home *** CD-ROM | disk | FTP | other *** search
Text File | 1992-12-16 | 57.7 KB | 1,685 lines |
- Newsgroups: comp.sources.misc
- From: jpeg-info@uunet.uu.net (Independent JPEG Group)
- Subject: v34i056: jpeg - JPEG image compression, Part02/18
- Message-ID: <1992Dec17.041400.22555@sparky.imd.sterling.com>
- X-Md4-Signature: 5a308acac4fc2f0881e0e20a07d11849
- Date: Thu, 17 Dec 1992 04:14:00 GMT
- Approved: kent@sparky.imd.sterling.com
-
- Submitted-by: jpeg-info@uunet.uu.net (Independent JPEG Group)
- Posting-number: Volume 34, Issue 56
- Archive-name: jpeg/part02
- Environment: UNIX, VMS, MS-DOS, Mac, Amiga, Atari, Cray
- Supersedes: jpeg: Volume 29, Issue 1-18
-
- #! /bin/sh
- # This is a shell archive. Remove anything before this line, then feed it
- # into a shell via "sh file" or similar. To overwrite existing files,
- # type "sh file -c".
- # Contents: jquant2.c jrdppm.c
- # Wrapped by kent@sparky on Wed Dec 16 20:52:24 1992
- PATH=/bin:/usr/bin:/usr/ucb:/usr/local/bin:/usr/lbin ; export PATH
- echo If this archive is complete, you will see the following message:
- echo ' "shar: End of archive 2 (of 18)."'
- if test -f 'jquant2.c' -a "${1}" != "-c" ; then
- echo shar: Will not clobber existing file \"'jquant2.c'\"
- else
- echo shar: Extracting \"'jquant2.c'\" \(42194 characters\)
- sed "s/^X//" >'jquant2.c' <<'END_OF_FILE'
- X/*
- X * jquant2.c
- X *
- X * Copyright (C) 1991, 1992, Thomas G. Lane.
- X * This file is part of the Independent JPEG Group's software.
- X * For conditions of distribution and use, see the accompanying README file.
- X *
- X * This file contains 2-pass color quantization (color mapping) routines.
- X * These routines are invoked via the methods color_quant_prescan,
- X * color_quant_doit, and color_quant_init/term.
- X */
- X
- X#include "jinclude.h"
- X
- X#ifdef QUANT_2PASS_SUPPORTED
- X
- X
- X/*
- X * This module implements the well-known Heckbert paradigm for color
- X * quantization. Most of the ideas used here can be traced back to
- X * Heckbert's seminal paper
- X * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
- X * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
- X *
- X * In the first pass over the image, we accumulate a histogram showing the
- X * usage count of each possible color. (To keep the histogram to a reasonable
- X * size, we reduce the precision of the input; typical practice is to retain
- X * 5 or 6 bits per color, so that 8 or 4 different input values are counted
- X * in the same histogram cell.) Next, the color-selection step begins with a
- X * box representing the whole color space, and repeatedly splits the "largest"
- X * remaining box until we have as many boxes as desired colors. Then the mean
- X * color in each remaining box becomes one of the possible output colors.
- X * The second pass over the image maps each input pixel to the closest output
- X * color (optionally after applying a Floyd-Steinberg dithering correction).
- X * This mapping is logically trivial, but making it go fast enough requires
- X * considerable care.
- X *
- X * Heckbert-style quantizers vary a good deal in their policies for choosing
- X * the "largest" box and deciding where to cut it. The particular policies
- X * used here have proved out well in experimental comparisons, but better ones
- X * may yet be found.
- X *
- X * The most significant difference between this quantizer and others is that
- X * this one is intended to operate in YCbCr colorspace, rather than RGB space
- X * as is usually done. Actually we work in scaled YCbCr colorspace, where
- X * Y distances are inflated by a factor of 2 relative to Cb or Cr distances.
- X * The empirical evidence is that distances in this space correspond to
- X * perceptual color differences more closely than do distances in RGB space;
- X * and working in this space is inexpensive within a JPEG decompressor, since
- X * the input data is already in YCbCr form. (We could transform to an even
- X * more perceptually linear space such as Lab or Luv, but that is very slow
- X * and doesn't yield much better results than scaled YCbCr.)
- X */
- X
- X#define Y_SCALE 2 /* scale Y distances up by this much */
- X
- X#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
- X
- X
- X/*
- X * First we have the histogram data structure and routines for creating it.
- X *
- X * For work in YCbCr space, it is useful to keep more precision for Y than
- X * for Cb or Cr. We recommend keeping 6 bits for Y and 5 bits each for Cb/Cr.
- X * If you have plenty of memory and cycles, 6 bits all around gives marginally
- X * better results; if you are short of memory, 5 bits all around will save
- X * some space but degrade the results.
- X * To maintain a fully accurate histogram, we'd need to allocate a "long"
- X * (preferably unsigned long) for each cell. In practice this is overkill;
- X * we can get by with 16 bits per cell. Few of the cell counts will overflow,
- X * and clamping those that do overflow to the maximum value will give close-
- X * enough results. This reduces the recommended histogram size from 256Kb
- X * to 128Kb, which is a useful savings on PC-class machines.
- X * (In the second pass the histogram space is re-used for pixel mapping data;
- X * in that capacity, each cell must be able to store zero to the number of
- X * desired colors. 16 bits/cell is plenty for that too.)
- X * Since the JPEG code is intended to run in small memory model on 80x86
- X * machines, we can't just allocate the histogram in one chunk. Instead
- X * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
- X * pointer corresponds to a Y value (typically 2^6 = 64 pointers) and
- X * each 2-D array has 2^5^2 = 1024 or 2^6^2 = 4096 entries. Note that
- X * on 80x86 machines, the pointer row is in near memory but the actual
- X * arrays are in far memory (same arrangement as we use for image arrays).
- X */
- X
- X#ifndef HIST_Y_BITS /* so you can override from Makefile */
- X#define HIST_Y_BITS 6 /* bits of precision in Y histogram */
- X#endif
- X#ifndef HIST_C_BITS /* so you can override from Makefile */
- X#define HIST_C_BITS 5 /* bits of precision in Cb/Cr histogram */
- X#endif
- X
- X#define HIST_Y_ELEMS (1<<HIST_Y_BITS) /* # of elements along histogram axes */
- X#define HIST_C_ELEMS (1<<HIST_C_BITS)
- X
- X/* These are the amounts to shift an input value to get a histogram index.
- X * For a combination 8/12 bit implementation, would need variables here...
- X */
- X
- X#define Y_SHIFT (BITS_IN_JSAMPLE-HIST_Y_BITS)
- X#define C_SHIFT (BITS_IN_JSAMPLE-HIST_C_BITS)
- X
- X
- Xtypedef UINT16 histcell; /* histogram cell; MUST be an unsigned type */
- X
- Xtypedef histcell FAR * histptr; /* for pointers to histogram cells */
- X
- Xtypedef histcell hist1d[HIST_C_ELEMS]; /* typedefs for the array */
- Xtypedef hist1d FAR * hist2d; /* type for the Y-level pointers */
- Xtypedef hist2d * hist3d; /* type for top-level pointer */
- X
- Xstatic hist3d histogram; /* pointer to the histogram */
- X
- X
- X/*
- X * Prescan some rows of pixels.
- X * In this module the prescan simply updates the histogram, which has been
- X * initialized to zeroes by color_quant_init.
- X * Note: workspace is probably not useful for this routine, but it is passed
- X * anyway to allow some code sharing within the pipeline controller.
- X */
- X
- XMETHODDEF void
- Xcolor_quant_prescan (decompress_info_ptr cinfo, int num_rows,
- X JSAMPIMAGE image_data, JSAMPARRAY workspace)
- X{
- X register JSAMPROW ptr0, ptr1, ptr2;
- X register histptr histp;
- X register int c0, c1, c2;
- X int row;
- X long col;
- X long width = cinfo->image_width;
- X
- X for (row = 0; row < num_rows; row++) {
- X ptr0 = image_data[0][row];
- X ptr1 = image_data[1][row];
- X ptr2 = image_data[2][row];
- X for (col = width; col > 0; col--) {
- X /* get pixel value and index into the histogram */
- X c0 = GETJSAMPLE(*ptr0++) >> Y_SHIFT;
- X c1 = GETJSAMPLE(*ptr1++) >> C_SHIFT;
- X c2 = GETJSAMPLE(*ptr2++) >> C_SHIFT;
- X histp = & histogram[c0][c1][c2];
- X /* increment, check for overflow and undo increment if so. */
- X /* We assume unsigned representation here! */
- X if (++(*histp) == 0)
- X (*histp)--;
- X }
- X }
- X}
- X
- X
- X/*
- X * Now we have the really interesting routines: selection of a colormap
- X * given the completed histogram.
- X * These routines work with a list of "boxes", each representing a rectangular
- X * subset of the input color space (to histogram precision).
- X */
- X
- Xtypedef struct {
- X /* The bounds of the box (inclusive); expressed as histogram indexes */
- X int c0min, c0max;
- X int c1min, c1max;
- X int c2min, c2max;
- X /* The number of nonzero histogram cells within this box */
- X long colorcount;
- X } box;
- Xtypedef box * boxptr;
- X
- Xstatic boxptr boxlist; /* array with room for desired # of boxes */
- Xstatic int numboxes; /* number of boxes currently in boxlist */
- X
- Xstatic JSAMPARRAY my_colormap; /* the finished colormap (in YCbCr space) */
- X
- X
- XLOCAL boxptr
- Xfind_biggest_color_pop (void)
- X/* Find the splittable box with the largest color population */
- X/* Returns NULL if no splittable boxes remain */
- X{
- X register boxptr boxp;
- X register int i;
- X register long max = 0;
- X boxptr which = NULL;
- X
- X for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
- X if (boxp->colorcount > max) {
- X if (boxp->c0max > boxp->c0min || boxp->c1max > boxp->c1min ||
- X boxp->c2max > boxp->c2min) {
- X which = boxp;
- X max = boxp->colorcount;
- X }
- X }
- X }
- X return which;
- X}
- X
- X
- XLOCAL boxptr
- Xfind_biggest_volume (void)
- X/* Find the splittable box with the largest (scaled) volume */
- X/* Returns NULL if no splittable boxes remain */
- X{
- X register boxptr boxp;
- X register int i;
- X register INT32 max = 0;
- X register INT32 norm, c0,c1,c2;
- X boxptr which = NULL;
- X
- X /* We use 2-norm rather than real volume here.
- X * Some care is needed since the differences are expressed in
- X * histogram-cell units; if HIST_Y_BITS != HIST_C_BITS, we have to
- X * adjust the scaling to get the proper scaled-YCbCr-space distance.
- X * This code won't work right if HIST_Y_BITS < HIST_C_BITS,
- X * but that shouldn't ever be true.
- X * Note norm > 0 iff box is splittable, so need not check separately.
- X */
- X
- X for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
- X c0 = (boxp->c0max - boxp->c0min) * Y_SCALE;
- X c1 = (boxp->c1max - boxp->c1min) << (HIST_Y_BITS-HIST_C_BITS);
- X c2 = (boxp->c2max - boxp->c2min) << (HIST_Y_BITS-HIST_C_BITS);
- X norm = c0*c0 + c1*c1 + c2*c2;
- X if (norm > max) {
- X which = boxp;
- X max = norm;
- X }
- X }
- X return which;
- X}
- X
- X
- XLOCAL void
- Xupdate_box (boxptr boxp)
- X/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
- X/* and recompute its population */
- X{
- X histptr histp;
- X int c0,c1,c2;
- X int c0min,c0max,c1min,c1max,c2min,c2max;
- X long ccount;
- X
- X c0min = boxp->c0min; c0max = boxp->c0max;
- X c1min = boxp->c1min; c1max = boxp->c1max;
- X c2min = boxp->c2min; c2max = boxp->c2max;
- X
- X if (c0max > c0min)
- X for (c0 = c0min; c0 <= c0max; c0++)
- X for (c1 = c1min; c1 <= c1max; c1++) {
- X histp = & histogram[c0][c1][c2min];
- X for (c2 = c2min; c2 <= c2max; c2++)
- X if (*histp++ != 0) {
- X boxp->c0min = c0min = c0;
- X goto have_c0min;
- X }
- X }
- X have_c0min:
- X if (c0max > c0min)
- X for (c0 = c0max; c0 >= c0min; c0--)
- X for (c1 = c1min; c1 <= c1max; c1++) {
- X histp = & histogram[c0][c1][c2min];
- X for (c2 = c2min; c2 <= c2max; c2++)
- X if (*histp++ != 0) {
- X boxp->c0max = c0max = c0;
- X goto have_c0max;
- X }
- X }
- X have_c0max:
- X if (c1max > c1min)
- X for (c1 = c1min; c1 <= c1max; c1++)
- X for (c0 = c0min; c0 <= c0max; c0++) {
- X histp = & histogram[c0][c1][c2min];
- X for (c2 = c2min; c2 <= c2max; c2++)
- X if (*histp++ != 0) {
- X boxp->c1min = c1min = c1;
- X goto have_c1min;
- X }
- X }
- X have_c1min:
- X if (c1max > c1min)
- X for (c1 = c1max; c1 >= c1min; c1--)
- X for (c0 = c0min; c0 <= c0max; c0++) {
- X histp = & histogram[c0][c1][c2min];
- X for (c2 = c2min; c2 <= c2max; c2++)
- X if (*histp++ != 0) {
- X boxp->c1max = c1max = c1;
- X goto have_c1max;
- X }
- X }
- X have_c1max:
- X if (c2max > c2min)
- X for (c2 = c2min; c2 <= c2max; c2++)
- X for (c0 = c0min; c0 <= c0max; c0++) {
- X histp = & histogram[c0][c1min][c2];
- X for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C_ELEMS)
- X if (*histp != 0) {
- X boxp->c2min = c2min = c2;
- X goto have_c2min;
- X }
- X }
- X have_c2min:
- X if (c2max > c2min)
- X for (c2 = c2max; c2 >= c2min; c2--)
- X for (c0 = c0min; c0 <= c0max; c0++) {
- X histp = & histogram[c0][c1min][c2];
- X for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C_ELEMS)
- X if (*histp != 0) {
- X boxp->c2max = c2max = c2;
- X goto have_c2max;
- X }
- X }
- X have_c2max:
- X
- X /* Now scan remaining volume of box and compute population */
- X ccount = 0;
- X for (c0 = c0min; c0 <= c0max; c0++)
- X for (c1 = c1min; c1 <= c1max; c1++) {
- X histp = & histogram[c0][c1][c2min];
- X for (c2 = c2min; c2 <= c2max; c2++, histp++)
- X if (*histp != 0) {
- X ccount++;
- X }
- X }
- X boxp->colorcount = ccount;
- X}
- X
- X
- XLOCAL void
- Xmedian_cut (int desired_colors)
- X/* Repeatedly select and split the largest box until we have enough boxes */
- X{
- X int n,lb;
- X int c0,c1,c2,cmax;
- X register boxptr b1,b2;
- X
- X while (numboxes < desired_colors) {
- X /* Select box to split */
- X /* Current algorithm: by population for first half, then by volume */
- X if (numboxes*2 <= desired_colors) {
- X b1 = find_biggest_color_pop();
- X } else {
- X b1 = find_biggest_volume();
- X }
- X if (b1 == NULL) /* no splittable boxes left! */
- X break;
- X b2 = &boxlist[numboxes]; /* where new box will go */
- X /* Copy the color bounds to the new box. */
- X b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
- X b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
- X /* Choose which axis to split the box on.
- X * Current algorithm: longest scaled axis.
- X * See notes in find_biggest_volume about scaling...
- X */
- X c0 = (b1->c0max - b1->c0min) * Y_SCALE;
- X c1 = (b1->c1max - b1->c1min) << (HIST_Y_BITS-HIST_C_BITS);
- X c2 = (b1->c2max - b1->c2min) << (HIST_Y_BITS-HIST_C_BITS);
- X cmax = c0; n = 0;
- X if (c1 > cmax) { cmax = c1; n = 1; }
- X if (c2 > cmax) { n = 2; }
- X /* Choose split point along selected axis, and update box bounds.
- X * Current algorithm: split at halfway point.
- X * (Since the box has been shrunk to minimum volume,
- X * any split will produce two nonempty subboxes.)
- X * Note that lb value is max for lower box, so must be < old max.
- X */
- X switch (n) {
- X case 0:
- X lb = (b1->c0max + b1->c0min) / 2;
- X b1->c0max = lb;
- X b2->c0min = lb+1;
- X break;
- X case 1:
- X lb = (b1->c1max + b1->c1min) / 2;
- X b1->c1max = lb;
- X b2->c1min = lb+1;
- X break;
- X case 2:
- X lb = (b1->c2max + b1->c2min) / 2;
- X b1->c2max = lb;
- X b2->c2min = lb+1;
- X break;
- X }
- X /* Update stats for boxes */
- X update_box(b1);
- X update_box(b2);
- X numboxes++;
- X }
- X}
- X
- X
- XLOCAL void
- Xcompute_color (boxptr boxp, int icolor)
- X/* Compute representative color for a box, put it in my_colormap[icolor] */
- X{
- X /* Current algorithm: mean weighted by pixels (not colors) */
- X /* Note it is important to get the rounding correct! */
- X histptr histp;
- X int c0,c1,c2;
- X int c0min,c0max,c1min,c1max,c2min,c2max;
- X long count;
- X long total = 0;
- X long c0total = 0;
- X long c1total = 0;
- X long c2total = 0;
- X
- X c0min = boxp->c0min; c0max = boxp->c0max;
- X c1min = boxp->c1min; c1max = boxp->c1max;
- X c2min = boxp->c2min; c2max = boxp->c2max;
- X
- X for (c0 = c0min; c0 <= c0max; c0++)
- X for (c1 = c1min; c1 <= c1max; c1++) {
- X histp = & histogram[c0][c1][c2min];
- X for (c2 = c2min; c2 <= c2max; c2++) {
- X if ((count = *histp++) != 0) {
- X total += count;
- X c0total += ((c0 << Y_SHIFT) + ((1<<Y_SHIFT)>>1)) * count;
- X c1total += ((c1 << C_SHIFT) + ((1<<C_SHIFT)>>1)) * count;
- X c2total += ((c2 << C_SHIFT) + ((1<<C_SHIFT)>>1)) * count;
- X }
- X }
- X }
- X
- X my_colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
- X my_colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
- X my_colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
- X}
- X
- X
- XLOCAL void
- Xremap_colormap (decompress_info_ptr cinfo)
- X/* Remap the internal colormap to the output colorspace */
- X{
- X /* This requires a little trickery since color_convert expects to
- X * deal with 3-D arrays (a 2-D sample array for each component).
- X * We must promote the colormaps into one-row 3-D arrays.
- X */
- X short ci;
- X JSAMPARRAY input_hack[3];
- X JSAMPARRAY output_hack[10]; /* assume no more than 10 output components */
- X
- X for (ci = 0; ci < 3; ci++)
- X input_hack[ci] = &(my_colormap[ci]);
- X for (ci = 0; ci < cinfo->color_out_comps; ci++)
- X output_hack[ci] = &(cinfo->colormap[ci]);
- X
- X (*cinfo->methods->color_convert) (cinfo, 1,
- X (long) cinfo->actual_number_of_colors,
- X input_hack, output_hack);
- X}
- X
- X
- XLOCAL void
- Xselect_colors (decompress_info_ptr cinfo)
- X/* Master routine for color selection */
- X{
- X int desired = cinfo->desired_number_of_colors;
- X int i;
- X
- X /* Allocate workspace for box list */
- X boxlist = (boxptr) (*cinfo->emethods->alloc_small) (desired * SIZEOF(box));
- X /* Initialize one box containing whole space */
- X numboxes = 1;
- X boxlist[0].c0min = 0;
- X boxlist[0].c0max = MAXJSAMPLE >> Y_SHIFT;
- X boxlist[0].c1min = 0;
- X boxlist[0].c1max = MAXJSAMPLE >> C_SHIFT;
- X boxlist[0].c2min = 0;
- X boxlist[0].c2max = MAXJSAMPLE >> C_SHIFT;
- X /* Shrink it to actually-used volume and set its statistics */
- X update_box(& boxlist[0]);
- X /* Perform median-cut to produce final box list */
- X median_cut(desired);
- X /* Compute the representative color for each box, fill my_colormap[] */
- X for (i = 0; i < numboxes; i++)
- X compute_color(& boxlist[i], i);
- X cinfo->actual_number_of_colors = numboxes;
- X /* Produce an output colormap in the desired output colorspace */
- X remap_colormap(cinfo);
- X TRACEMS1(cinfo->emethods, 1, "Selected %d colors for quantization",
- X numboxes);
- X /* Done with the box list */
- X (*cinfo->emethods->free_small) ((void *) boxlist);
- X}
- X
- X
- X/*
- X * These routines are concerned with the time-critical task of mapping input
- X * colors to the nearest color in the selected colormap.
- X *
- X * We re-use the histogram space as an "inverse color map", essentially a
- X * cache for the results of nearest-color searches. All colors within a
- X * histogram cell will be mapped to the same colormap entry, namely the one
- X * closest to the cell's center. This may not be quite the closest entry to
- X * the actual input color, but it's almost as good. A zero in the cache
- X * indicates we haven't found the nearest color for that cell yet; the array
- X * is cleared to zeroes before starting the mapping pass. When we find the
- X * nearest color for a cell, its colormap index plus one is recorded in the
- X * cache for future use. The pass2 scanning routines call fill_inverse_cmap
- X * when they need to use an unfilled entry in the cache.
- X *
- X * Our method of efficiently finding nearest colors is based on the "locally
- X * sorted search" idea described by Heckbert and on the incremental distance
- X * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
- X * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
- X * the distances from a given colormap entry to each cell of the histogram can
- X * be computed quickly using an incremental method: the differences between
- X * distances to adjacent cells themselves differ by a constant. This allows a
- X * fairly fast implementation of the "brute force" approach of computing the
- X * distance from every colormap entry to every histogram cell. Unfortunately,
- X * it needs a work array to hold the best-distance-so-far for each histogram
- X * cell (because the inner loop has to be over cells, not colormap entries).
- X * The work array elements have to be INT32s, so the work array would need
- X * 256Kb at our recommended precision. This is not feasible in DOS machines.
- X * Another disadvantage of the brute force approach is that it computes
- X * distances to every cell of the cubical histogram. When working with YCbCr
- X * input, only about a quarter of the cube represents realizable colors, so
- X * many of the cells will never be used and filling them is wasted effort.
- X *
- X * To get around these problems, we apply Thomas' method to compute the
- X * nearest colors for only the cells within a small subbox of the histogram.
- X * The work array need be only as big as the subbox, so the memory usage
- X * problem is solved. A subbox is processed only when some cell in it is
- X * referenced by the pass2 routines, so we will never bother with cells far
- X * outside the realizable color volume. An additional advantage of this
- X * approach is that we can apply Heckbert's locality criterion to quickly
- X * eliminate colormap entries that are far away from the subbox; typically
- X * three-fourths of the colormap entries are rejected by Heckbert's criterion,
- X * and we need not compute their distances to individual cells in the subbox.
- X * The speed of this approach is heavily influenced by the subbox size: too
- X * small means too much overhead, too big loses because Heckbert's criterion
- X * can't eliminate as many colormap entries. Empirically the best subbox
- X * size seems to be about 1/512th of the histogram (1/8th in each direction).
- X *
- X * Thomas' article also describes a refined method which is asymptotically
- X * faster than the brute-force method, but it is also far more complex and
- X * cannot efficiently be applied to small subboxes. It is therefore not
- X * useful for programs intended to be portable to DOS machines. On machines
- X * with plenty of memory, filling the whole histogram in one shot with Thomas'
- X * refined method might be faster than the present code --- but then again,
- X * it might not be any faster, and it's certainly more complicated.
- X */
- X
- X
- X#ifndef BOX_Y_LOG /* so you can override from Makefile */
- X#define BOX_Y_LOG (HIST_Y_BITS-3) /* log2(hist cells in update box, Y axis) */
- X#endif
- X#ifndef BOX_C_LOG /* so you can override from Makefile */
- X#define BOX_C_LOG (HIST_C_BITS-3) /* log2(hist cells in update box, C axes) */
- X#endif
- X
- X#define BOX_Y_ELEMS (1<<BOX_Y_LOG) /* # of hist cells in update box */
- X#define BOX_C_ELEMS (1<<BOX_C_LOG)
- X
- X#define BOX_Y_SHIFT (Y_SHIFT + BOX_Y_LOG)
- X#define BOX_C_SHIFT (C_SHIFT + BOX_C_LOG)
- X
- X
- X/*
- X * The next three routines implement inverse colormap filling. They could
- X * all be folded into one big routine, but splitting them up this way saves
- X * some stack space (the mindist[] and bestdist[] arrays need not coexist)
- X * and may allow some compilers to produce better code by registerizing more
- X * inner-loop variables.
- X */
- X
- XLOCAL int
- Xfind_nearby_colors (decompress_info_ptr cinfo, int minc0, int minc1, int minc2,
- X JSAMPLE colorlist[])
- X/* Locate the colormap entries close enough to an update box to be candidates
- X * for the nearest entry to some cell(s) in the update box. The update box
- X * is specified by the center coordinates of its first cell. The number of
- X * candidate colormap entries is returned, and their colormap indexes are
- X * placed in colorlist[].
- X * This routine uses Heckbert's "locally sorted search" criterion to select
- X * the colors that need further consideration.
- X */
- X{
- X int numcolors = cinfo->actual_number_of_colors;
- X int maxc0, maxc1, maxc2;
- X int centerc0, centerc1, centerc2;
- X int i, x, ncolors;
- X INT32 minmaxdist, min_dist, max_dist, tdist;
- X INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
- X
- X /* Compute true coordinates of update box's upper corner and center.
- X * Actually we compute the coordinates of the center of the upper-corner
- X * histogram cell, which are the upper bounds of the volume we care about.
- X * Note that since ">>" rounds down, the "center" values may be closer to
- X * min than to max; hence comparisons to them must be "<=", not "<".
- X */
- X maxc0 = minc0 + ((1 << BOX_Y_SHIFT) - (1 << Y_SHIFT));
- X centerc0 = (minc0 + maxc0) >> 1;
- X maxc1 = minc1 + ((1 << BOX_C_SHIFT) - (1 << C_SHIFT));
- X centerc1 = (minc1 + maxc1) >> 1;
- X maxc2 = minc2 + ((1 << BOX_C_SHIFT) - (1 << C_SHIFT));
- X centerc2 = (minc2 + maxc2) >> 1;
- X
- X /* For each color in colormap, find:
- X * 1. its minimum squared-distance to any point in the update box
- X * (zero if color is within update box);
- X * 2. its maximum squared-distance to any point in the update box.
- X * Both of these can be found by considering only the corners of the box.
- X * We save the minimum distance for each color in mindist[];
- X * only the smallest maximum distance is of interest.
- X * Note we have to scale Y to get correct distance in scaled space.
- X */
- X minmaxdist = 0x7FFFFFFFL;
- X
- X for (i = 0; i < numcolors; i++) {
- X /* We compute the squared-c0-distance term, then add in the other two. */
- X x = GETJSAMPLE(my_colormap[0][i]);
- X if (x < minc0) {
- X tdist = (x - minc0) * Y_SCALE;
- X min_dist = tdist*tdist;
- X tdist = (x - maxc0) * Y_SCALE;
- X max_dist = tdist*tdist;
- X } else if (x > maxc0) {
- X tdist = (x - maxc0) * Y_SCALE;
- X min_dist = tdist*tdist;
- X tdist = (x - minc0) * Y_SCALE;
- X max_dist = tdist*tdist;
- X } else {
- X /* within cell range so no contribution to min_dist */
- X min_dist = 0;
- X if (x <= centerc0) {
- X tdist = (x - maxc0) * Y_SCALE;
- X max_dist = tdist*tdist;
- X } else {
- X tdist = (x - minc0) * Y_SCALE;
- X max_dist = tdist*tdist;
- X }
- X }
- X
- X x = GETJSAMPLE(my_colormap[1][i]);
- X if (x < minc1) {
- X tdist = x - minc1;
- X min_dist += tdist*tdist;
- X tdist = x - maxc1;
- X max_dist += tdist*tdist;
- X } else if (x > maxc1) {
- X tdist = x - maxc1;
- X min_dist += tdist*tdist;
- X tdist = x - minc1;
- X max_dist += tdist*tdist;
- X } else {
- X /* within cell range so no contribution to min_dist */
- X if (x <= centerc1) {
- X tdist = x - maxc1;
- X max_dist += tdist*tdist;
- X } else {
- X tdist = x - minc1;
- X max_dist += tdist*tdist;
- X }
- X }
- X
- X x = GETJSAMPLE(my_colormap[2][i]);
- X if (x < minc2) {
- X tdist = x - minc2;
- X min_dist += tdist*tdist;
- X tdist = x - maxc2;
- X max_dist += tdist*tdist;
- X } else if (x > maxc2) {
- X tdist = x - maxc2;
- X min_dist += tdist*tdist;
- X tdist = x - minc2;
- X max_dist += tdist*tdist;
- X } else {
- X /* within cell range so no contribution to min_dist */
- X if (x <= centerc2) {
- X tdist = x - maxc2;
- X max_dist += tdist*tdist;
- X } else {
- X tdist = x - minc2;
- X max_dist += tdist*tdist;
- X }
- X }
- X
- X mindist[i] = min_dist; /* save away the results */
- X if (max_dist < minmaxdist)
- X minmaxdist = max_dist;
- X }
- X
- X /* Now we know that no cell in the update box is more than minmaxdist
- X * away from some colormap entry. Therefore, only colors that are
- X * within minmaxdist of some part of the box need be considered.
- X */
- X ncolors = 0;
- X for (i = 0; i < numcolors; i++) {
- X if (mindist[i] <= minmaxdist)
- X colorlist[ncolors++] = (JSAMPLE) i;
- X }
- X return ncolors;
- X}
- X
- X
- XLOCAL void
- Xfind_best_colors (decompress_info_ptr cinfo, int minc0, int minc1, int minc2,
- X int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
- X/* Find the closest colormap entry for each cell in the update box,
- X * given the list of candidate colors prepared by find_nearby_colors.
- X * Return the indexes of the closest entries in the bestcolor[] array.
- X * This routine uses Thomas' incremental distance calculation method to
- X * find the distance from a colormap entry to successive cells in the box.
- X */
- X{
- X int ic0, ic1, ic2;
- X int i, icolor;
- X register INT32 * bptr; /* pointer into bestdist[] array */
- X JSAMPLE * cptr; /* pointer into bestcolor[] array */
- X INT32 dist0, dist1; /* initial distance values */
- X register INT32 dist2; /* current distance in inner loop */
- X INT32 xx0, xx1; /* distance increments */
- X register INT32 xx2;
- X INT32 inc0, inc1, inc2; /* initial values for increments */
- X /* This array holds the distance to the nearest-so-far color for each cell */
- X INT32 bestdist[BOX_Y_ELEMS * BOX_C_ELEMS * BOX_C_ELEMS];
- X
- X /* Initialize best-distance for each cell of the update box */
- X bptr = bestdist;
- X for (i = BOX_Y_ELEMS*BOX_C_ELEMS*BOX_C_ELEMS-1; i >= 0; i--)
- X *bptr++ = 0x7FFFFFFFL;
- X
- X /* For each color selected by find_nearby_colors,
- X * compute its distance to the center of each cell in the box.
- X * If that's less than best-so-far, update best distance and color number.
- X * Note we have to scale Y to get correct distance in scaled space.
- X */
- X
- X /* Nominal steps between cell centers ("x" in Thomas article) */
- X#define STEP_Y ((1 << Y_SHIFT) * Y_SCALE)
- X#define STEP_C (1 << C_SHIFT)
- X
- X for (i = 0; i < numcolors; i++) {
- X icolor = GETJSAMPLE(colorlist[i]);
- X /* Compute (square of) distance from minc0/c1/c2 to this color */
- X inc0 = (minc0 - (int) GETJSAMPLE(my_colormap[0][icolor])) * Y_SCALE;
- X dist0 = inc0*inc0;
- X inc1 = minc1 - (int) GETJSAMPLE(my_colormap[1][icolor]);
- X dist0 += inc1*inc1;
- X inc2 = minc2 - (int) GETJSAMPLE(my_colormap[2][icolor]);
- X dist0 += inc2*inc2;
- X /* Form the initial difference increments */
- X inc0 = inc0 * (2 * STEP_Y) + STEP_Y * STEP_Y;
- X inc1 = inc1 * (2 * STEP_C) + STEP_C * STEP_C;
- X inc2 = inc2 * (2 * STEP_C) + STEP_C * STEP_C;
- X /* Now loop over all cells in box, updating distance per Thomas method */
- X bptr = bestdist;
- X cptr = bestcolor;
- X xx0 = inc0;
- X for (ic0 = BOX_Y_ELEMS-1; ic0 >= 0; ic0--) {
- X dist1 = dist0;
- X xx1 = inc1;
- X for (ic1 = BOX_C_ELEMS-1; ic1 >= 0; ic1--) {
- X dist2 = dist1;
- X xx2 = inc2;
- X for (ic2 = BOX_C_ELEMS-1; ic2 >= 0; ic2--) {
- X if (dist2 < *bptr) {
- X *bptr = dist2;
- X *cptr = (JSAMPLE) icolor;
- X }
- X dist2 += xx2;
- X xx2 += 2 * STEP_C * STEP_C;
- X bptr++;
- X cptr++;
- X }
- X dist1 += xx1;
- X xx1 += 2 * STEP_C * STEP_C;
- X }
- X dist0 += xx0;
- X xx0 += 2 * STEP_Y * STEP_Y;
- X }
- X }
- X}
- X
- X
- XLOCAL void
- Xfill_inverse_cmap (decompress_info_ptr cinfo, int c0, int c1, int c2)
- X/* Fill the inverse-colormap entries in the update box that contains */
- X/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
- X/* we can fill as many others as we wish.) */
- X{
- X int minc0, minc1, minc2; /* lower left corner of update box */
- X int ic0, ic1, ic2;
- X register JSAMPLE * cptr; /* pointer into bestcolor[] array */
- X register histptr cachep; /* pointer into main cache array */
- X /* This array lists the candidate colormap indexes. */
- X JSAMPLE colorlist[MAXNUMCOLORS];
- X int numcolors; /* number of candidate colors */
- X /* This array holds the actually closest colormap index for each cell. */
- X JSAMPLE bestcolor[BOX_Y_ELEMS * BOX_C_ELEMS * BOX_C_ELEMS];
- X
- X /* Convert cell coordinates to update box ID */
- X c0 >>= BOX_Y_LOG;
- X c1 >>= BOX_C_LOG;
- X c2 >>= BOX_C_LOG;
- X
- X /* Compute true coordinates of update box's origin corner.
- X * Actually we compute the coordinates of the center of the corner
- X * histogram cell, which are the lower bounds of the volume we care about.
- X */
- X minc0 = (c0 << BOX_Y_SHIFT) + ((1 << Y_SHIFT) >> 1);
- X minc1 = (c1 << BOX_C_SHIFT) + ((1 << C_SHIFT) >> 1);
- X minc2 = (c2 << BOX_C_SHIFT) + ((1 << C_SHIFT) >> 1);
- X
- X /* Determine which colormap entries are close enough to be candidates
- X * for the nearest entry to some cell in the update box.
- X */
- X numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
- X
- X /* Determine the actually nearest colors. */
- X find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
- X bestcolor);
- X
- X /* Save the best color numbers (plus 1) in the main cache array */
- X c0 <<= BOX_Y_LOG; /* convert ID back to base cell indexes */
- X c1 <<= BOX_C_LOG;
- X c2 <<= BOX_C_LOG;
- X cptr = bestcolor;
- X for (ic0 = 0; ic0 < BOX_Y_ELEMS; ic0++) {
- X for (ic1 = 0; ic1 < BOX_C_ELEMS; ic1++) {
- X cachep = & histogram[c0+ic0][c1+ic1][c2];
- X for (ic2 = 0; ic2 < BOX_C_ELEMS; ic2++) {
- X *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
- X }
- X }
- X }
- X}
- X
- X
- X/*
- X * These routines perform second-pass scanning of the image: map each pixel to
- X * the proper colormap index, and output the indexes to the output file.
- X *
- X * output_workspace is a one-component array of pixel dimensions at least
- X * as large as the input image strip; it can be used to hold the converted
- X * pixels' colormap indexes.
- X */
- X
- XMETHODDEF void
- Xpass2_nodither (decompress_info_ptr cinfo, int num_rows,
- X JSAMPIMAGE image_data, JSAMPARRAY output_workspace)
- X/* This version performs no dithering */
- X{
- X register JSAMPROW ptr0, ptr1, ptr2, outptr;
- X register histptr cachep;
- X register int c0, c1, c2;
- X int row;
- X long col;
- X long width = cinfo->image_width;
- X
- X /* Convert data to colormap indexes, which we save in output_workspace */
- X for (row = 0; row < num_rows; row++) {
- X ptr0 = image_data[0][row];
- X ptr1 = image_data[1][row];
- X ptr2 = image_data[2][row];
- X outptr = output_workspace[row];
- X for (col = width; col > 0; col--) {
- X /* get pixel value and index into the cache */
- X c0 = GETJSAMPLE(*ptr0++) >> Y_SHIFT;
- X c1 = GETJSAMPLE(*ptr1++) >> C_SHIFT;
- X c2 = GETJSAMPLE(*ptr2++) >> C_SHIFT;
- X cachep = & histogram[c0][c1][c2];
- X /* If we have not seen this color before, find nearest colormap entry */
- X /* and update the cache */
- X if (*cachep == 0)
- X fill_inverse_cmap(cinfo, c0,c1,c2);
- X /* Now emit the colormap index for this cell */
- X *outptr++ = (JSAMPLE) (*cachep - 1);
- X }
- X }
- X /* Emit converted rows to the output file */
- X (*cinfo->methods->put_pixel_rows) (cinfo, num_rows, &output_workspace);
- X}
- X
- X
- X/* Declarations for Floyd-Steinberg dithering.
- X *
- X * Errors are accumulated into the arrays evenrowerrs[] and oddrowerrs[].
- X * These have resolutions of 1/16th of a pixel count. The error at a given
- X * pixel is propagated to its unprocessed neighbors using the standard F-S
- X * fractions,
- X * ... (here) 7/16
- X * 3/16 5/16 1/16
- X * We work left-to-right on even rows, right-to-left on odd rows.
- X *
- X * Each of the arrays has (#columns + 2) entries; the extra entry
- X * at each end saves us from special-casing the first and last pixels.
- X * Each entry is three values long.
- X * In evenrowerrs[], the entries for a component are stored left-to-right, but
- X * in oddrowerrs[] they are stored right-to-left. This means we always
- X * process the current row's error entries in increasing order and the next
- X * row's error entries in decreasing order, regardless of whether we are
- X * working L-to-R or R-to-L in the pixel data!
- X *
- X * Note: on a wide image, we might not have enough room in a PC's near data
- X * segment to hold the error arrays; so they are allocated with alloc_medium.
- X */
- X
- X#ifdef EIGHT_BIT_SAMPLES
- Xtypedef INT16 FSERROR; /* 16 bits should be enough */
- X#else
- Xtypedef INT32 FSERROR; /* may need more than 16 bits? */
- X#endif
- X
- Xtypedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
- X
- Xstatic FSERRPTR evenrowerrs, oddrowerrs; /* current-row and next-row errors */
- Xstatic boolean on_odd_row; /* flag to remember which row we are on */
- X
- X
- XMETHODDEF void
- Xpass2_dither (decompress_info_ptr cinfo, int num_rows,
- X JSAMPIMAGE image_data, JSAMPARRAY output_workspace)
- X/* This version performs Floyd-Steinberg dithering */
- X{
- X#ifdef EIGHT_BIT_SAMPLES
- X register int c0, c1, c2;
- X int two_val;
- X#else
- X register FSERROR c0, c1, c2;
- X FSERROR two_val;
- X#endif
- X register FSERRPTR thisrowerr, nextrowerr;
- X JSAMPROW ptr0, ptr1, ptr2, outptr;
- X histptr cachep;
- X register int pixcode;
- X int dir;
- X int row;
- X long col;
- X long width = cinfo->image_width;
- X JSAMPLE *range_limit = cinfo->sample_range_limit;
- X JSAMPROW colormap0 = my_colormap[0];
- X JSAMPROW colormap1 = my_colormap[1];
- X JSAMPROW colormap2 = my_colormap[2];
- X SHIFT_TEMPS
- X
- X /* Convert data to colormap indexes, which we save in output_workspace */
- X for (row = 0; row < num_rows; row++) {
- X ptr0 = image_data[0][row];
- X ptr1 = image_data[1][row];
- X ptr2 = image_data[2][row];
- X outptr = output_workspace[row];
- X if (on_odd_row) {
- X /* work right to left in this row */
- X ptr0 += width - 1;
- X ptr1 += width - 1;
- X ptr2 += width - 1;
- X outptr += width - 1;
- X dir = -1;
- X thisrowerr = oddrowerrs + 3;
- X nextrowerr = evenrowerrs + width*3;
- X on_odd_row = FALSE; /* flip for next time */
- X } else {
- X /* work left to right in this row */
- X dir = 1;
- X thisrowerr = evenrowerrs + 3;
- X nextrowerr = oddrowerrs + width*3;
- X on_odd_row = TRUE; /* flip for next time */
- X }
- X /* need only initialize this one entry in nextrowerr */
- X nextrowerr[0] = nextrowerr[1] = nextrowerr[2] = 0;
- X for (col = width; col > 0; col--) {
- X /* For each component, get accumulated error and round to integer;
- X * form pixel value + error, and range-limit to 0..MAXJSAMPLE.
- X * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
- X * for either sign of the error value. Max error is +- MAXJSAMPLE.
- X */
- X c0 = RIGHT_SHIFT(thisrowerr[0] + 8, 4);
- X c1 = RIGHT_SHIFT(thisrowerr[1] + 8, 4);
- X c2 = RIGHT_SHIFT(thisrowerr[2] + 8, 4);
- X c0 += GETJSAMPLE(*ptr0);
- X c1 += GETJSAMPLE(*ptr1);
- X c2 += GETJSAMPLE(*ptr2);
- X c0 = GETJSAMPLE(range_limit[c0]);
- X c1 = GETJSAMPLE(range_limit[c1]);
- X c2 = GETJSAMPLE(range_limit[c2]);
- X /* Index into the cache with adjusted pixel value */
- X cachep = & histogram[c0 >> Y_SHIFT][c1 >> C_SHIFT][c2 >> C_SHIFT];
- X /* If we have not seen this color before, find nearest colormap */
- X /* entry and update the cache */
- X if (*cachep == 0)
- X fill_inverse_cmap(cinfo, c0 >> Y_SHIFT, c1 >> C_SHIFT, c2 >> C_SHIFT);
- X /* Now emit the colormap index for this cell */
- X pixcode = *cachep - 1;
- X *outptr = (JSAMPLE) pixcode;
- X /* Compute representation error for this pixel */
- X c0 -= GETJSAMPLE(colormap0[pixcode]);
- X c1 -= GETJSAMPLE(colormap1[pixcode]);
- X c2 -= GETJSAMPLE(colormap2[pixcode]);
- X /* Propagate error to adjacent pixels */
- X /* Remember that nextrowerr entries are in reverse order! */
- X two_val = c0 * 2;
- X nextrowerr[0-3] = c0; /* not +=, since not initialized yet */
- X c0 += two_val; /* form error * 3 */
- X nextrowerr[0+3] += c0;
- X c0 += two_val; /* form error * 5 */
- X nextrowerr[0 ] += c0;
- X c0 += two_val; /* form error * 7 */
- X thisrowerr[0+3] += c0;
- X two_val = c1 * 2;
- X nextrowerr[1-3] = c1; /* not +=, since not initialized yet */
- X c1 += two_val; /* form error * 3 */
- X nextrowerr[1+3] += c1;
- X c1 += two_val; /* form error * 5 */
- X nextrowerr[1 ] += c1;
- X c1 += two_val; /* form error * 7 */
- X thisrowerr[1+3] += c1;
- X two_val = c2 * 2;
- X nextrowerr[2-3] = c2; /* not +=, since not initialized yet */
- X c2 += two_val; /* form error * 3 */
- X nextrowerr[2+3] += c2;
- X c2 += two_val; /* form error * 5 */
- X nextrowerr[2 ] += c2;
- X c2 += two_val; /* form error * 7 */
- X thisrowerr[2+3] += c2;
- X /* Advance to next column */
- X ptr0 += dir;
- X ptr1 += dir;
- X ptr2 += dir;
- X outptr += dir;
- X thisrowerr += 3; /* cur-row error ptr advances to right */
- X nextrowerr -= 3; /* next-row error ptr advances to left */
- X }
- X }
- X /* Emit converted rows to the output file */
- X (*cinfo->methods->put_pixel_rows) (cinfo, num_rows, &output_workspace);
- X}
- X
- X
- X/*
- X * Initialize for two-pass color quantization.
- X */
- X
- XMETHODDEF void
- Xcolor_quant_init (decompress_info_ptr cinfo)
- X{
- X int i;
- X
- X /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
- X if (cinfo->desired_number_of_colors < 8)
- X ERREXIT(cinfo->emethods, "Cannot request less than 8 quantized colors");
- X /* Make sure colormap indexes can be represented by JSAMPLEs */
- X if (cinfo->desired_number_of_colors > MAXNUMCOLORS)
- X ERREXIT1(cinfo->emethods, "Cannot request more than %d quantized colors",
- X MAXNUMCOLORS);
- X
- X /* Allocate and zero the histogram */
- X histogram = (hist3d) (*cinfo->emethods->alloc_small)
- X (HIST_Y_ELEMS * SIZEOF(hist2d));
- X for (i = 0; i < HIST_Y_ELEMS; i++) {
- X histogram[i] = (hist2d) (*cinfo->emethods->alloc_medium)
- X (HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
- X jzero_far((void FAR *) histogram[i],
- X HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
- X }
- X
- X /* Allocate storage for the internal and external colormaps. */
- X /* We do this now since it is FAR storage and may affect the memory */
- X /* manager's space calculations. */
- X my_colormap = (*cinfo->emethods->alloc_small_sarray)
- X ((long) cinfo->desired_number_of_colors,
- X (long) 3);
- X cinfo->colormap = (*cinfo->emethods->alloc_small_sarray)
- X ((long) cinfo->desired_number_of_colors,
- X (long) cinfo->color_out_comps);
- X
- X /* Allocate Floyd-Steinberg workspace if necessary */
- X /* This isn't needed until pass 2, but again it is FAR storage. */
- X if (cinfo->use_dithering) {
- X size_t arraysize = (size_t) ((cinfo->image_width + 2L) * 3L * SIZEOF(FSERROR));
- X
- X evenrowerrs = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
- X oddrowerrs = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
- X /* we only need to zero the forward contribution for current row. */
- X jzero_far((void FAR *) evenrowerrs, arraysize);
- X on_odd_row = FALSE;
- X }
- X
- X /* Indicate number of passes needed, excluding the prescan pass. */
- X cinfo->total_passes++; /* I always use one pass */
- X}
- X
- X
- X/*
- X * Perform two-pass quantization: rescan the image data and output the
- X * converted data via put_color_map and put_pixel_rows.
- X * The source_method is a routine that can scan the image data; it can
- X * be called as many times as desired. The processing routine called by
- X * source_method has the same interface as color_quantize does in the
- X * one-pass case, except it must call put_pixel_rows itself. (This allows
- X * me to use multiple passes in which earlier passes don't output anything.)
- X */
- X
- XMETHODDEF void
- Xcolor_quant_doit (decompress_info_ptr cinfo, quantize_caller_ptr source_method)
- X{
- X int i;
- X
- X /* Select the representative colors */
- X select_colors(cinfo);
- X /* Pass the external colormap to the output module. */
- X /* NB: the output module may continue to use the colormap until shutdown. */
- X (*cinfo->methods->put_color_map) (cinfo, cinfo->actual_number_of_colors,
- X cinfo->colormap);
- X /* Re-zero the histogram so pass 2 can use it as nearest-color cache */
- X for (i = 0; i < HIST_Y_ELEMS; i++) {
- X jzero_far((void FAR *) histogram[i],
- X HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
- X }
- X /* Perform pass 2 */
- X if (cinfo->use_dithering)
- X (*source_method) (cinfo, pass2_dither);
- X else
- X (*source_method) (cinfo, pass2_nodither);
- X}
- X
- X
- X/*
- X * Finish up at the end of the file.
- X */
- X
- XMETHODDEF void
- Xcolor_quant_term (decompress_info_ptr cinfo)
- X{
- X /* no work (we let free_all release the histogram/cache and colormaps) */
- X /* Note that we *mustn't* free the external colormap before free_all, */
- X /* since output module may use it! */
- X}
- X
- X
- X/*
- X * Map some rows of pixels to the output colormapped representation.
- X * Not used in two-pass case.
- X */
- X
- XMETHODDEF void
- Xcolor_quantize (decompress_info_ptr cinfo, int num_rows,
- X JSAMPIMAGE input_data, JSAMPARRAY output_data)
- X{
- X ERREXIT(cinfo->emethods, "Should not get here!");
- X}
- X
- X
- X/*
- X * The method selection routine for 2-pass color quantization.
- X */
- X
- XGLOBAL void
- Xjsel2quantize (decompress_info_ptr cinfo)
- X{
- X if (cinfo->two_pass_quantize) {
- X /* Make sure jdmaster didn't give me a case I can't handle */
- X if (cinfo->num_components != 3 || cinfo->jpeg_color_space != CS_YCbCr)
- X ERREXIT(cinfo->emethods, "2-pass quantization only handles YCbCr input");
- X cinfo->methods->color_quant_init = color_quant_init;
- X cinfo->methods->color_quant_prescan = color_quant_prescan;
- X cinfo->methods->color_quant_doit = color_quant_doit;
- X cinfo->methods->color_quant_term = color_quant_term;
- X cinfo->methods->color_quantize = color_quantize;
- X }
- X}
- X
- X#endif /* QUANT_2PASS_SUPPORTED */
- END_OF_FILE
- if test 42194 -ne `wc -c <'jquant2.c'`; then
- echo shar: \"'jquant2.c'\" unpacked with wrong size!
- fi
- # end of 'jquant2.c'
- fi
- if test -f 'jrdppm.c' -a "${1}" != "-c" ; then
- echo shar: Will not clobber existing file \"'jrdppm.c'\"
- else
- echo shar: Extracting \"'jrdppm.c'\" \(13063 characters\)
- sed "s/^X//" >'jrdppm.c' <<'END_OF_FILE'
- X/*
- X * jrdppm.c
- X *
- X * Copyright (C) 1991, 1992, Thomas G. Lane.
- X * This file is part of the Independent JPEG Group's software.
- X * For conditions of distribution and use, see the accompanying README file.
- X *
- X * This file contains routines to read input images in PPM format.
- X * The PBMPLUS library is NOT required to compile this software,
- X * but it is highly useful as a set of PPM image manipulation programs.
- X *
- X * These routines may need modification for non-Unix environments or
- X * specialized applications. As they stand, they assume input from
- X * an ordinary stdio stream. They further assume that reading begins
- X * at the start of the file; input_init may need work if the
- X * user interface has already read some data (e.g., to determine that
- X * the file is indeed PPM format).
- X *
- X * These routines are invoked via the methods get_input_row
- X * and input_init/term.
- X */
- X
- X#include "jinclude.h"
- X
- X#ifdef PPM_SUPPORTED
- X
- X
- X/* Portions of this code are based on the PBMPLUS library, which is:
- X**
- X** Copyright (C) 1988 by Jef Poskanzer.
- X**
- X** Permission to use, copy, modify, and distribute this software and its
- X** documentation for any purpose and without fee is hereby granted, provided
- X** that the above copyright notice appear in all copies and that both that
- X** copyright notice and this permission notice appear in supporting
- X** documentation. This software is provided "as is" without express or
- X** implied warranty.
- X*/
- X
- X
- X/* Macros to deal with unsigned chars as efficiently as compiler allows */
- X
- X#ifdef HAVE_UNSIGNED_CHAR
- Xtypedef unsigned char U_CHAR;
- X#define UCH(x) ((int) (x))
- X#else /* !HAVE_UNSIGNED_CHAR */
- X#ifdef CHAR_IS_UNSIGNED
- Xtypedef char U_CHAR;
- X#define UCH(x) ((int) (x))
- X#else
- Xtypedef char U_CHAR;
- X#define UCH(x) ((int) (x) & 0xFF)
- X#endif
- X#endif /* HAVE_UNSIGNED_CHAR */
- X
- X
- X#define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len)))
- X
- X
- X/*
- X * On most systems, reading individual bytes with getc() is drastically less
- X * efficient than buffering a row at a time with fread(). But we must
- X * allocate the row buffer in near data space on PCs, because we are assuming
- X * small-data memory model, wherein fread() can't reach far memory. If you
- X * need to process very wide images on a PC, you may have to use the getc()
- X * approach. In that case, define USE_GETC_INPUT.
- X */
- X
- X#ifndef USE_GETC_INPUT
- Xstatic U_CHAR * row_buffer; /* holds 1 pixel row's worth of raw input */
- X#endif
- X
- Xstatic JSAMPLE * rescale; /* => maxval-remapping array, or NULL */
- X
- X
- XLOCAL int
- Xpbm_getc (FILE * file)
- X/* Read next char, skipping over any comments */
- X/* A comment/newline sequence is returned as a newline */
- X{
- X register int ch;
- X
- X ch = getc(file);
- X if (ch == '#') {
- X do {
- X ch = getc(file);
- X } while (ch != '\n' && ch != EOF);
- X }
- X return ch;
- X}
- X
- X
- XLOCAL unsigned int
- Xread_pbm_integer (compress_info_ptr cinfo)
- X/* Read an unsigned decimal integer from the PPM file */
- X/* Swallows one trailing character after the integer */
- X/* Note that on a 16-bit-int machine, only values up to 64k can be read. */
- X/* This should not be a problem in practice. */
- X{
- X register int ch;
- X register unsigned int val;
- X
- X /* Skip any leading whitespace */
- X do {
- X ch = pbm_getc(cinfo->input_file);
- X if (ch == EOF)
- X ERREXIT(cinfo->emethods, "Premature EOF in PPM file");
- X } while (ch == ' ' || ch == '\t' || ch == '\n');
- X
- X if (ch < '0' || ch > '9')
- X ERREXIT(cinfo->emethods, "Bogus data in PPM file");
- X
- X val = ch - '0';
- X while ((ch = pbm_getc(cinfo->input_file)) >= '0' && ch <= '9') {
- X val *= 10;
- X val += ch - '0';
- X }
- X return val;
- X}
- X
- X
- X/*
- X * Read one row of pixels.
- X *
- X * We provide several different versions depending on input file format.
- X * In all cases, input is scaled to the size of JSAMPLE; it's possible that
- X * when JSAMPLE is 12 bits, this would not really be desirable.
- X *
- X * Note that a really fast path is provided for reading raw files with
- X * maxval = MAXJSAMPLE, which is the normal case (at least for 8-bit JSAMPLEs).
- X */
- X
- X
- XMETHODDEF void
- Xget_text_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading text-format PGM files with any maxval */
- X{
- X register JSAMPROW ptr0;
- X register unsigned int val;
- X register long col;
- X
- X ptr0 = pixel_row[0];
- X for (col = cinfo->image_width; col > 0; col--) {
- X val = read_pbm_integer(cinfo);
- X if (rescale != NULL)
- X val = rescale[val];
- X *ptr0++ = (JSAMPLE) val;
- X }
- X}
- X
- X
- XMETHODDEF void
- Xget_text_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading text-format PPM files with any maxval */
- X{
- X register JSAMPROW ptr0, ptr1, ptr2;
- X register unsigned int val;
- X register long col;
- X
- X ptr0 = pixel_row[0];
- X ptr1 = pixel_row[1];
- X ptr2 = pixel_row[2];
- X for (col = cinfo->image_width; col > 0; col--) {
- X val = read_pbm_integer(cinfo);
- X if (rescale != NULL)
- X val = rescale[val];
- X *ptr0++ = (JSAMPLE) val;
- X val = read_pbm_integer(cinfo);
- X if (rescale != NULL)
- X val = rescale[val];
- X *ptr1++ = (JSAMPLE) val;
- X val = read_pbm_integer(cinfo);
- X if (rescale != NULL)
- X val = rescale[val];
- X *ptr2++ = (JSAMPLE) val;
- X }
- X}
- X
- X
- X#ifdef USE_GETC_INPUT
- X
- X
- XMETHODDEF void
- Xget_scaled_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PGM files with any maxval */
- X{
- X register FILE * infile = cinfo->input_file;
- X register JSAMPROW ptr0;
- X register long col;
- X
- X ptr0 = pixel_row[0];
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = rescale[getc(infile)];
- X }
- X}
- X
- X
- XMETHODDEF void
- Xget_scaled_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PPM files with any maxval */
- X{
- X register FILE * infile = cinfo->input_file;
- X register JSAMPROW ptr0, ptr1, ptr2;
- X register long col;
- X
- X ptr0 = pixel_row[0];
- X ptr1 = pixel_row[1];
- X ptr2 = pixel_row[2];
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = rescale[getc(infile)];
- X *ptr1++ = rescale[getc(infile)];
- X *ptr2++ = rescale[getc(infile)];
- X }
- X}
- X
- X
- XMETHODDEF void
- Xget_raw_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PGM files with maxval = MAXJSAMPLE */
- X{
- X register FILE * infile = cinfo->input_file;
- X register JSAMPROW ptr0;
- X register long col;
- X
- X ptr0 = pixel_row[0];
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = (JSAMPLE) getc(infile);
- X }
- X}
- X
- X
- XMETHODDEF void
- Xget_raw_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PPM files with maxval = MAXJSAMPLE */
- X{
- X register FILE * infile = cinfo->input_file;
- X register JSAMPROW ptr0, ptr1, ptr2;
- X register long col;
- X
- X ptr0 = pixel_row[0];
- X ptr1 = pixel_row[1];
- X ptr2 = pixel_row[2];
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = (JSAMPLE) getc(infile);
- X *ptr1++ = (JSAMPLE) getc(infile);
- X *ptr2++ = (JSAMPLE) getc(infile);
- X }
- X}
- X
- X
- X#else /* use row buffering */
- X
- X
- XMETHODDEF void
- Xget_scaled_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PGM files with any maxval */
- X{
- X register JSAMPROW ptr0;
- X register U_CHAR * row_bufferptr;
- X register long col;
- X
- X if (! ReadOK(cinfo->input_file, row_buffer, cinfo->image_width))
- X ERREXIT(cinfo->emethods, "Premature EOF in PPM file");
- X ptr0 = pixel_row[0];
- X row_bufferptr = row_buffer;
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = rescale[UCH(*row_bufferptr++)];
- X }
- X}
- X
- X
- XMETHODDEF void
- Xget_scaled_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PPM files with any maxval */
- X{
- X register JSAMPROW ptr0, ptr1, ptr2;
- X register U_CHAR * row_bufferptr;
- X register long col;
- X
- X if (! ReadOK(cinfo->input_file, row_buffer, 3 * cinfo->image_width))
- X ERREXIT(cinfo->emethods, "Premature EOF in PPM file");
- X ptr0 = pixel_row[0];
- X ptr1 = pixel_row[1];
- X ptr2 = pixel_row[2];
- X row_bufferptr = row_buffer;
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = rescale[UCH(*row_bufferptr++)];
- X *ptr1++ = rescale[UCH(*row_bufferptr++)];
- X *ptr2++ = rescale[UCH(*row_bufferptr++)];
- X }
- X}
- X
- X
- XMETHODDEF void
- Xget_raw_gray_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PGM files with maxval = MAXJSAMPLE */
- X{
- X register JSAMPROW ptr0;
- X register U_CHAR * row_bufferptr;
- X register long col;
- X
- X if (! ReadOK(cinfo->input_file, row_buffer, cinfo->image_width))
- X ERREXIT(cinfo->emethods, "Premature EOF in PPM file");
- X ptr0 = pixel_row[0];
- X row_bufferptr = row_buffer;
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = (JSAMPLE) UCH(*row_bufferptr++);
- X }
- X}
- X
- X
- XMETHODDEF void
- Xget_raw_rgb_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
- X/* This version is for reading raw-format PPM files with maxval = MAXJSAMPLE */
- X{
- X register JSAMPROW ptr0, ptr1, ptr2;
- X register U_CHAR * row_bufferptr;
- X register long col;
- X
- X if (! ReadOK(cinfo->input_file, row_buffer, 3 * cinfo->image_width))
- X ERREXIT(cinfo->emethods, "Premature EOF in PPM file");
- X ptr0 = pixel_row[0];
- X ptr1 = pixel_row[1];
- X ptr2 = pixel_row[2];
- X row_bufferptr = row_buffer;
- X for (col = cinfo->image_width; col > 0; col--) {
- X *ptr0++ = (JSAMPLE) UCH(*row_bufferptr++);
- X *ptr1++ = (JSAMPLE) UCH(*row_bufferptr++);
- X *ptr2++ = (JSAMPLE) UCH(*row_bufferptr++);
- X }
- X}
- X
- X
- X#endif /* USE_GETC_INPUT */
- X
- X
- X/*
- X * Read the file header; return image size and component count.
- X */
- X
- XMETHODDEF void
- Xinput_init (compress_info_ptr cinfo)
- X{
- X int c;
- X unsigned int w, h, maxval;
- X
- X if (getc(cinfo->input_file) != 'P')
- X ERREXIT(cinfo->emethods, "Not a PPM file");
- X
- X c = getc(cinfo->input_file); /* save format discriminator for a sec */
- X
- X w = read_pbm_integer(cinfo); /* while we fetch the header info */
- X h = read_pbm_integer(cinfo);
- X maxval = read_pbm_integer(cinfo);
- X
- X if (w <= 0 || h <= 0 || maxval <= 0) /* error check */
- X ERREXIT(cinfo->emethods, "Not a PPM file");
- X
- X switch (c) {
- X case '2': /* it's a text-format PGM file */
- X cinfo->methods->get_input_row = get_text_gray_row;
- X cinfo->input_components = 1;
- X cinfo->in_color_space = CS_GRAYSCALE;
- X TRACEMS2(cinfo->emethods, 1, "%ux%u text PGM image", w, h);
- X break;
- X
- X case '3': /* it's a text-format PPM file */
- X cinfo->methods->get_input_row = get_text_rgb_row;
- X cinfo->input_components = 3;
- X cinfo->in_color_space = CS_RGB;
- X TRACEMS2(cinfo->emethods, 1, "%ux%u text PPM image", w, h);
- X break;
- X
- X case '5': /* it's a raw-format PGM file */
- X if (maxval == MAXJSAMPLE)
- X cinfo->methods->get_input_row = get_raw_gray_row;
- X else
- X cinfo->methods->get_input_row = get_scaled_gray_row;
- X cinfo->input_components = 1;
- X cinfo->in_color_space = CS_GRAYSCALE;
- X#ifndef USE_GETC_INPUT
- X /* allocate space for row buffer: 1 byte/pixel */
- X row_buffer = (U_CHAR *) (*cinfo->emethods->alloc_small)
- X ((size_t) (SIZEOF(U_CHAR) * (long) w));
- X#endif
- X TRACEMS2(cinfo->emethods, 1, "%ux%u PGM image", w, h);
- X break;
- X
- X case '6': /* it's a raw-format PPM file */
- X if (maxval == MAXJSAMPLE)
- X cinfo->methods->get_input_row = get_raw_rgb_row;
- X else
- X cinfo->methods->get_input_row = get_scaled_rgb_row;
- X cinfo->input_components = 3;
- X cinfo->in_color_space = CS_RGB;
- X#ifndef USE_GETC_INPUT
- X /* allocate space for row buffer: 3 bytes/pixel */
- X row_buffer = (U_CHAR *) (*cinfo->emethods->alloc_small)
- X ((size_t) (3 * SIZEOF(U_CHAR) * (long) w));
- X#endif
- X TRACEMS2(cinfo->emethods, 1, "%ux%u PPM image", w, h);
- X break;
- X
- X default:
- X ERREXIT(cinfo->emethods, "Not a PPM file");
- X break;
- X }
- X
- X /* Compute the rescaling array if necessary */
- X /* This saves per-pixel calculation */
- X if (maxval == MAXJSAMPLE)
- X rescale = NULL; /* no rescaling required */
- X else {
- X INT32 val, half_maxval;
- X
- X /* On 16-bit-int machines we have to be careful of maxval = 65535 */
- X rescale = (JSAMPLE *) (*cinfo->emethods->alloc_small)
- X ((size_t) (((long) maxval + 1L) * SIZEOF(JSAMPLE)));
- X half_maxval = maxval / 2;
- X for (val = 0; val <= (INT32) maxval; val++) {
- X /* The multiplication here must be done in 32 bits to avoid overflow */
- X rescale[val] = (JSAMPLE) ((val * MAXJSAMPLE + half_maxval) / maxval);
- X }
- X }
- X
- X cinfo->image_width = w;
- X cinfo->image_height = h;
- X cinfo->data_precision = BITS_IN_JSAMPLE;
- X}
- X
- X
- X/*
- X * Finish up at the end of the file.
- X */
- X
- XMETHODDEF void
- Xinput_term (compress_info_ptr cinfo)
- X{
- X /* no work (we let free_all release the workspace) */
- X}
- X
- X
- X/*
- X * The method selection routine for PPM format input.
- X * Note that this must be called by the user interface before calling
- X * jpeg_compress. If multiple input formats are supported, the
- X * user interface is responsible for discovering the file format and
- X * calling the appropriate method selection routine.
- X */
- X
- XGLOBAL void
- Xjselrppm (compress_info_ptr cinfo)
- X{
- X cinfo->methods->input_init = input_init;
- X /* cinfo->methods->get_input_row is set by input_init */
- X cinfo->methods->input_term = input_term;
- X}
- X
- X#endif /* PPM_SUPPORTED */
- END_OF_FILE
- if test 13063 -ne `wc -c <'jrdppm.c'`; then
- echo shar: \"'jrdppm.c'\" unpacked with wrong size!
- fi
- # end of 'jrdppm.c'
- fi
- echo shar: End of archive 2 \(of 18\).
- cp /dev/null ark2isdone
- MISSING=""
- for I in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ; do
- if test ! -f ark${I}isdone ; then
- MISSING="${MISSING} ${I}"
- fi
- done
- if test "${MISSING}" = "" ; then
- echo You have unpacked all 18 archives.
- rm -f ark[1-9]isdone ark[1-9][0-9]isdone
- else
- echo You still must unpack the following archives:
- echo " " ${MISSING}
- fi
- exit 0
- exit 0 # Just in case...
-