517,-1.00535,-1.72223},{0.493256,-0.394201,-0.775438}},
  906. X{{1.32815,-1.06675,-1.64001},{0.517389,-0.413488,-0.749224}},
  907. X{{1.41144,-1.13365,-1.5355},{0.578476,-0.462307,-0.67204}},
  908. X{{1.48789,-1.19506,-1.40736},{0.662286,-0.529286,-0.530314}},
  909. X{{1.5438,-1.23996,-1.2543},{0.744564,-0.595041,-0.302576}},
  910. X{{1.56548,-1.25738,-1.075},{0.781181,-0.624305,0}},
  911. X{{0.943032,-1.17411,-1.825},{0.624304,-0.781181,0}},
  912. X{{0.960445,-1.19579,-1.78345},{0.434944,-0.544238,-0.717376}},
  913. X{{1.00535,-1.2517,-1.72223},{0.394201,-0.493256,-0.775438}},
  914. X{{1.06675,-1.32815,-1.64001},{0.413487,-0.517389,-0.749224}},
  915. X{{1.13365,-1.41144,-1.5355},{0.462307,-0.578476,-0.67204}},
  916. X{{1.19506,-1.48789,-1.40736},{0.529286,-0.662286,-0.530314}},
  917. X{{1.23996,-1.5438,-1.2543},{0.595041,-0.744564,-0.302576}},
  918. X{{1.25738,-1.56548,-1.075},{0.624304,-0.781181,0}},
  919. X{{0.664723,-1.34956,-1.825},{0.435809,-0.900039,0}},
  920. X{{0.676997,-1.37448,-1.78345},{0.303786,-0.627384,-0.71701}},
  921. X{{0.70865,-1.43875,-1.72223},{0.275354,-0.568665,-0.775113}},
  922. X{{0.751932,-1.52662,-1.64001},{0.288813,-0.596463,-0.748879}},
  923. X{{0.799089,-1.62236,-1.5355},{0.322876,-0.666809,-0.671653}},
  924. X{{0.84237,-1.71023,-1.40736},{0.369588,-0.76328,-0.529914}},
  925. X{{0.874024,-1.7745,-1.2543},{0.41542,-0.857933,-0.302287}},
  926. X{{0.886297,-1.79942,-1.075},{0.435809,-0.900039,0}},
  927. X{{0.34758,-1.46099,-1.825},{0.22374,-0.974649,0}},
  928. X{{0.353998,-1.48797,-1.78345},{0.156101,-0.680002,-0.7164}},
  929. X{{0.370549,-1.55754,-1.72223},{0.141513,-0.616452,-0.774571}},
  930. X{{0.393181,-1.65267,-1.64001},{0.14842,-0.646541,-0.748303}},
  931. X{{0.417839,-1.75631,-1.5355},{0.165892,-0.722654,-0.671007}},
  932. X{{0.440471,-1.85144,-1.40736},{0.189836,-0.826958,-0.529247}},
  933. X{{0.457022,-1.92101,-1.2543},{0.213307,-0.9292,-0.301807}},
  934. X{{0.46344,-1.94799,-1.075},{0.22374,-0.974649,0}},
  935. X{{0,-1.5,-1.825},{0,-1,0}},
  936. X{{0,-1.5277,-1.78345},{0,-0.6981,-0.716}},
  937. X{{0,-1.59913,-1.72223},{0,-0.632922,-0.774216}},
  938. X{{0,-1.69679,-1.64001},{0,-0.663783,-0.747925}},
  939. X{{0,-1.80321,-1.5355},{0,-0.741834,-0.670584}},
  940. X{{0,-1.90087,-1.40736},{0,-0.84874,-0.52881}},
  941. X{{0,-1.9723,-1.2543},{0,-0.953469,-0.301492}},
  942. X{{0,-2,-1.075},{0,-1,0}}
  943. X};
  944. X
  945. XPEXVertexNormal pt10[] = {
  946. X{{0,-1.5,-1.825},{0,-1,0}},
  947. X{{0,-1.5277,-1.78345},{0,-0.6981,-0.716}},
  948. X{{0,-1.59913,-1.72223},{0,-0.632922,-0.774216}},
  949. X{{0,-1.69679,-1.64001},{0,-0.663783,-0.747925}},
  950. X{{0,-1.80321,-1.5355},{0,-0.741834,-0.670584}},
  951. X{{0,-1.90087,-1.40736},{0,-0.84874,-0.52881}},
  952. X{{0,-1.9723,-1.2543},{0,-0.953469,-0.301492}},
  953. X{{0,-2,-1.075},{0,-1,0}},
  954. X{{-0.34758,-1.46099,-1.825},{-0.22374,-0.974649,0}},
  955. X{{-0.353998,-1.48797,-1.78345},{-0.156101,-0.680002,-0.7164}},
  956. X{{-0.370549,-1.55754,-1.72223},{-0.141513,-0.616452,-0.774571}},
  957. X{{-0.393181,-1.65267,-1.64001},{-0.14842,-0.646541,-0.748303}},
  958. X{{-0.417839,-1.75631,-1.5355},{-0.165892,-0.722654,-0.671007}},
  959. X{{-0.440471,-1.85144,-1.40736},{-0.189836,-0.826958,-0.529247}},
  960. X{{-0.457022,-1.92101,-1.2543},{-0.213307,-0.9292,-0.301807}},
  961. X{{-0.46344,-1.94799,-1.075},{-0.22374,-0.974649,0}},
  962. X{{-0.664723,-1.34956,-1.825},{-0.435809,-0.900039,0}},
  963. X{{-0.676997,-1.37448,-1.78345},{-0.303786,-0.627384,-0.71701}},
  964. X{{-0.70865,-1.43875,-1.72223},{-0.275354,-0.568665,-0.775113}},
  965. X{{-0.751932,-1.52662,-1.64001},{-0.288814,-0.596463,-0.748878}},
  966. X{{-0.799089,-1.62236,-1.5355},{-0.322876,-0.666809,-0.671653}},
  967. X{{-0.84237,-1.71023,-1.40736},{-0.369588,-0.76328,-0.529914}},
  968. X{{-0.874024,-1.7745,-1.2543},{-0.41542,-0.857933,-0.302287}},
  969. X{{-0.886297,-1.79942,-1.075},{-0.435809,-0.900039,0}},
  970. X{{-0.943032,-1.17411,-1.825},{-0.624305,-0.781181,0}},
  971. X{{-0.960445,-1.19579,-1.78345},{-0.434944,-0.544238,-0.717376}},
  972. X{{-1.00535,-1.2517,-1.72223},{-0.394201,-0.493256,-0.775438}},
  973. X{{-1.06675,-1.32815,-1.64001},{-0.413488,-0.517389,-0.749224}},
  974. X{{-1.13365,-1.41144,-1.5355},{-0.462307,-0.578476,-0.67204}},
  975. X{{-1.19506,-1.48789,-1.40736},{-0.529286,-0.662286,-0.530314}},
  976. X{{-1.23996,-1.5438,-1.2543},{-0.595041,-0.744564,-0.302576}},
  977. X{{-1.25738,-1.56548,-1.075},{-0.624305,-0.781181,0}},
  978. X{{-1.17411,-0.943032,-1.825},{-0.781181,-0.624304,0}},
  979. X{{-1.19579,-0.960445,-1.78345},{-0.544238,-0.434944,-0.717376}},
  980. X{{-1.2517,-1.00535,-1.72223},{-0.493256,-0.394201,-0.775438}},
  981. X{{-1.32815,-1.06675,-1.64001},{-0.517389,-0.413487,-0.749224}},
  982. X{{-1.41144,-1.13365,-1.5355},{-0.578476,-0.462307,-0.67204}},
  983. X{{-1.48789,-1.19506,-1.40736},{-0.662286,-0.529286,-0.530314}},
  984. X{{-1.5438,-1.23996,-1.2543},{-0.744564,-0.595041,-0.302576}},
  985. X{{-1.56548,-1.25738,-1.075},{-0.781181,-0.624304,0}},
  986. X{{-1.34956,-0.664723,-1.825},{-0.900039,-0.435809,0}},
  987. X{{-1.37448,-0.676997,-1.78345},{-0.627384,-0.303786,-0.71701}},
  988. X{{-1.43875,-0.70865,-1.72223},{-0.568665,-0.275354,-0.775113}},
  989. X{{-1.52662,-0.751932,-1.64001},{-0.596463,-0.288813,-0.748879}},
  990. X{{-1.62236,-0.799089,-1.5355},{-0.666809,-0.322876,-0.671653}},
  991. X{{-1.71023,-0.84237,-1.40736},{-0.76328,-0.369588,-0.529914}},
  992. X{{-1.7745,-0.874024,-1.2543},{-0.857933,-0.41542,-0.302287}},
  993. X{{-1.79942,-0.886297,-1.075},{-0.900039,-0.435809,0}},
  994. X{{-1.46099,-0.34758,-1.825},{-0.974649,-0.22374,0}},
  995. X{{-1.48797,-0.353998,-1.78345},{-0.680002,-0.156101,-0.7164}},
  996. X{{-1.55754,-0.370549,-1.72223},{-0.616452,-0.141513,-0.774571}},
  997. X{{-1.65267,-0.393181,-1.64001},{-0.646541,-0.14842,-0.748303}},
  998. X{{-1.75631,-0.417839,-1.5355},{-0.722654,-0.165892,-0.671007}},
  999. X{{-1.85144,-0.440471,-1.40736},{-0.826958,-0.189836,-0.529247}},
  1000. X{{-1.92101,-0.457022,-1.2543},{-0.9292,-0.213307,-0.301807}},
  1001. X{{-1.94799,-0.46344,-1.075},{-0.974649,-0.22374,0}},
  1002. X{{-1.5,0,-1.825},{-1,0,0}},
  1003. X{{-1.5277,0,-1.78345},{-0.6981,0,-0.716}},
  1004. X{{-1.59913,0,-1.72223},{-0.632922,0,-0.774216}},
  1005. X{{-1.69679,0,-1.64001},{-0.663783,0,-0.747925}},
  1006. X{{-1.80321,0,-1.5355},{-0.741834,0,-0.670584}},
  1007. X{{-1.90087,0,-1.40736},{-0.84874,0,-0.52881}},
  1008. X{{-1.9723,0,-1.2543},{-0.953469,0,-0.301492}},
  1009. X{{-2,0,-1.075},{-1,0,0}}
  1010. X};
  1011. X
  1012. XPEXVertexNormal pt11[] = {
  1013. X{{-1.5,0,-1.825},{-1,0,0}},
  1014. X{{-1.5277,0,-1.78345},{-0.6981,0,-0.716}},
  1015. X{{-1.59913,0,-1.72223},{-0.632922,0,-0.774216}},
  1016. X{{-1.69679,0,-1.64001},{-0.663783,0,-0.747925}},
  1017. X{{-1.80321,0,-1.5355},{-0.741834,0,-0.670584}},
  1018. X{{-1.90087,0,-1.40736},{-0.84874,0,-0.52881}},
  1019. X{{-1.9723,0,-1.2543},{-0.953469,0,-0.301492}},
  1020. X{{-2,0,-1.075},{-1,0,0}},
  1021. X{{-1.46099,0.34758,-1.825},{-0.974649,0.22374,0}},
  1022. X{{-1.48797,0.353998,-1.78345},{-0.680002,0.156101,-0.7164}},
  1023. X{{-1.55754,0.370549,-1.72223},{-0.616452,0.141513,-0.774571}},
  1024. X{{-1.65267,0.393181,-1.64001},{-0.646541,0.14842,-0.748303}},
  1025. X{{-1.75631,0.417839,-1.5355},{-0.722654,0.165892,-0.671007}},
  1026. X{{-1.85144,0.440471,-1.40736},{-0.826958,0.189836,-0.529247}},
  1027. X{{-1.92101,0.457022,-1.2543},{-0.9292,0.213307,-0.301807}},
  1028. X{{-1.94799,0.46344,-1.075},{-0.974649,0.22374,0}},
  1029. X{{-1.34956,0.664723,-1.825},{-0.900039,0.435809,0}},
  1030. X{{-1.37448,0.676997,-1.78345},{-0.627384,0.303786,-0.71701}},
  1031. X{{-1.43875,0.70865,-1.72223},{-0.568665,0.275354,-0.775113}},
  1032. X{{-1.52662,0.751932,-1.64001},{-0.596463,0.288814,-0.748878}},
  1033. X{{-1.62236,0.799089,-1.5355},{-0.666809,0.322876,-0.671653}},
  1034. X{{-1.71023,0.84237,-1.40736},{-0.76328,0.369588,-0.529914}},
  1035. X{{-1.7745,0.874024,-1.2543},{-0.857933,0.41542,-0.302287}},
  1036. X{{-1.79942,0.886297,-1.075},{-0.900039,0.435809,0}},
  1037. X{{-1.17411,0.943032,-1.825},{-0.781181,0.624305,0}},
  1038. X{{-1.19579,0.960445,-1.78345},{-0.544238,0.434944,-0.717376}},
  1039. X{{-1.2517,1.00535,-1.72223},{-0.493256,0.394201,-0.775438}},
  1040. X{{-1.32815,1.06675,-1.64001},{-0.517389,0.413488,-0.749224}},
  1041. X{{-1.41144,1.13365,-1.5355},{-0.578476,0.462307,-0.67204}},
  1042. X{{-1.48789,1.19506,-1.40736},{-0.662286,0.529286,-0.530314}},
  1043. X{{-1.5438,1.23996,-1.2543},{-0.744564,0.595041,-0.302576}},
  1044. X{{-1.56548,1.25738,-1.075},{-0.781181,0.624305,0}},
  1045. X{{-0.943032,1.17411,-1.825},{-0.624304,0.781181,0}},
  1046. X{{-0.960445,1.19579,-1.78345},{-0.434944,0.544238,-0.717376}},
  1047. X{{-1.00535,1.2517,-1.72223},{-0.394201,0.493256,-0.775438}},
  1048. X{{-1.06675,1.32815,-1.64001},{-0.413487,0.517389,-0.749224}},
  1049. X{{-1.13365,1.41144,-1.5355},{-0.462307,0.578476,-0.67204}},
  1050. X{{-1.19506,1.48789,-1.40736},{-0.529286,0.662286,-0.530314}},
  1051. X{{-1.23996,1.5438,-1.2543},{-0.595041,0.744564,-0.302576}},
  1052. X{{-1.25738,1.56548,-1.075},{-0.624304,0.781181,0}},
  1053. X{{-0.664723,1.34956,-1.825},{-0.435809,0.900039,0}},
  1054. X{{-0.676997,1.37448,-1.78345},{-0.303786,0.627384,-0.71701}},
  1055. X{{-0.70865,1.43875,-1.72223},{-0.275354,0.568665,-0.775113}},
  1056. X{{-0.751932,1.52662,-1.64001},{-0.288813,0.596463,-0.748879}},
  1057. X{{-0.799089,1.62236,-1.5355},{-0.322876,0.666809,-0.671653}},
  1058. X{{-0.84237,1.71023,-1.40736},{-0.369588,0.76328,-0.529914}},
  1059. X{{-0.874024,1.7745,-1.2543},{-0.41542,0.857933,-0.302287}},
  1060. X{{-0.886297,1.79942,-1.075},{-0.435809,0.900039,0}},
  1061. X{{-0.34758,1.46099,-1.825},{-0.22374,0.974649,0}},
  1062. X{{-0.353998,1.48797,-1.78345},{-0.156101,0.680002,-0.7164}},
  1063. X{{-0.370549,1.55754,-1.72223},{-0.141513,0.616452,-0.774571}},
  1064. X{{-0.393181,1.65267,-1.64001},{-0.14842,0.646541,-0.748303}},
  1065. X{{-0.417839,1.75631,-1.5355},{-0.165892,0.722654,-0.671007}},
  1066. X{{-0.440471,1.85144,-1.40736},{-0.189836,0.826958,-0.529247}},
  1067. X{{-0.457022,1.92101,-1.2543},{-0.213307,0.9292,-0.301807}},
  1068. X{{-0.46344,1.94799,-1.075},{-0.22374,0.974649,0}},
  1069. X{{0,1.5,-1.825},{0,1,0}},
  1070. X{{0,1.5277,-1.78345},{0,0.6981,-0.716}},
  1071. X{{0,1.59913,-1.72223},{0,0.632922,-0.774216}},
  1072. X{{0,1.69679,-1.64001},{0,0.663783,-0.747925}},
  1073. X{{0,1.80321,-1.5355},{0,0.741834,-0.670584}},
  1074. X{{0,1.90087,-1.40736},{0,0.84874,-0.52881}},
  1075. X{{0,1.9723,-1.2543},{0,0.953469,-0.301492}},
  1076. X{{0,2,-1.075},{0,1,0}}
  1077. X};
  1078. X
  1079. XPEXVertexNormal pt12[] = {
  1080. X{{0,1.5,-1.825},{0,1,0}},
  1081. X{{0,1.5277,-1.78345},{0,0.6981,-0.716}},
  1082. X{{0,1.59913,-1.72223},{0,0.632922,-0.774216}},
  1083. X{{0,1.69679,-1.64001},{0,0.663783,-0.747925}},
  1084. X{{0,1.80321,-1.5355},{0,0.741834,-0.670584}},
  1085. X{{0,1.90087,-1.40736},{0,0.84874,-0.52881}},
  1086. X{{0,1.9723,-1.2543},{0,0.953469,-0.301492}},
  1087. X{{0,2,-1.075},{0,1,0}},
  1088. X{{0.34758,1.46099,-1.825},{0.22374,0.974649,0}},
  1089. X{{0.353998,1.48797,-1.78345},{0.156101,0.680002,-0.7164}},
  1090. X{{0.370549,1.55754,-1.72223},{0.141513,0.616452,-0.774571}},
  1091. X{{0.393181,1.65267,-1.64001},{0.14842,0.646541,-0.748303}},
  1092. X{{0.417839,1.75631,-1.5355},{0.165892,0.722654,-0.671007}},
  1093. X{{0.440471,1.85144,-1.40736},{0.189836,0.826958,-0.529247}},
  1094. X{{0.457022,1.92101,-1.2543},{0.213307,0.9292,-0.301807}},
  1095. X{{0.46344,1.94799,-1.075},{0.22374,0.974649,0}},
  1096. X{{0.664723,1.34956,-1.825},{0.435809,0.900039,0}},
  1097. X{{0.676997,1.37448,-1.78345},{0.303786,0.627384,-0.71701}},
  1098. X{{0.70865,1.43875,-1.72223},{0.275354,0.568665,-0.775113}},
  1099. X{{0.751932,1.52662,-1.64001},{0.288814,0.596463,-0.748878}},
  1100. X{{0.799089,1.62236,-1.5355},{0.322876,0.666809,-0.671653}},
  1101. X{{0.84237,1.71023,-1.40736},{0.369588,0.76328,-0.529914}},
  1102. X{{0.874024,1.7745,-1.2543},{0.41542,0.857933,-0.302287}},
  1103. X{{0.886297,1.79942,-1.075},{0.435809,0.900039,0}},
  1104. X{{0.943032,1.17411,-1.825},{0.624305,0.781181,0}},
  1105. X{{0.960445,1.19579,-1.78345},{0.434944,0.544238,-0.717376}},
  1106. X{{1.00535,1.2517,-1.72223},{0.394201,0.493256,-0.775438}},
  1107. X{{1.06675,1.32815,-1.64001},{0.413488,0.517389,-0.749224}},
  1108. X{{1.13365,1.41144,-1.5355},{0.462307,0.578476,-0.67204}},
  1109. X{{1.19506,1.48789,-1.40736},{0.529286,0.662286,-0.530314}},
  1110. X{{1.23996,1.5438,-1.2543},{0.595041,0.744564,-0.302576}},
  1111. X{{1.25738,1.56548,-1.075},{0.624305,0.781181,0}},
  1112. X{{1.17411,0.943032,-1.825},{0.781181,0.624304,0}},
  1113. X{{1.19579,0.960445,-1.78345},{0.544238,0.434944,-0.717376}},
  1114. X{{1.2517,1.00535,-1.72223},{0.493256,0.394201,-0.775438}},
  1115. X{{1.32815,1.06675,-1.64001},{0.517389,0.413487,-0.749224}},
  1116. X{{1.41144,1.13365,-1.5355},{0.578476,0.462307,-0.67204}},
  1117. X{{1.48789,1.19506,-1.40736},{0.662286,0.529286,-0.530314}},
  1118. X{{1.5438,1.23996,-1.2543},{0.744564,0.595041,-0.302576}},
  1119. X{{1.56548,1.25738,-1.075},{0.781181,0.624304,0}},
  1120. X{{1.34956,0.664723,-1.825},{0.900039,0.435809,0}},
  1121. X{{1.37448,0.676997,-1.78345},{0.627384,0.303786,-0.71701}},
  1122. X{{1.43875,0.70865,-1.72223},{0.568665,0.275354,-0.775113}},
  1123. X{{1.52662,0.751932,-1.64001},{0.596463,0.288813,-0.748879}},
  1124. X{{1.62236,0.799089,-1.5355},{0.666809,0.322876,-0.671653}},
  1125. X{{1.71023,0.84237,-1.40736},{0.76328,0.369588,-0.529914}},
  1126. X{{1.7745,0.874024,-1.2543},{0.857933,0.41542,-0.302287}},
  1127. X{{1.79942,0.886297,-1.075},{0.900039,0.435809,0}},
  1128. X{{1.46099,0.34758,-1.825},{0.974649,0.22374,0}},
  1129. X{{1.48797,0.353998,-1.78345},{0.680002,0.156101,-0.7164}},
  1130. X{{1.55754,0.370549,-1.72223},{0.616452,0.141513,-0.774571}},
  1131. X{{1.65267,0.393181,-1.64001},{0.646541,0.14842,-0.748303}},
  1132. X{{1.75631,0.417839,-1.5355},{0.722654,0.165892,-0.671007}},
  1133. X{{1.85144,0.440471,-1.40736},{0.826958,0.189836,-0.529247}},
  1134. X{{1.92101,0.457022,-1.2543},{0.9292,0.213307,-0.301807}},
  1135. X{{1.94799,0.46344,-1.075},{0.974649,0.22374,0}},
  1136. X{{1.5,0,-1.825},{1,0,0}},
  1137. X{{1.5277,0,-1.78345},{0.6981,0,-0.716}},
  1138. X{{1.59913,0,-1.72223},{0.632922,0,-0.774216}},
  1139. X{{1.69679,0,-1.64001},{0.663783,0,-0.747925}},
  1140. X{{1.80321,0,-1.5355},{0.741834,0,-0.670584}},
  1141. X{{1.90087,0,-1.40736},{0.84874,0,-0.52881}},
  1142. X{{1.9723,0,-1.2543},{0.953469,0,-0.301492}},
  1143. X{{2,0,-1.075},{1,0,0}}
  1144. X};
  1145. X
  1146. XPEXVertexNormal pt13[] = {
  1147. X{{-2.7,0,-0.175},{1,0,0}},
  1148. X{{-2.6758,0,-0.091691},{0.827306,0,-0.561751}},
  1149. X{{-2.60437,0,-0.031997},{0.461935,0,-0.886914}},
  1150. X{{-2.48746,0,0.00801757},{0.220826,0,-0.975313}},
  1151. X{{-2.32682,0,0.0322887},{0.0968977,0,-0.995294}},
  1152. X{{-2.1242,0,0.0447523},{0.0352722,0,-0.999378}},
  1153. X{{-1.88134,0,0.0493441},{0.00749979,0,-0.999972}},
  1154. X{{-1.6,0,0.0500001},{0,0,-1}},
  1155. X{{-2.71662,-0.110204,-0.175},{0.945946,-0.324324,0}},
  1156. X{{-2.69206,-0.110204,-0.0870762},{0.794376,-0.31593,-0.518801}},
  1157. X{{-2.61951,-0.110204,-0.0240756},{0.456597,-0.280534,-0.844286}},
  1158. X{{-2.50059,-0.110204,0.0181556},{0.220914,-0.256648,-0.940919}},
  1159. X{{-2.33698,-0.110204,0.0437712},{0.0971565,-0.248665,-0.963705}},
  1160. X{{-2.13032,-0.110204,0.0569251},{0.0353359,-0.247624,-0.968212}},
  1161. X{{-1.88226,-0.110204,0.0617713},{0.00750076,-0.248486,-0.968606}},
  1162. X{{-1.59446,-0.110204,0.0624636},{0,-0.249041,-0.968493}},
  1163. X{{-2.75948,-0.183673,-0.175},{0.724138,-0.689655,0}},
  1164. X{{-2.73401,-0.183673,-0.0751749},{0.626857,-0.683268,-0.374427}},
  1165. X{{-2.65853,-0.183673,-0.00364661},{0.390464,-0.63934,-0.662406}},
  1166. X{{-2.53445,-0.183673,0.0443009},{0.197832,-0.59947,-0.775563}},
  1167. X{{-2.36318,-0.183673,0.0733838},{0.0881788,-0.582885,-0.807756}},
  1168. X{{-2.1461,-0.183673,0.0883183},{0.0320735,-0.579404,-0.814409}},
  1169. X{{-1.88464,-0.183673,0.0938205},{0.00678072,-0.580338,-0.814347}},
  1170. X{{-1.58017,-0.183673,0.0946065},{0,-0.581238,-0.813734}},
  1171. X{{-2.81808,-0.220408,-0.175},{0.28,-0.96,0}},
  1172. X{{-2.79135,-0.220408,-0.0589017},{0.247993,-0.959477,-0.133803}},
  1173. X{{-2.71189,-0.220408,0.0242869},{0.168707,-0.950882,-0.259541}},
  1174. X{{-2.58075,-0.220408,0.0800507},{0.0923455,-0.939588,-0.329617}},
  1175. X{{-2.399,-0.220408,0.113875},{0.0425506,-0.933382,-0.356353}},
  1176. X{{-2.16769,-0.220408,0.131244},{0.015576,-0.931614,-0.363114}},
  1177. X{{-1.88788,-0.220408,0.137643},{0.00327935,-0.931724,-0.363153}},
  1178. X{{-1.56064,-0.220408,0.138557},{0,-0.932005,-0.362446}},
  1179. X{{-2.88192,-0.220408,-0.175},{-0.28,-0.96,0}},
  1180. X{{-2.85384,-0.220408,-0.0411712},{-0.25104,-0.960045,0.123661}},
  1181. X{{-2.77003,-0.220408,0.0547219},{-0.175592,-0.952824,0.247578}},
  1182. X{{-2.6312,-0.220408,0.119002},{-0.0982819,-0.941359,0.322776}},
  1183. X{{-2.43803,-0.220408,0.157991},{-0.0457409,-0.934177,0.353866}},
  1184. X{{-2.1912,-0.220408,0.178013},{-0.0167692,-0.931799,0.362588}},
  1185. X{{-1.89142,-0.220408,0.185389},{-0.00352105,-0.931729,0.363138}},
  1186. X{{-1.53936,-0.220408,0.186443},{0,-0.932005,0.362447}},
  1187. X{{-2.94052,-0.183673,-0.175},{-0.724138,-0.689655,0}},
  1188. X{{-2.91118,-0.183673,-0.024898},{-0.656426,-0.691533,0.301475}},
  1189. X{{-2.82339,-0.183673,0.0826554},{-0.452303,-0.663043,0.596487}},
  1190. X{{-2.6775,-0.183673,0.154752},{-0.242795,-0.61742,0.748226}},
  1191. X{{-2.47385,-0.183673,0.198482},{-0.109809,-0.590208,0.799748}},
  1192. X{{-2.21279,-0.183673,0.220938},{-0.0398036,-0.581055,0.81289}},
  1193. X{{-1.89466,-0.183673,0.229212},{-0.00833174,-0.580386,0.814299}},
  1194. X{{-1.51983,-0.183673,0.230394},{0,-0.581238,0.813734}},
  1195. X{{-2.98338,-0.110204,-0.175},{-0.945946,-0.324324,0}},
  1196. X{{-2.95313,-0.110204,-0.0129967},{-0.865413,-0.326552,0.380031}},
  1197. X{{-2.86242,-0.110204,0.103084},{-0.590694,-0.306411,0.746453}},
  1198. X{{-2.71136,-0.110204,0.180897},{-0.307876,-0.273973,0.911126}},
  1199. X{{-2.50005,-0.110204,0.228095},{-0.136556,-0.25537,0.957151}},
  1200. X{{-2.22857,-0.110204,0.252332},{-0.0491037,-0.249116,0.967228}},
  1201. X{{-1.89704,-0.110204,0.261261},{-0.0102524,-0.248529,0.96857}},
  1202. X{{-1.50554,-0.110204,0.262536},{0,-0.249041,0.968493}},
  1203. X{{-3,0,-0.175},{-1,0,0}},
  1204. X{{-2.96939,0,-0.00838195},{-0.917969,0,0.396653}},
  1205. X{{-2.87755,0,0.111006},{-0.626391,0,0.779509}},
  1206. X{{-2.72449,0,0.191035},{-0.324324,0,0.945946}},
  1207. X{{-2.5102,0,0.239577},{-0.143153,0,0.989701}},
  1208. X{{-2.23469,0,0.264504},{-0.0513607,0,0.99868}},
  1209. X{{-1.89796,0,0.273688},{-0.0107137,0,0.999943}},
  1210. X{{-1.5,0,0.275},{0,0,1}}
  1211. X};
  1212. X
  1213. XPEXVertexNormal pt14[] = {
  1214. X{{-3,0,-0.175},{-1,0,0}},
  1215. X{{-2.96939,0,-0.00838195},{-0.917969,0,0.396653}},
  1216. X{{-2.87755,0,0.111006},{-0.626391,0,0.779509}},
  1217. X{{-2.72449,0,0.191035},{-0.324324,0,0.945946}},
  1218. X{{-2.5102,0,0.239577},{-0.143153,0,0.989701}},
  1219. X{{-2.23469,0,0.264504},{-0.0513607,0,0.99868}},
  1220. X{{-1.89796,0,0.273688},{-0.0107137,0,0.999943}},
  1221. X{{-1.5,0,0.275},{0,0,1}},
  1222. X{{-2.98338,0.110204,-0.175},{-0.945946,0.324324,0}},
  1223. X{{-2.95313,0.110204,-0.0129967},{-0.865413,0.326552,0.380031}},
  1224. X{{-2.86242,0.110204,0.103084},{-0.590694,0.306411,0.746453}},
  1225. X{{-2.71136,0.110204,0.180897},{-0.307876,0.273973,0.911126}},
  1226. X{{-2.50005,0.110204,0.228095},{-0.136556,0.25537,0.957151}},
  1227. X{{-2.22857,0.110204,0.252332},{-0.0491037,0.249116,0.967228}},
  1228. X{{-1.89704,0.110204,0.261261},{-0.0102524,0.248529,0.96857}},
  1229. X{{-1.50554,0.110204,0.262536},{0,0.249041,0.968493}},
  1230. X{{-2.94052,0.183673,-0.175},{-0.724138,0.689655,0}},
  1231. X{{-2.91118,0.183673,-0.024898},{-0.656426,0.691533,0.301475}},
  1232. X{{-2.82339,0.183673,0.0826554},{-0.452303,0.663043,0.596487}},
  1233. X{{-2.6775,0.183673,0.154752},{-0.242795,0.61742,0.748226}},
  1234. X{{-2.47385,0.183673,0.198482},{-0.109809,0.590208,0.799748}},
  1235. X{{-2.21279,0.183673,0.220938},{-0.0398036,0.581055,0.81289}},
  1236. X{{-1.89466,0.183673,0.229212},{-0.00833174,0.580386,0.814299}},
  1237. X{{-1.51983,0.183673,0.230394},{0,0.581238,0.813734}},
  1238. X{{-2.88192,0.220408,-0.175},{-0.28,0.96,0}},
  1239. X{{-2.85384,0.220408,-0.0411712},{-0.25104,0.960045,0.123661}},
  1240. X{{-2.77003,0.220408,0.0547219},{-0.175592,0.952824,0.247577}},
  1241. X{{-2.6312,0.220408,0.119002},{-0.0982818,0.941359,0.322775}},
  1242. X{{-2.43803,0.220408,0.157991},{-0.0457408,0.934177,0.353866}},
  1243. X{{-2.1912,0.220408,0.178013},{-0.0167692,0.931799,0.362588}},
  1244. X{{-1.89142,0.220408,0.185389},{-0.00352105,0.931729,0.363138}},
  1245. X{{-1.53936,0.220408,0.186443},{0,0.932005,0.362446}},
  1246. X{{-2.81808,0.220408,-0.175},{0.28,0.96,0}},
  1247. X{{-2.79135,0.220408,-0.0589017},{0.247993,0.959477,-0.133803}},
  1248. X{{-2.71189,0.220408,0.0242869},{0.168707,0.950882,-0.259541}},
  1249. X{{-2.58075,0.220408,0.0800507},{0.0923455,0.939588,-0.329617}},
  1250. X{{-2.399,0.220408,0.113875},{0.0425506,0.933382,-0.356353}},
  1251. X{{-2.16769,0.220408,0.131244},{0.015576,0.931614,-0.363115}},
  1252. X{{-1.88788,0.220408,0.137643},{0.00327935,0.931723,-0.363154}},
  1253. X{{-1.56064,0.220408,0.138557},{0,0.932005,-0.362447}},
  1254. X{{-2.75948,0.183673,-0.175},{0.724138,0.689655,0}},
  1255. X{{-2.73401,0.183673,-0.0751749},{0.626857,0.683268,-0.374427}},
  1256. X{{-2.65853,0.183673,-0.00364661},{0.390464,0.63934,-0.662406}},
  1257. X{{-2.53445,0.183673,0.0443009},{0.197832,0.59947,-0.775563}},
  1258. END_OF_FILE
  1259.   if test 50546 -ne `wc -c <'teapotc.1'`; then
  1260.     echo shar: \"'teapotc.1'\" unpacked with wrong size!
  1261.   fi
  1262.   # end of 'teapotc.1'
  1263. fi
  1264. echo shar: End of archive 3 \(of 14\).
  1265. cp /dev/null ark3isdone
  1266. MISSING=""
  1267. for I in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ; do
  1268.     if test ! -f ark${I}isdone ; then
  1269.     MISSING="${MISSING} ${I}"
  1270.     fi
  1271. done
  1272. if test "${MISSING}" = "" ; then
  1273.     echo You have unpacked all 14 archives.
  1274.     rm -f ark[1-9]isdone ark[1-9][0-9]isdone
  1275.     echo "concatentating pexdraw.c ..."
  1276.     cat pexdrawc.? > pexdraw.c
  1277.     rm pexdrawc.?
  1278.     echo "concatentating pexdraw.uil ..."
  1279.     cat pexdrawu.? > pexdraw.uil
  1280.     rm pexdrawu.?
  1281.     echo "concatentating teapot.c ..."
  1282.     rm teapotc.?
  1283. else
  1284.     echo You still must unpack the following archives:
  1285.     echo "        " ${MISSING}
  1286. fi
  1287. exit 0
  1288. exit 0 # Just in case...
  1289. -- 
  1290.   // chris@IMD.Sterling.COM       | Send comp.sources.x submissions to:
  1291. \X/  Amiga - The only way to fly! |    sources-x@imd.sterling.com
  1292.  "It's intuitively obvious to the |
  1293.   most casual observer..."        | GCS d+/-- p+ c++ l+ m+ s++/+ g+ w+ t+ r+ x+
  1294.