home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was processed as: SHell self-extracting ARchive
(archive/shar).
You can browse this item here: 3255
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| Newsgroup Content (archive/news)
| magic
| Supported |
100%
| dexvert
| SHell self-extracting ARchive (archive/shar)
| magic
| Supported |
100%
| dexvert
| Internet Message Format (text/imf)
| magic
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| news or mail text
| default
| |
99%
| file
| C source, ASCII text
| default
| |
100%
| TrID
| E-Mail message (Var. 2)
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/329 Shell Archive Format
| default
| |
100%
| detectItEasy
| Format: plain text[LF]
| default (weak)
| |
100%
| xdgMime
| message/rfc822
| default
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 46 72 6f 6d 3a 20 6a 64 | 6d 35 35 34 38 40 74 61 |From: jd|m5548@ta|
|00000010| 6d 73 75 6e 2e 74 61 6d | 75 2e 65 64 75 20 28 4a |msun.tam|u.edu (J|
|00000020| 61 6d 65 73 20 44 61 72 | 72 65 6c 6c 20 4d 63 43 |ames Dar|rell McC|
|00000030| 61 75 6c 65 79 29 0a 4e | 65 77 73 67 72 6f 75 70 |auley).N|ewsgroup|
|00000040| 73 3a 20 61 6c 74 2e 73 | 6f 75 72 63 65 73 0a 53 |s: alt.s|ources.S|
|00000050| 75 62 6a 65 63 74 3a 20 | 70 67 6d 74 78 74 75 72 |ubject: |pgmtxtur|
|00000060| 20 2d 20 70 61 72 74 30 | 31 2f 30 31 20 28 74 65 | - part0|1/01 (te|
|00000070| 78 74 75 72 65 20 66 65 | 61 74 75 72 65 73 20 6f |xture fe|atures o|
|00000080| 6e 20 61 20 50 47 4d 20 | 66 69 6c 65 29 0a 4d 65 |n a PGM |file).Me|
|00000090| 73 73 61 67 65 2d 49 44 | 3a 20 3c 31 35 35 35 32 |ssage-ID|: <15552|
|000000a0| 40 68 65 6c 69 6f 73 2e | 54 41 4d 55 2e 45 44 55 |@helios.|TAMU.EDU|
|000000b0| 3e 0a 44 61 74 65 3a 20 | 33 30 20 41 70 72 20 39 |>.Date: |30 Apr 9|
|000000c0| 31 20 30 30 3a 33 32 3a | 34 36 20 47 4d 54 0a 0a |1 00:32:|46 GMT..|
|000000d0| 54 68 69 73 20 69 73 20 | 70 67 6d 74 78 74 75 72 |This is |pgmtxtur|
|000000e0| 20 2d 20 61 6e 20 61 64 | 64 69 74 69 6f 6e 20 74 | - an ad|dition t|
|000000f0| 6f 20 4a 65 66 20 50 6f | 73 6b 61 6e 73 65 72 27 |o Jef Po|skanser'|
|00000100| 73 20 50 42 4d 50 4c 55 | 53 2e 20 49 74 20 63 61 |s PBMPLU|S. It ca|
|00000110| 6c 63 75 6c 61 74 65 73 | 0a 31 34 20 74 65 78 74 |lculates|.14 text|
|00000120| 75 72 61 6c 20 66 65 61 | 74 75 72 65 73 20 6f 66 |ural fea|tures of|
|00000130| 20 61 20 67 72 61 79 73 | 63 61 6c 65 20 69 6d 61 | a grays|cale ima|
|00000140| 67 65 20 75 73 69 6e 67 | 20 74 68 65 20 28 73 74 |ge using| the (st|
|00000150| 61 74 69 73 74 69 63 61 | 6c 29 20 61 70 70 72 6f |atistica|l) appro|
|00000160| 61 63 68 20 0a 66 6f 75 | 6e 64 20 69 6e 3a 0a 0a |ach .fou|nd in:..|
|00000170| 20 20 20 48 61 72 61 6c | 69 63 6b 2c 20 52 2e 4d | Haral|ick, R.M|
|00000180| 2e 2c 20 4b 2e 20 53 68 | 61 6e 6d 75 67 61 6d 2c |., K. Sh|anmugam,|
|00000190| 20 61 6e 64 20 49 2e 20 | 44 69 6e 73 74 65 69 6e | and I. |Dinstein|
|000001a0| 2e 20 31 39 37 33 2e 20 | 54 65 78 74 75 72 61 6c |. 1973. |Textural|
|000001b0| 20 66 65 61 74 75 72 65 | 73 0a 20 20 20 66 6f 72 | feature|s. for|
|000001c0| 20 69 6d 61 67 65 20 63 | 6c 61 73 73 69 66 69 63 | image c|lassific|
|000001d0| 61 74 69 6f 6e 2e 20 20 | 49 45 45 45 20 54 72 61 |ation. |IEEE Tra|
|000001e0| 6e 73 61 63 74 69 6f 6e | 73 20 6f 6e 20 53 79 73 |nsaction|s on Sys|
|000001f0| 74 65 6d 73 2c 20 4d 61 | 6e 2c 20 61 6e 64 0a 20 |tems, Ma|n, and. |
|00000200| 20 20 43 79 62 65 72 74 | 69 6e 65 74 69 63 73 2c | Cybert|inetics,|
|00000210| 20 53 4d 43 2d 33 28 36 | 29 3a 36 31 30 2d 36 32 | SMC-3(6|):610-62|
|00000220| 31 2e 0a 0a 59 6f 75 20 | 6e 65 65 64 20 74 68 65 |1...You |need the|
|00000230| 20 50 42 4d 50 4c 55 53 | 20 70 61 63 6b 61 67 65 | PBMPLUS| package|
|00000240| 20 74 6f 20 63 6f 6d 70 | 69 6c 65 2e 0a 0a 4a 61 | to comp|ile...Ja|
|00000250| 6d 65 73 20 44 61 72 72 | 65 6c 6c 20 4d 63 43 61 |mes Darr|ell McCa|
|00000260| 75 6c 65 79 2c 20 47 72 | 61 64 20 52 65 73 20 41 |uley, Gr|ad Res A|
|00000270| 73 73 74 2c 20 53 70 61 | 74 69 61 6c 20 41 6e 61 |sst, Spa|tial Ana|
|00000280| 6c 79 73 69 73 20 4c 61 | 62 20 0a 44 65 70 74 20 |lysis La|b .Dept |
|00000290| 6f 66 20 41 67 20 45 6e | 67 72 2c 20 54 65 78 61 |of Ag En|gr, Texa|
|000002a0| 73 20 41 26 4d 20 55 6e | 69 76 2c 20 43 6f 6c 6c |s A&M Un|iv, Coll|
|000002b0| 65 67 65 20 53 74 61 74 | 69 6f 6e 2c 20 54 58 20 |ege Stat|ion, TX |
|000002c0| 37 37 38 34 33 2d 32 31 | 31 37 2c 20 55 53 41 0a |77843-21|17, USA.|
|000002d0| 28 6a 64 6d 35 35 34 38 | 40 64 69 61 6d 6f 6e 64 |(jdm5548|@diamond|
|000002e0| 2e 74 61 6d 75 2e 65 64 | 75 2c 20 6a 64 6d 35 35 |.tamu.ed|u, jdm55|
|000002f0| 34 38 40 74 61 6d 61 67 | 65 6e 2e 62 69 74 6e 65 |48@tamag|en.bitne|
|00000300| 74 29 0a 2d 2d 63 75 74 | 20 68 65 72 65 2d 2d 0a |t).--cut| here--.|
|00000310| 23 21 2f 62 69 6e 2f 73 | 68 0a 23 20 54 68 69 73 |#!/bin/s|h.# This|
|00000320| 20 69 73 20 61 20 73 68 | 65 6c 6c 20 61 72 63 68 | is a sh|ell arch|
|00000330| 69 76 65 20 28 70 72 6f | 64 75 63 65 64 20 62 79 |ive (pro|duced by|
|00000340| 20 73 68 61 72 20 33 2e | 34 39 29 0a 23 20 54 6f | shar 3.|49).# To|
|00000350| 20 65 78 74 72 61 63 74 | 20 74 68 65 20 66 69 6c | extract| the fil|
|00000360| 65 73 20 66 72 6f 6d 20 | 74 68 69 73 20 61 72 63 |es from |this arc|
|00000370| 68 69 76 65 2c 20 73 61 | 76 65 20 69 74 20 74 6f |hive, sa|ve it to|
|00000380| 20 61 20 66 69 6c 65 2c | 20 72 65 6d 6f 76 65 0a | a file,| remove.|
|00000390| 23 20 65 76 65 72 79 74 | 68 69 6e 67 20 61 62 6f |# everyt|hing abo|
|000003a0| 76 65 20 74 68 65 20 22 | 21 2f 62 69 6e 2f 73 68 |ve the "|!/bin/sh|
|000003b0| 22 20 6c 69 6e 65 20 61 | 62 6f 76 65 2c 20 61 6e |" line a|bove, an|
|000003c0| 64 20 74 79 70 65 20 22 | 73 68 20 66 69 6c 65 5f |d type "|sh file_|
|000003d0| 6e 61 6d 65 22 2e 0a 23 | 0a 23 20 6d 61 64 65 20 |name"..#|.# made |
|000003e0| 30 34 2f 33 30 2f 31 39 | 39 31 20 30 30 3a 32 39 |04/30/19|91 00:29|
|000003f0| 20 55 54 43 20 62 79 20 | 6a 64 6d 35 35 34 38 40 | UTC by |jdm5548@|
|00000400| 61 6d 62 65 72 0a 23 20 | 53 6f 75 72 63 65 20 64 |amber.# |Source d|
|00000410| 69 72 65 63 74 6f 72 79 | 20 2f 75 2f 63 6c 61 73 |irectory| /u/clas|
|00000420| 73 2f 6a 64 6d 35 35 34 | 38 2f 74 6d 70 0a 23 0a |s/jdm554|8/tmp.#.|
|00000430| 23 20 65 78 69 73 74 69 | 6e 67 20 66 69 6c 65 73 |# existi|ng files|
|00000440| 20 77 69 6c 6c 20 4e 4f | 54 20 62 65 20 6f 76 65 | will NO|T be ove|
|00000450| 72 77 72 69 74 74 65 6e | 20 75 6e 6c 65 73 73 20 |rwritten| unless |
|00000460| 2d 63 20 69 73 20 73 70 | 65 63 69 66 69 65 64 0a |-c is sp|ecified.|
|00000470| 23 0a 23 20 54 68 69 73 | 20 73 68 61 72 20 63 6f |#.# This| shar co|
|00000480| 6e 74 61 69 6e 73 3a 0a | 23 20 6c 65 6e 67 74 68 |ntains:.|# length|
|00000490| 20 20 6d 6f 64 65 20 20 | 20 20 20 20 20 6e 61 6d | mode | nam|
|000004a0| 65 0a 23 20 2d 2d 2d 2d | 2d 2d 20 2d 2d 2d 2d 2d |e.# ----|-- -----|
|000004b0| 2d 2d 2d 2d 2d 20 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |----- --|--------|
|000004c0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000004d0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000004e0| 0a 23 20 20 20 20 35 30 | 33 20 2d 72 77 2d 72 2d |.# 50|3 -rw-r-|
|000004f0| 2d 72 2d 2d 20 52 45 41 | 44 4d 45 0a 23 20 20 20 |-r-- REA|DME.# |
|00000500| 32 38 34 39 20 2d 72 77 | 2d 72 2d 2d 72 2d 2d 20 |2849 -rw|-r--r-- |
|00000510| 70 67 6d 74 78 74 75 72 | 2e 31 0a 23 20 20 32 34 |pgmtxtur|.1.# 24|
|00000520| 31 38 34 20 2d 72 77 2d | 72 2d 2d 72 2d 2d 20 70 |184 -rw-|r--r-- p|
|00000530| 67 6d 74 78 74 75 72 2e | 63 0a 23 0a 23 20 3d 3d |gmtxtur.|c.#.# ==|
|00000540| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 20 52 45 41 44 |========|=== READ|
|00000550| 4d 45 20 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |ME =====|========|
|00000560| 3d 0a 69 66 20 74 65 73 | 74 20 2d 66 20 27 52 45 |=.if tes|t -f 'RE|
|00000570| 41 44 4d 45 27 20 2d 61 | 20 58 22 24 31 22 20 21 |ADME' -a| X"$1" !|
|00000580| 3d 20 58 22 2d 63 22 3b | 20 74 68 65 6e 0a 09 65 |= X"-c";| then..e|
|00000590| 63 68 6f 20 27 78 20 2d | 20 73 6b 69 70 70 69 6e |cho 'x -| skippin|
|000005a0| 67 20 52 45 41 44 4d 45 | 20 28 46 69 6c 65 20 61 |g README| (File a|
|000005b0| 6c 72 65 61 64 79 20 65 | 78 69 73 74 73 29 27 0a |lready e|xists)'.|
|000005c0| 65 6c 73 65 0a 65 63 68 | 6f 20 27 78 20 2d 20 65 |else.ech|o 'x - e|
|000005d0| 78 74 72 61 63 74 69 6e | 67 20 52 45 41 44 4d 45 |xtractin|g README|
|000005e0| 20 28 54 65 78 74 29 27 | 0a 73 65 64 20 27 73 2f | (Text)'|.sed 's/|
|000005f0| 5e 58 2f 2f 27 20 3c 3c | 20 27 53 48 41 52 5f 45 |^X//' <<| 'SHAR_E|
|00000600| 4f 46 27 20 3e 20 27 52 | 45 41 44 4d 45 27 20 26 |OF' > 'R|EADME' &|
|00000610| 26 0a 54 68 69 73 20 69 | 73 20 70 67 6d 74 78 74 |&.This i|s pgmtxt|
|00000620| 75 72 20 2d 20 61 6e 20 | 61 64 64 69 74 69 6f 6e |ur - an |addition|
|00000630| 20 74 6f 20 4a 65 66 20 | 50 6f 73 6b 61 6e 73 65 | to Jef |Poskanse|
|00000640| 72 27 73 20 50 42 4d 50 | 4c 55 53 2e 20 49 74 20 |r's PBMP|LUS. It |
|00000650| 63 61 6c 63 75 6c 61 74 | 65 73 0a 31 34 20 74 65 |calculat|es.14 te|
|00000660| 78 74 75 72 61 6c 20 66 | 65 61 74 75 72 65 73 20 |xtural f|eatures |
|00000670| 6f 66 20 61 20 67 72 61 | 79 73 63 61 6c 65 20 69 |of a gra|yscale i|
|00000680| 6d 61 67 65 20 75 73 69 | 6e 67 20 74 68 65 20 28 |mage usi|ng the (|
|00000690| 73 74 61 74 69 73 74 69 | 63 61 6c 29 20 61 70 70 |statisti|cal) app|
|000006a0| 72 6f 61 63 68 20 0a 66 | 6f 75 6e 64 20 69 6e 3a |roach .f|ound in:|
|000006b0| 0a 58 0a 58 20 20 20 48 | 61 72 61 6c 69 63 6b 2c |.X.X H|aralick,|
|000006c0| 20 52 2e 4d 2e 2c 20 4b | 2e 20 53 68 61 6e 6d 75 | R.M., K|. Shanmu|
|000006d0| 67 61 6d 2c 20 61 6e 64 | 20 49 2e 20 44 69 6e 73 |gam, and| I. Dins|
|000006e0| 74 65 69 6e 2e 20 31 39 | 37 33 2e 20 54 65 78 74 |tein. 19|73. Text|
|000006f0| 75 72 61 6c 20 66 65 61 | 74 75 72 65 73 0a 58 20 |ural fea|tures.X |
|00000700| 20 20 66 6f 72 20 69 6d | 61 67 65 20 63 6c 61 73 | for im|age clas|
|00000710| 73 69 66 69 63 61 74 69 | 6f 6e 2e 20 20 49 45 45 |sificati|on. IEE|
|00000720| 45 20 54 72 61 6e 73 61 | 63 74 69 6f 6e 73 20 6f |E Transa|ctions o|
|00000730| 6e 20 53 79 73 74 65 6d | 73 2c 20 4d 61 6e 2c 20 |n System|s, Man, |
|00000740| 61 6e 64 0a 58 20 20 20 | 43 79 62 65 72 74 69 6e |and.X |Cybertin|
|00000750| 65 74 69 63 73 2c 20 53 | 4d 43 2d 33 28 36 29 3a |etics, S|MC-3(6):|
|00000760| 36 31 30 2d 36 32 31 2e | 0a 58 0a 59 6f 75 20 6e |610-621.|.X.You n|
|00000770| 65 65 64 20 74 68 65 20 | 50 42 4d 50 4c 55 53 20 |eed the |PBMPLUS |
|00000780| 70 61 63 6b 61 67 65 20 | 74 6f 20 63 6f 6d 70 69 |package |to compi|
|00000790| 6c 65 3a 0a 58 20 31 2e | 20 41 64 64 20 70 67 6d |le:.X 1.| Add pgm|
|000007a0| 74 78 74 75 72 20 61 73 | 20 61 20 6d 61 74 68 20 |txtur as| a math |
|000007b0| 74 61 72 67 65 74 20 69 | 6e 20 70 62 6d 70 6c 75 |target i|n pbmplu|
|000007c0| 73 2f 70 67 6d 2f 4d 61 | 6b 65 66 69 6c 65 0a 58 |s/pgm/Ma|kefile.X|
|000007d0| 20 20 20 20 61 6e 64 20 | 70 75 74 20 74 68 65 20 | and |put the |
|000007e0| 73 6f 75 72 63 65 73 20 | 69 6e 20 74 68 61 74 20 |sources |in that |
|000007f0| 64 69 72 65 63 74 6f 72 | 79 2e 0a 58 20 32 2e 20 |director|y..X 2. |
|00000800| 27 6d 61 6b 65 20 70 67 | 6d 74 78 74 75 72 27 0a |'make pg|mtxtur'.|
|00000810| 58 0a 53 48 41 52 5f 45 | 4f 46 0a 63 68 6d 6f 64 |X.SHAR_E|OF.chmod|
|00000820| 20 30 36 34 34 20 52 45 | 41 44 4d 45 20 7c 7c 0a | 0644 RE|ADME ||.|
|00000830| 65 63 68 6f 20 27 72 65 | 73 74 6f 72 65 20 6f 66 |echo 're|store of|
|00000840| 20 52 45 41 44 4d 45 20 | 66 61 69 6c 65 64 27 0a | README |failed'.|
|00000850| 57 63 5f 63 3d 22 60 77 | 63 20 2d 63 20 3c 20 27 |Wc_c="`w|c -c < '|
|00000860| 52 45 41 44 4d 45 27 60 | 22 0a 74 65 73 74 20 35 |README'`|".test 5|
|00000870| 30 33 20 2d 65 71 20 22 | 24 57 63 5f 63 22 20 7c |03 -eq "|$Wc_c" ||
|00000880| 7c 0a 09 65 63 68 6f 20 | 27 52 45 41 44 4d 45 3a ||..echo |'README:|
|00000890| 20 6f 72 69 67 69 6e 61 | 6c 20 73 69 7a 65 20 35 | origina|l size 5|
|000008a0| 30 33 2c 20 63 75 72 72 | 65 6e 74 20 73 69 7a 65 |03, curr|ent size|
|000008b0| 27 20 22 24 57 63 5f 63 | 22 0a 66 69 0a 23 20 3d |' "$Wc_c|".fi.# =|
|000008c0| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 20 70 67 6d |========|==== pgm|
|000008d0| 74 78 74 75 72 2e 31 20 | 3d 3d 3d 3d 3d 3d 3d 3d |txtur.1 |========|
|000008e0| 3d 3d 3d 3d 3d 3d 0a 69 | 66 20 74 65 73 74 20 2d |======.i|f test -|
|000008f0| 66 20 27 70 67 6d 74 78 | 74 75 72 2e 31 27 20 2d |f 'pgmtx|tur.1' -|
|00000900| 61 20 58 22 24 31 22 20 | 21 3d 20 58 22 2d 63 22 |a X"$1" |!= X"-c"|
|00000910| 3b 20 74 68 65 6e 0a 09 | 65 63 68 6f 20 27 78 20 |; then..|echo 'x |
|00000920| 2d 20 73 6b 69 70 70 69 | 6e 67 20 70 67 6d 74 78 |- skippi|ng pgmtx|
|00000930| 74 75 72 2e 31 20 28 46 | 69 6c 65 20 61 6c 72 65 |tur.1 (F|ile alre|
|00000940| 61 64 79 20 65 78 69 73 | 74 73 29 27 0a 65 6c 73 |ady exis|ts)'.els|
|00000950| 65 0a 65 63 68 6f 20 27 | 78 20 2d 20 65 78 74 72 |e.echo '|x - extr|
|00000960| 61 63 74 69 6e 67 20 70 | 67 6d 74 78 74 75 72 2e |acting p|gmtxtur.|
|00000970| 31 20 28 54 65 78 74 29 | 27 0a 73 65 64 20 27 73 |1 (Text)|'.sed 's|
|00000980| 2f 5e 58 2f 2f 27 20 3c | 3c 20 27 53 48 41 52 5f |/^X//' <|< 'SHAR_|
|00000990| 45 4f 46 27 20 3e 20 27 | 70 67 6d 74 78 74 75 72 |EOF' > '|pgmtxtur|
|000009a0| 2e 31 27 20 26 26 0a 2e | 54 48 20 70 67 6d 74 78 |.1' &&..|TH pgmtx|
|000009b0| 74 75 72 20 31 20 22 32 | 37 20 41 70 72 20 31 39 |tur 1 "2|7 Apr 19|
|000009c0| 39 31 22 0a 2e 53 48 20 | 4e 41 4d 45 0a 70 67 6d |91"..SH |NAME.pgm|
|000009d0| 74 78 74 75 72 20 2d 20 | 63 61 6c 63 75 6c 61 74 |txtur - |calculat|
|000009e0| 65 20 74 65 78 74 75 72 | 61 6c 20 66 65 61 74 75 |e textur|al featu|
|000009f0| 72 65 73 20 6f 6e 20 61 | 20 70 6f 72 74 61 62 6c |res on a| portabl|
|00000a00| 65 20 67 72 61 79 6d 61 | 70 0a 2e 53 48 20 53 59 |e grayma|p..SH SY|
|00000a10| 4e 4f 50 53 49 53 0a 2e | 42 20 70 67 6d 74 78 74 |NOPSIS..|B pgmtxt|
|00000a20| 75 72 0a 2e 52 42 20 5b | 20 2d 64 0a 2e 49 52 20 |ur..RB [| -d..IR |
|00000a30| 64 20 5d 0a 2e 52 49 20 | 5b 20 70 67 6d 66 69 6c |d ]..RI |[ pgmfil|
|00000a40| 65 20 5d 0a 2e 53 48 20 | 44 45 53 43 52 49 50 54 |e ]..SH |DESCRIPT|
|00000a50| 49 4f 4e 0a 52 65 61 64 | 73 20 61 20 70 6f 72 74 |ION.Read|s a port|
|00000a60| 61 62 6c 65 20 67 72 61 | 79 6d 61 70 20 61 73 20 |able gra|ymap as |
|00000a70| 69 6e 70 75 74 2e 20 20 | 43 61 6c 63 75 6c 61 74 |input. |Calculat|
|00000a80| 65 73 20 74 65 78 74 75 | 72 61 6c 20 66 65 61 74 |es textu|ral feat|
|00000a90| 75 72 65 73 0a 62 61 73 | 65 64 20 6f 6e 20 73 70 |ures.bas|ed on sp|
|00000aa0| 61 74 69 61 6c 20 64 65 | 70 65 6e 64 65 6e 63 65 |atial de|pendence|
|00000ab0| 20 6d 61 74 72 69 63 65 | 73 20 61 74 20 30 2c 20 | matrice|s at 0, |
|00000ac0| 34 35 2c 20 39 30 2c 20 | 61 6e 64 20 31 33 35 20 |45, 90, |and 135 |
|00000ad0| 64 65 67 72 65 65 73 20 | 66 6f 72 0a 61 20 64 69 |degrees |for.a di|
|00000ae0| 73 74 61 6e 63 65 20 0a | 2e 49 52 20 64 20 0a 28 |stance .|.IR d .(|
|00000af0| 64 65 66 61 75 6c 74 20 | 3d 20 31 29 2e 20 54 65 |default |= 1). Te|
|00000b00| 78 74 75 72 61 6c 20 66 | 65 61 74 75 72 65 73 20 |xtural f|eatures |
|00000b10| 69 6e 63 6c 75 64 65 3a | 0a 2e 49 50 0a 28 31 29 |include:|..IP.(1)|
|00000b20| 20 41 6e 67 75 6c 61 72 | 20 53 65 63 6f 6e 64 20 | Angular| Second |
|00000b30| 4d 6f 6d 65 6e 74 2c 0a | 2e 62 72 0a 28 32 29 20 |Moment,.|.br.(2) |
|00000b40| 43 6f 6e 74 72 61 73 74 | 2c 0a 2e 62 72 0a 28 33 |Contrast|,..br.(3|
|00000b50| 29 20 43 6f 72 72 65 6c | 61 74 69 6f 6e 2c 0a 2e |) Correl|ation,..|
|00000b60| 62 72 0a 28 34 29 20 56 | 61 72 69 61 6e 63 65 2c |br.(4) V|ariance,|
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 0a 2e 62 72 0a 28 | | ..br.(|
|00000b80| 35 29 20 49 6e 76 65 72 | 73 65 20 44 69 66 66 65 |5) Inver|se Diffe|
|00000b90| 72 65 6e 63 65 20 4d 6f | 6d 65 6e 74 2c 0a 2e 62 |rence Mo|ment,..b|
|00000ba0| 72 0a 28 36 29 20 53 75 | 6d 20 41 76 65 72 61 67 |r.(6) Su|m Averag|
|00000bb0| 65 2c 0a 2e 62 72 0a 28 | 37 29 20 53 75 6d 20 56 |e,..br.(|7) Sum V|
|00000bc0| 61 72 69 61 6e 63 65 2c | 0a 2e 62 72 0a 28 38 29 |ariance,|..br.(8)|
|00000bd0| 20 53 75 6d 20 45 6e 74 | 72 6f 70 79 2c 0a 2e 62 | Sum Ent|ropy,..b|
|00000be0| 72 0a 28 39 29 20 45 6e | 74 72 6f 70 79 2c 0a 2e |r.(9) En|tropy,..|
|00000bf0| 62 72 0a 28 31 30 29 20 | 44 69 66 66 65 72 65 6e |br.(10) |Differen|
|00000c00| 63 65 20 56 61 72 69 61 | 6e 63 65 2c 0a 2e 62 72 |ce Varia|nce,..br|
|00000c10| 0a 28 31 31 29 20 44 69 | 66 66 65 72 65 6e 63 65 |.(11) Di|fference|
|00000c20| 20 45 6e 74 72 6f 70 79 | 2c 0a 2e 62 72 0a 28 31 | Entropy|,..br.(1|
|00000c30| 32 2c 20 31 33 29 20 49 | 6e 66 6f 72 6d 61 74 69 |2, 13) I|nformati|
|00000c40| 6f 6e 20 4d 65 61 73 75 | 72 65 73 20 6f 66 20 43 |on Measu|res of C|
|00000c50| 6f 72 72 65 6c 61 74 69 | 6f 6e 2c 20 61 6e 64 0a |orrelati|on, and.|
|00000c60| 2e 62 72 0a 28 31 34 29 | 20 4d 61 78 69 6d 61 6c |.br.(14)| Maximal|
|00000c70| 20 43 6f 72 72 65 6c 61 | 74 69 6f 6e 20 43 6f 65 | Correla|tion Coe|
|00000c80| 66 66 69 63 69 65 6e 74 | 2e 0a 2e 50 50 0a 41 6c |fficient|...PP.Al|
|00000c90| 67 6f 72 69 74 68 6d 20 | 74 61 6b 65 6e 20 66 72 |gorithm |taken fr|
|00000ca0| 6f 6d 3a 0a 2e 62 72 0a | 48 61 72 61 6c 69 63 6b |om:..br.|Haralick|
|00000cb0| 2c 20 52 2e 4d 2e 2c 20 | 4b 2e 20 53 68 61 6e 6d |, R.M., |K. Shanm|
|00000cc0| 75 67 61 6d 2c 20 61 6e | 64 20 49 2e 20 44 69 6e |ugam, an|d I. Din|
|00000cd0| 73 74 65 69 6e 2e 20 31 | 39 37 33 2e 20 54 65 78 |stein. 1|973. Tex|
|00000ce0| 74 75 72 61 6c 20 66 65 | 61 74 75 72 65 73 0a 66 |tural fe|atures.f|
|00000cf0| 6f 72 20 69 6d 61 67 65 | 20 63 6c 61 73 73 69 66 |or image| classif|
|00000d00| 69 63 61 74 69 6f 6e 2e | 20 20 0a 2e 49 20 49 45 |ication.| ..I IE|
|00000d10| 45 45 20 54 72 61 6e 73 | 61 63 74 69 6f 6e 73 20 |EE Trans|actions |
|00000d20| 6f 6e 20 53 79 73 74 65 | 6d 73 2c 20 4d 61 6e 2c |on Syste|ms, Man,|
|00000d30| 20 0a 2e 49 20 61 6e 64 | 20 43 79 62 65 72 74 69 | ..I and| Cyberti|
|00000d40| 6e 65 74 69 63 73 2c 0a | 53 4d 43 2d 33 28 36 29 |netics,.|SMC-3(6)|
|00000d50| 3a 36 31 30 2d 36 32 31 | 2e 0a 2e 53 48 20 42 55 |:610-621|...SH BU|
|00000d60| 47 53 0a 54 68 65 20 70 | 72 6f 67 72 61 6d 20 63 |GS.The p|rogram c|
|00000d70| 61 6e 20 72 75 6e 20 69 | 6e 63 72 65 64 69 62 6c |an run i|ncredibl|
|00000d80| 79 20 73 6c 6f 77 20 66 | 6f 72 20 6c 61 72 67 65 |y slow f|or large|
|00000d90| 20 69 6d 61 67 65 73 20 | 28 6c 61 72 67 65 72 20 | images |(larger |
|00000da0| 74 68 61 6e 20 36 34 20 | 78 20 36 34 29 0a 61 6e |than 64 |x 64).an|
|00000db0| 64 20 63 6f 6d 6d 61 6e | 64 20 6c 69 6e 65 20 6f |d comman|d line o|
|00000dc0| 70 74 69 6f 6e 73 20 61 | 72 65 20 6c 69 6d 69 74 |ptions a|re limit|
|00000dd0| 65 64 2e 0a 54 68 65 20 | 6d 65 74 68 6f 64 20 66 |ed..The |method f|
|00000de0| 6f 72 20 66 69 6e 64 69 | 6e 67 20 28 31 34 29 20 |or findi|ng (14) |
|00000df0| 74 68 65 20 6d 61 78 69 | 6d 61 6c 20 63 6f 72 72 |the maxi|mal corr|
|00000e00| 65 6c 61 74 69 6f 6e 20 | 63 6f 65 66 66 69 63 69 |elation |coeffici|
|00000e10| 65 6e 74 2c 20 77 68 69 | 63 68 0a 72 65 71 75 69 |ent, whi|ch.requi|
|00000e20| 72 65 73 20 66 69 6e 64 | 69 6e 67 20 74 68 65 20 |res find|ing the |
|00000e30| 73 65 63 6f 6e 64 20 6c | 61 72 67 65 73 74 20 65 |second l|argest e|
|00000e40| 69 67 65 6e 76 61 6c 75 | 65 20 6f 66 20 61 20 6d |igenvalu|e of a m|
|00000e50| 61 74 72 69 78 20 51 2c | 20 64 6f 65 73 20 6e 6f |atrix Q,| does no|
|00000e60| 74 0a 61 6c 77 61 79 73 | 20 63 6f 6e 76 65 72 67 |t.always| converg|
|00000e70| 65 2e 0a 2e 53 48 20 22 | 53 45 45 20 41 4c 53 4f |e...SH "|SEE ALSO|
|00000e80| 22 0a 70 67 6d 28 35 29 | 2c 20 70 6e 6d 63 75 74 |".pgm(5)|, pnmcut|
|00000e90| 28 31 29 2c 0a 2e 49 20 | 49 45 45 45 20 54 72 61 |(1),..I |IEEE Tra|
|00000ea0| 6e 73 61 63 74 69 6f 6e | 73 20 6f 6e 20 53 79 73 |nsaction|s on Sys|
|00000eb0| 74 65 6d 73 2c 20 4d 61 | 6e 2c 20 0a 2e 49 20 61 |tems, Ma|n, ..I a|
|00000ec0| 6e 64 20 43 79 62 65 72 | 74 69 6e 65 74 69 63 73 |nd Cyber|tinetics|
|00000ed0| 2c 0a 53 4d 43 2d 33 28 | 36 29 3a 36 31 30 2d 36 |,.SMC-3(|6):610-6|
|00000ee0| 32 31 2e 0a 2e 53 48 20 | 41 55 54 48 4f 52 0a 43 |21...SH |AUTHOR.C|
|00000ef0| 6f 70 79 72 69 67 68 74 | 20 28 43 29 20 31 39 39 |opyright| (C) 199|
|00000f00| 31 20 62 79 20 54 65 78 | 61 73 20 41 67 72 69 63 |1 by Tex|as Agric|
|00000f10| 75 6c 74 75 72 61 6c 20 | 45 78 70 65 72 69 6d 65 |ultural |Experime|
|00000f20| 6e 74 20 53 74 61 74 69 | 6f 6e 2c 20 65 6d 70 6c |nt Stati|on, empl|
|00000f30| 6f 79 65 72 20 66 6f 72 | 0a 68 69 72 65 20 6f 66 |oyer for|.hire of|
|00000f40| 20 4a 61 6d 65 73 20 44 | 61 72 72 65 6c 6c 20 4d | James D|arrell M|
|00000f50| 63 43 61 75 6c 65 79 2e | 20 0a 2e 5c 22 20 50 65 |cCauley.| ..\" Pe|
|00000f60| 72 6d 69 73 73 69 6f 6e | 20 74 6f 20 75 73 65 2c |rmission| to use,|
|00000f70| 20 63 6f 70 79 2c 20 6d | 6f 64 69 66 79 2c 20 61 | copy, m|odify, a|
|00000f80| 6e 64 20 64 69 73 74 72 | 69 62 75 74 65 20 74 68 |nd distr|ibute th|
|00000f90| 69 73 20 73 6f 66 74 77 | 61 72 65 20 61 6e 64 20 |is softw|are and |
|00000fa0| 69 74 73 0a 2e 5c 22 20 | 64 6f 63 75 6d 65 6e 74 |its..\" |document|
|00000fb0| 61 74 69 6f 6e 20 66 6f | 72 20 61 6e 79 20 70 75 |ation fo|r any pu|
|00000fc0| 72 70 6f 73 65 20 61 6e | 64 20 77 69 74 68 6f 75 |rpose an|d withou|
|00000fd0| 74 20 66 65 65 20 69 73 | 20 68 65 72 65 62 79 20 |t fee is| hereby |
|00000fe0| 67 72 61 6e 74 65 64 2c | 20 70 72 6f 76 69 64 65 |granted,| provide|
|00000ff0| 64 0a 2e 5c 22 20 74 68 | 61 74 20 74 68 65 20 61 |d..\" th|at the a|
|00001000| 62 6f 76 65 20 63 6f 70 | 79 72 69 67 68 74 20 6e |bove cop|yright n|
|00001010| 6f 74 69 63 65 20 61 70 | 70 65 61 72 20 69 6e 20 |otice ap|pear in |
|00001020| 61 6c 6c 20 63 6f 70 69 | 65 73 20 61 6e 64 20 74 |all copi|es and t|
|00001030| 68 61 74 20 62 6f 74 68 | 20 74 68 61 74 0a 2e 5c |hat both| that..\|
|00001040| 22 20 63 6f 70 79 72 69 | 67 68 74 20 6e 6f 74 69 |" copyri|ght noti|
|00001050| 63 65 20 61 6e 64 20 74 | 68 69 73 20 70 65 72 6d |ce and t|his perm|
|00001060| 69 73 73 69 6f 6e 20 6e | 6f 74 69 63 65 20 61 70 |ission n|otice ap|
|00001070| 70 65 61 72 20 69 6e 20 | 73 75 70 70 6f 72 74 69 |pear in |supporti|
|00001080| 6e 67 0a 2e 5c 22 20 64 | 6f 63 75 6d 65 6e 74 61 |ng..\" d|ocumenta|
|00001090| 74 69 6f 6e 2e 20 20 54 | 68 69 73 20 73 6f 66 74 |tion. T|his soft|
|000010a0| 77 61 72 65 20 69 73 20 | 70 72 6f 76 69 64 65 64 |ware is |provided|
|000010b0| 20 22 61 73 20 69 73 22 | 20 77 69 74 68 6f 75 74 | "as is"| without|
|000010c0| 20 65 78 70 72 65 73 73 | 20 6f 72 0a 2e 5c 22 20 | express| or..\" |
|000010d0| 69 6d 70 6c 69 65 64 20 | 77 61 72 72 61 6e 74 79 |implied |warranty|
|000010e0| 2e 0a 2e 5c 22 0a 2e 5c | 22 20 54 48 45 20 54 45 |...\"..\|" THE TE|
|000010f0| 58 41 53 20 41 47 52 49 | 43 55 4c 54 55 52 41 4c |XAS AGRI|CULTURAL|
|00001100| 20 45 58 50 45 52 49 4d | 45 4e 54 20 53 54 41 54 | EXPERIM|ENT STAT|
|00001110| 49 4f 4e 20 28 54 41 45 | 53 29 20 41 4e 44 20 54 |ION (TAE|S) AND T|
|00001120| 48 45 20 54 45 58 41 53 | 20 41 26 4d 0a 2e 5c 22 |HE TEXAS| A&M..\"|
|00001130| 20 55 4e 49 56 45 52 53 | 49 54 59 20 53 59 53 54 | UNIVERS|ITY SYST|
|00001140| 45 4d 20 28 54 41 4d 55 | 53 29 20 4d 41 4b 45 20 |EM (TAMU|S) MAKE |
|00001150| 4e 4f 20 45 58 50 52 45 | 53 53 20 4f 52 20 49 4d |NO EXPRE|SS OR IM|
|00001160| 50 4c 49 45 44 20 57 41 | 52 52 41 4e 54 49 45 53 |PLIED WA|RRANTIES|
|00001170| 0a 2e 5c 22 20 28 49 4e | 43 4c 55 44 49 4e 47 20 |..\" (IN|CLUDING |
|00001180| 42 59 20 57 41 59 20 4f | 46 20 45 58 41 4d 50 4c |BY WAY O|F EXAMPL|
|00001190| 45 2c 20 4d 45 52 43 48 | 41 4e 54 41 42 49 4c 49 |E, MERCH|ANTABILI|
|000011a0| 54 59 29 20 57 49 54 48 | 20 52 45 53 50 45 43 54 |TY) WITH| RESPECT|
|000011b0| 20 54 4f 20 41 4e 59 0a | 2e 5c 22 20 49 54 45 4d | TO ANY.|.\" ITEM|
|000011c0| 2c 20 41 4e 44 20 53 48 | 41 4c 4c 20 4e 4f 54 20 |, AND SH|ALL NOT |
|000011d0| 42 45 20 4c 49 41 42 4c | 45 20 46 4f 52 20 41 4e |BE LIABL|E FOR AN|
|000011e0| 59 20 44 49 52 45 43 54 | 2c 20 49 4e 44 49 52 45 |Y DIRECT|, INDIRE|
|000011f0| 43 54 2c 20 49 4e 43 49 | 44 45 4e 54 41 4c 0a 2e |CT, INCI|DENTAL..|
|00001200| 5c 22 20 4f 52 20 43 4f | 4e 53 45 51 55 45 4e 54 |\" OR CO|NSEQUENT|
|00001210| 41 4c 20 44 41 4d 41 47 | 45 53 20 41 52 49 53 49 |AL DAMAG|ES ARISI|
|00001220| 4e 47 20 4f 55 54 20 4f | 46 20 54 48 45 20 50 4f |NG OUT O|F THE PO|
|00001230| 53 45 53 53 49 4f 4e 20 | 4f 52 20 55 53 45 20 4f |SESSION |OR USE O|
|00001240| 46 0a 2e 5c 22 20 41 4e | 59 20 53 55 43 48 20 49 |F..\" AN|Y SUCH I|
|00001250| 54 45 4d 2e 20 4c 49 43 | 45 4e 53 45 45 20 41 4e |TEM. LIC|ENSEE AN|
|00001260| 44 2f 4f 52 20 55 53 45 | 52 20 41 47 52 45 45 53 |D/OR USE|R AGREES|
|00001270| 20 54 4f 20 49 4e 44 45 | 4d 4e 49 46 59 20 41 4e | TO INDE|MNIFY AN|
|00001280| 44 20 48 4f 4c 44 0a 2e | 5c 22 20 54 41 45 53 20 |D HOLD..|\" TAES |
|00001290| 41 4e 44 20 54 41 4d 55 | 53 20 48 41 52 4d 4c 45 |AND TAMU|S HARMLE|
|000012a0| 53 53 20 46 52 4f 4d 20 | 41 4e 59 20 43 4c 41 49 |SS FROM |ANY CLAI|
|000012b0| 4d 53 20 41 52 49 53 49 | 4e 47 20 4f 55 54 20 4f |MS ARISI|NG OUT O|
|000012c0| 46 20 54 48 45 20 55 53 | 45 20 4f 52 0a 2e 5c 22 |F THE US|E OR..\"|
|000012d0| 20 50 4f 53 53 45 53 53 | 49 4f 4e 20 4f 46 20 53 | POSSESS|ION OF S|
|000012e0| 55 43 48 20 49 54 45 4d | 53 2e 0a 2e 5c 22 0a 2e |UCH ITEM|S...\"..|
|000012f0| 5c 22 20 4f 72 69 67 69 | 6e 61 6c 20 63 6f 70 79 |\" Origi|nal copy|
|00001300| 72 69 67 68 74 20 6e 6f | 74 69 63 65 20 66 6f 6c |right no|tice fol|
|00001310| 6c 6f 77 73 3a 0a 2e 5c | 22 20 43 6f 70 79 72 69 |lows:..\|" Copyri|
|00001320| 67 68 74 20 28 43 29 20 | 31 39 39 31 20 62 79 20 |ght (C) |1991 by |
|00001330| 4a 65 66 20 50 6f 73 6b | 61 6e 7a 65 72 2e 0a 2e |Jef Posk|anzer...|
|00001340| 5c 22 20 50 65 72 6d 69 | 73 73 69 6f 6e 20 74 6f |\" Permi|ssion to|
|00001350| 20 75 73 65 2c 20 63 6f | 70 79 2c 20 6d 6f 64 69 | use, co|py, modi|
|00001360| 66 79 2c 20 61 6e 64 20 | 64 69 73 74 72 69 62 75 |fy, and |distribu|
|00001370| 74 65 20 74 68 69 73 20 | 73 6f 66 74 77 61 72 65 |te this |software|
|00001380| 20 61 6e 64 20 69 74 73 | 0a 2e 5c 22 20 64 6f 63 | and its|..\" doc|
|00001390| 75 6d 65 6e 74 61 74 69 | 6f 6e 20 66 6f 72 20 61 |umentati|on for a|
|000013a0| 6e 79 20 70 75 72 70 6f | 73 65 20 61 6e 64 20 77 |ny purpo|se and w|
|000013b0| 69 74 68 6f 75 74 20 66 | 65 65 20 69 73 20 68 65 |ithout f|ee is he|
|000013c0| 72 65 62 79 20 67 72 61 | 6e 74 65 64 2c 20 70 72 |reby gra|nted, pr|
|000013d0| 6f 76 69 64 65 64 0a 2e | 5c 22 20 74 68 61 74 20 |ovided..|\" that |
|000013e0| 74 68 65 20 61 62 6f 76 | 65 20 63 6f 70 79 72 69 |the abov|e copyri|
|000013f0| 67 68 74 20 6e 6f 74 69 | 63 65 20 61 70 70 65 61 |ght noti|ce appea|
|00001400| 72 20 69 6e 20 61 6c 6c | 20 63 6f 70 69 65 73 20 |r in all| copies |
|00001410| 61 6e 64 20 74 68 61 74 | 20 62 6f 74 68 20 74 68 |and that| both th|
|00001420| 61 74 0a 2e 5c 22 20 63 | 6f 70 79 72 69 67 68 74 |at..\" c|opyright|
|00001430| 20 6e 6f 74 69 63 65 20 | 61 6e 64 20 74 68 69 73 | notice |and this|
|00001440| 20 70 65 72 6d 69 73 73 | 69 6f 6e 20 6e 6f 74 69 | permiss|ion noti|
|00001450| 63 65 20 61 70 70 65 61 | 72 20 69 6e 20 73 75 70 |ce appea|r in sup|
|00001460| 70 6f 72 74 69 6e 67 0a | 2e 5c 22 20 64 6f 63 75 |porting.|.\" docu|
|00001470| 6d 65 6e 74 61 74 69 6f | 6e 2e 20 20 54 68 69 73 |mentatio|n. This|
|00001480| 20 73 6f 66 74 77 61 72 | 65 20 69 73 20 70 72 6f | softwar|e is pro|
|00001490| 76 69 64 65 64 20 22 61 | 73 20 69 73 22 20 77 69 |vided "a|s is" wi|
|000014a0| 74 68 6f 75 74 20 65 78 | 70 72 65 73 73 20 6f 72 |thout ex|press or|
|000014b0| 0a 2e 5c 22 20 69 6d 70 | 6c 69 65 64 20 77 61 72 |..\" imp|lied war|
|000014c0| 72 61 6e 74 79 2e 0a 58 | 0a 53 48 41 52 5f 45 4f |ranty..X|.SHAR_EO|
|000014d0| 46 0a 63 68 6d 6f 64 20 | 30 36 34 34 20 70 67 6d |F.chmod |0644 pgm|
|000014e0| 74 78 74 75 72 2e 31 20 | 7c 7c 0a 65 63 68 6f 20 |txtur.1 |||.echo |
|000014f0| 27 72 65 73 74 6f 72 65 | 20 6f 66 20 70 67 6d 74 |'restore| of pgmt|
|00001500| 78 74 75 72 2e 31 20 66 | 61 69 6c 65 64 27 0a 57 |xtur.1 f|ailed'.W|
|00001510| 63 5f 63 3d 22 60 77 63 | 20 2d 63 20 3c 20 27 70 |c_c="`wc| -c < 'p|
|00001520| 67 6d 74 78 74 75 72 2e | 31 27 60 22 0a 74 65 73 |gmtxtur.|1'`".tes|
|00001530| 74 20 32 38 34 39 20 2d | 65 71 20 22 24 57 63 5f |t 2849 -|eq "$Wc_|
|00001540| 63 22 20 7c 7c 0a 09 65 | 63 68 6f 20 27 70 67 6d |c" ||..e|cho 'pgm|
|00001550| 74 78 74 75 72 2e 31 3a | 20 6f 72 69 67 69 6e 61 |txtur.1:| origina|
|00001560| 6c 20 73 69 7a 65 20 32 | 38 34 39 2c 20 63 75 72 |l size 2|849, cur|
|00001570| 72 65 6e 74 20 73 69 7a | 65 27 20 22 24 57 63 5f |rent siz|e' "$Wc_|
|00001580| 63 22 0a 66 69 0a 23 20 | 3d 3d 3d 3d 3d 3d 3d 3d |c".fi.# |========|
|00001590| 3d 3d 3d 3d 3d 20 70 67 | 6d 74 78 74 75 72 2e 63 |===== pg|mtxtur.c|
|000015a0| 20 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 0a | =======|=======.|
|000015b0| 69 66 20 74 65 73 74 20 | 2d 66 20 27 70 67 6d 74 |if test |-f 'pgmt|
|000015c0| 78 74 75 72 2e 63 27 20 | 2d 61 20 58 22 24 31 22 |xtur.c' |-a X"$1"|
|000015d0| 20 21 3d 20 58 22 2d 63 | 22 3b 20 74 68 65 6e 0a | != X"-c|"; then.|
|000015e0| 09 65 63 68 6f 20 27 78 | 20 2d 20 73 6b 69 70 70 |.echo 'x| - skipp|
|000015f0| 69 6e 67 20 70 67 6d 74 | 78 74 75 72 2e 63 20 28 |ing pgmt|xtur.c (|
|00001600| 46 69 6c 65 20 61 6c 72 | 65 61 64 79 20 65 78 69 |File alr|eady exi|
|00001610| 73 74 73 29 27 0a 65 6c | 73 65 0a 65 63 68 6f 20 |sts)'.el|se.echo |
|00001620| 27 78 20 2d 20 65 78 74 | 72 61 63 74 69 6e 67 20 |'x - ext|racting |
|00001630| 70 67 6d 74 78 74 75 72 | 2e 63 20 28 54 65 78 74 |pgmtxtur|.c (Text|
|00001640| 29 27 0a 73 65 64 20 27 | 73 2f 5e 58 2f 2f 27 20 |)'.sed '|s/^X//' |
|00001650| 3c 3c 20 27 53 48 41 52 | 5f 45 4f 46 27 20 3e 20 |<< 'SHAR|_EOF' > |
|00001660| 27 70 67 6d 74 78 74 75 | 72 2e 63 27 20 26 26 0a |'pgmtxtu|r.c' &&.|
|00001670| 2f 2a 2d 70 67 6d 74 78 | 74 75 72 2e 63 20 2d 20 |/*-pgmtx|tur.c - |
|00001680| 63 61 6c 63 75 6c 61 74 | 65 20 74 65 78 74 75 72 |calculat|e textur|
|00001690| 61 6c 20 66 65 61 74 75 | 72 65 73 20 6f 6e 20 61 |al featu|res on a|
|000016a0| 20 70 6f 72 74 61 62 6c | 65 20 67 72 61 79 6d 61 | portabl|e grayma|
|000016b0| 70 2e 20 4d 61 72 63 68 | 20 31 39 39 31 2e 0a 2a |p. March| 1991..*|
|000016c0| 2a 0a 2a 2a 20 41 75 74 | 68 6f 72 3a 20 4a 61 6d |*.** Aut|hor: Jam|
|000016d0| 65 73 20 44 61 72 72 65 | 6c 6c 20 4d 63 43 61 75 |es Darre|ll McCau|
|000016e0| 6c 65 79 0a 2a 2a 20 20 | 20 20 20 20 20 20 20 54 |ley.** | T|
|000016f0| 65 78 61 73 20 41 67 72 | 69 63 75 6c 74 75 72 61 |exas Agr|icultura|
|00001700| 6c 20 45 78 70 65 72 69 | 6d 65 6e 74 20 53 74 61 |l Experi|ment Sta|
|00001710| 74 69 6f 6e 0a 2a 2a 20 | 20 20 20 20 20 20 20 20 |tion.** | |
|00001720| 44 65 70 61 72 74 6d 65 | 6e 74 20 6f 66 20 41 67 |Departme|nt of Ag|
|00001730| 72 69 63 75 6c 74 75 72 | 61 6c 20 45 6e 67 69 6e |ricultur|al Engin|
|00001740| 65 65 72 69 6e 67 0a 2a | 2a 20 20 20 20 20 20 20 |eering.*|* |
|00001750| 20 20 54 65 78 61 73 20 | 41 26 4d 20 55 6e 69 76 | Texas |A&M Univ|
|00001760| 65 72 73 69 74 79 0a 2a | 2a 20 20 20 20 20 20 20 |ersity.*|* |
|00001770| 20 20 43 6f 6c 6c 65 67 | 65 20 53 74 61 74 69 6f | Colleg|e Statio|
|00001780| 6e 2c 20 54 65 78 61 73 | 20 37 37 38 34 33 2d 32 |n, Texas| 77843-2|
|00001790| 31 31 37 20 55 53 41 0a | 2a 2a 0a 2a 2a 20 43 6f |117 USA.|**.** Co|
|000017a0| 64 65 20 77 72 69 74 74 | 65 6e 20 70 61 72 74 69 |de writt|en parti|
|000017b0| 61 6c 6c 79 20 74 61 6b | 65 6e 20 66 72 6f 6d 20 |ally tak|en from |
|000017c0| 70 67 6d 74 6f 66 73 2e | 63 20 69 6e 20 74 68 65 |pgmtofs.|c in the|
|000017d0| 20 50 42 4d 50 4c 55 53 | 20 70 61 63 6b 61 67 65 | PBMPLUS| package|
|000017e0| 0a 2a 2a 20 62 79 20 4a | 65 66 20 50 6f 73 6b 61 |.** by J|ef Poska|
|000017f0| 6e 73 65 72 20 28 43 6f | 70 79 72 69 67 68 74 20 |nser (Co|pyright |
|00001800| 28 43 29 20 31 39 39 31 | 20 62 79 20 4a 65 66 20 |(C) 1991| by Jef |
|00001810| 50 6f 73 6b 61 6e 73 65 | 72 29 2c 20 77 68 6f 73 |Poskanse|r), whos|
|00001820| 65 20 6f 72 69 67 69 6e | 61 6c 0a 2a 2a 20 63 6f |e origin|al.** co|
|00001830| 70 79 72 69 67 68 74 20 | 6e 6f 74 69 63 65 20 66 |pyright |notice f|
|00001840| 6f 6c 6c 6f 77 73 3a 0a | 2a 2a 0a 2a 2a 20 50 65 |ollows:.|**.** Pe|
|00001850| 72 6d 69 73 73 69 6f 6e | 20 74 6f 20 75 73 65 2c |rmission| to use,|
|00001860| 20 63 6f 70 79 2c 20 6d | 6f 64 69 66 79 2c 20 61 | copy, m|odify, a|
|00001870| 6e 64 20 64 69 73 74 72 | 69 62 75 74 65 20 74 68 |nd distr|ibute th|
|00001880| 69 73 20 73 6f 66 74 77 | 61 72 65 20 61 6e 64 20 |is softw|are and |
|00001890| 69 74 73 0a 2a 2a 20 64 | 6f 63 75 6d 65 6e 74 61 |its.** d|ocumenta|
|000018a0| 74 69 6f 6e 20 66 6f 72 | 20 61 6e 79 20 70 75 72 |tion for| any pur|
|000018b0| 70 6f 73 65 20 61 6e 64 | 20 77 69 74 68 6f 75 74 |pose and| without|
|000018c0| 20 66 65 65 20 69 73 20 | 68 65 72 65 62 79 20 67 | fee is |hereby g|
|000018d0| 72 61 6e 74 65 64 2c 20 | 70 72 6f 76 69 64 65 64 |ranted, |provided|
|000018e0| 0a 2a 2a 20 74 68 61 74 | 20 74 68 65 20 61 62 6f |.** that| the abo|
|000018f0| 76 65 20 63 6f 70 79 72 | 69 67 68 74 20 6e 6f 74 |ve copyr|ight not|
|00001900| 69 63 65 20 61 70 70 65 | 61 72 20 69 6e 20 61 6c |ice appe|ar in al|
|00001910| 6c 20 63 6f 70 69 65 73 | 20 61 6e 64 20 74 68 61 |l copies| and tha|
|00001920| 74 20 62 6f 74 68 20 74 | 68 61 74 0a 2a 2a 20 63 |t both t|hat.** c|
|00001930| 6f 70 79 72 69 67 68 74 | 20 6e 6f 74 69 63 65 20 |opyright| notice |
|00001940| 61 6e 64 20 74 68 69 73 | 20 70 65 72 6d 69 73 73 |and this| permiss|
|00001950| 69 6f 6e 20 6e 6f 74 69 | 63 65 20 61 70 70 65 61 |ion noti|ce appea|
|00001960| 72 20 69 6e 20 73 75 70 | 70 6f 72 74 69 6e 67 0a |r in sup|porting.|
|00001970| 2a 2a 20 64 6f 63 75 6d | 65 6e 74 61 74 69 6f 6e |** docum|entation|
|00001980| 2e 20 20 54 68 69 73 20 | 73 6f 66 74 77 61 72 65 |. This |software|
|00001990| 20 69 73 20 70 72 6f 76 | 69 64 65 64 20 22 61 73 | is prov|ided "as|
|000019a0| 20 69 73 22 20 77 69 74 | 68 6f 75 74 20 65 78 70 | is" wit|hout exp|
|000019b0| 72 65 73 73 20 6f 72 0a | 2a 2a 20 69 6d 70 6c 69 |ress or.|** impli|
|000019c0| 65 64 20 77 61 72 72 61 | 6e 74 79 2e 0a 2a 2a 0a |ed warra|nty..**.|
|000019d0| 2a 2a 20 41 6c 67 6f 72 | 69 74 68 6d 73 20 66 6f |** Algor|ithms fo|
|000019e0| 72 20 63 61 6c 63 75 6c | 61 74 69 6e 67 20 66 65 |r calcul|ating fe|
|000019f0| 61 74 75 72 65 73 20 28 | 61 6e 64 20 73 6f 6d 65 |atures (|and some|
|00001a00| 20 65 78 70 6c 61 6e 61 | 74 6f 72 79 20 63 6f 6d | explana|tory com|
|00001a10| 6d 65 6e 74 73 29 20 61 | 72 65 0a 2a 2a 20 74 61 |ments) a|re.** ta|
|00001a20| 6b 65 6e 20 66 72 6f 6d | 3a 0a 2a 2a 0a 2a 2a 20 |ken from|:.**.** |
|00001a30| 20 20 48 61 72 61 6c 69 | 63 6b 2c 20 52 2e 4d 2e | Harali|ck, R.M.|
|00001a40| 2c 20 4b 2e 20 53 68 61 | 6e 6d 75 67 61 6d 2c 20 |, K. Sha|nmugam, |
|00001a50| 61 6e 64 20 49 2e 20 44 | 69 6e 73 74 65 69 6e 2e |and I. D|instein.|
|00001a60| 20 31 39 37 33 2e 20 54 | 65 78 74 75 72 61 6c 20 | 1973. T|extural |
|00001a70| 66 65 61 74 75 72 65 73 | 0a 2a 2a 20 20 20 66 6f |features|.** fo|
|00001a80| 72 20 69 6d 61 67 65 20 | 63 6c 61 73 73 69 66 69 |r image |classifi|
|00001a90| 63 61 74 69 6f 6e 2e 20 | 20 49 45 45 45 20 54 72 |cation. | IEEE Tr|
|00001aa0| 61 6e 73 61 63 74 69 6f | 6e 73 20 6f 6e 20 53 79 |ansactio|ns on Sy|
|00001ab0| 73 74 65 6d 73 2c 20 4d | 61 6e 2c 20 61 6e 64 0a |stems, M|an, and.|
|00001ac0| 2a 2a 20 20 20 43 79 62 | 65 72 74 69 6e 65 74 69 |** Cyb|ertineti|
|00001ad0| 63 73 2c 20 53 4d 43 2d | 33 28 36 29 3a 36 31 30 |cs, SMC-|3(6):610|
|00001ae0| 2d 36 32 31 2e 0a 2a 2a | 0a 2a 2a 20 43 6f 70 79 |-621..**|.** Copy|
|00001af0| 72 69 67 68 74 20 28 43 | 29 20 31 39 39 31 20 54 |right (C|) 1991 T|
|00001b00| 65 78 61 73 20 41 67 72 | 69 63 75 6c 74 75 72 61 |exas Agr|icultura|
|00001b10| 6c 20 45 78 70 65 72 69 | 6d 65 6e 74 20 53 74 61 |l Experi|ment Sta|
|00001b20| 74 69 6f 6e 2c 20 65 6d | 70 6c 6f 79 65 72 20 66 |tion, em|ployer f|
|00001b30| 6f 72 0a 2a 2a 20 68 69 | 72 65 20 6f 66 20 4a 61 |or.** hi|re of Ja|
|00001b40| 6d 65 73 20 44 61 72 72 | 65 6c 6c 20 4d 63 43 61 |mes Darr|ell McCa|
|00001b50| 75 6c 65 79 0a 2a 2a 0a | 2a 2a 20 50 65 72 6d 69 |uley.**.|** Permi|
|00001b60| 73 73 69 6f 6e 20 74 6f | 20 75 73 65 2c 20 63 6f |ssion to| use, co|
|00001b70| 70 79 2c 20 6d 6f 64 69 | 66 79 2c 20 61 6e 64 20 |py, modi|fy, and |
|00001b80| 64 69 73 74 72 69 62 75 | 74 65 20 74 68 69 73 20 |distribu|te this |
|00001b90| 73 6f 66 74 77 61 72 65 | 20 61 6e 64 20 69 74 73 |software| and its|
|00001ba0| 0a 2a 2a 20 64 6f 63 75 | 6d 65 6e 74 61 74 69 6f |.** docu|mentatio|
|00001bb0| 6e 20 66 6f 72 20 61 6e | 79 20 70 75 72 70 6f 73 |n for an|y purpos|
|00001bc0| 65 20 61 6e 64 20 77 69 | 74 68 6f 75 74 20 66 65 |e and wi|thout fe|
|00001bd0| 65 20 69 73 20 68 65 72 | 65 62 79 20 67 72 61 6e |e is her|eby gran|
|00001be0| 74 65 64 2c 20 70 72 6f | 76 69 64 65 64 0a 2a 2a |ted, pro|vided.**|
|00001bf0| 20 74 68 61 74 20 74 68 | 65 20 61 62 6f 76 65 20 | that th|e above |
|00001c00| 63 6f 70 79 72 69 67 68 | 74 20 6e 6f 74 69 63 65 |copyrigh|t notice|
|00001c10| 20 61 70 70 65 61 72 20 | 69 6e 20 61 6c 6c 20 63 | appear |in all c|
|00001c20| 6f 70 69 65 73 20 61 6e | 64 20 74 68 61 74 20 62 |opies an|d that b|
|00001c30| 6f 74 68 20 74 68 61 74 | 0a 2a 2a 20 63 6f 70 79 |oth that|.** copy|
|00001c40| 72 69 67 68 74 20 6e 6f | 74 69 63 65 20 61 6e 64 |right no|tice and|
|00001c50| 20 74 68 69 73 20 70 65 | 72 6d 69 73 73 69 6f 6e | this pe|rmission|
|00001c60| 20 6e 6f 74 69 63 65 20 | 61 70 70 65 61 72 20 69 | notice |appear i|
|00001c70| 6e 20 73 75 70 70 6f 72 | 74 69 6e 67 0a 2a 2a 20 |n suppor|ting.** |
|00001c80| 64 6f 63 75 6d 65 6e 74 | 61 74 69 6f 6e 2e 20 20 |document|ation. |
|00001c90| 54 68 69 73 20 73 6f 66 | 74 77 61 72 65 20 69 73 |This sof|tware is|
|00001ca0| 20 70 72 6f 76 69 64 65 | 64 20 22 61 73 20 69 73 | provide|d "as is|
|00001cb0| 22 20 77 69 74 68 6f 75 | 74 20 65 78 70 72 65 73 |" withou|t expres|
|00001cc0| 73 20 6f 72 0a 2a 2a 20 | 69 6d 70 6c 69 65 64 20 |s or.** |implied |
|00001cd0| 77 61 72 72 61 6e 74 79 | 2e 0a 2a 2a 0a 2a 2a 20 |warranty|..**.** |
|00001ce0| 54 48 45 20 54 45 58 41 | 53 20 41 47 52 49 43 55 |THE TEXA|S AGRICU|
|00001cf0| 4c 54 55 52 41 4c 20 45 | 58 50 45 52 49 4d 45 4e |LTURAL E|XPERIMEN|
|00001d00| 54 20 53 54 41 54 49 4f | 4e 20 28 54 41 45 53 29 |T STATIO|N (TAES)|
|00001d10| 20 41 4e 44 20 54 48 45 | 20 54 45 58 41 53 20 41 | AND THE| TEXAS A|
|00001d20| 26 4d 0a 2a 2a 20 55 4e | 49 56 45 52 53 49 54 59 |&M.** UN|IVERSITY|
|00001d30| 20 53 59 53 54 45 4d 20 | 28 54 41 4d 55 53 29 20 | SYSTEM |(TAMUS) |
|00001d40| 4d 41 4b 45 20 4e 4f 20 | 45 58 50 52 45 53 53 20 |MAKE NO |EXPRESS |
|00001d50| 4f 52 20 49 4d 50 4c 49 | 45 44 20 57 41 52 52 41 |OR IMPLI|ED WARRA|
|00001d60| 4e 54 49 45 53 0a 2a 2a | 20 28 49 4e 43 4c 55 44 |NTIES.**| (INCLUD|
|00001d70| 49 4e 47 20 42 59 20 57 | 41 59 20 4f 46 20 45 58 |ING BY W|AY OF EX|
|00001d80| 41 4d 50 4c 45 2c 20 4d | 45 52 43 48 41 4e 54 41 |AMPLE, M|ERCHANTA|
|00001d90| 42 49 4c 49 54 59 29 20 | 57 49 54 48 20 52 45 53 |BILITY) |WITH RES|
|00001da0| 50 45 43 54 20 54 4f 20 | 41 4e 59 0a 2a 2a 20 49 |PECT TO |ANY.** I|
|00001db0| 54 45 4d 2c 20 41 4e 44 | 20 53 48 41 4c 4c 20 4e |TEM, AND| SHALL N|
|00001dc0| 4f 54 20 42 45 20 4c 49 | 41 42 4c 45 20 46 4f 52 |OT BE LI|ABLE FOR|
|00001dd0| 20 41 4e 59 20 44 49 52 | 45 43 54 2c 20 49 4e 44 | ANY DIR|ECT, IND|
|00001de0| 49 52 45 43 54 2c 20 49 | 4e 43 49 44 45 4e 54 41 |IRECT, I|NCIDENTA|
|00001df0| 4c 0a 2a 2a 20 4f 52 20 | 43 4f 4e 53 45 51 55 45 |L.** OR |CONSEQUE|
|00001e00| 4e 54 41 4c 20 44 41 4d | 41 47 45 53 20 41 52 49 |NTAL DAM|AGES ARI|
|00001e10| 53 49 4e 47 20 4f 55 54 | 20 4f 46 20 54 48 45 20 |SING OUT| OF THE |
|00001e20| 50 4f 53 45 53 53 49 4f | 4e 20 4f 52 20 55 53 45 |POSESSIO|N OR USE|
|00001e30| 20 4f 46 0a 2a 2a 20 41 | 4e 59 20 53 55 43 48 20 | OF.** A|NY SUCH |
|00001e40| 49 54 45 4d 2e 20 4c 49 | 43 45 4e 53 45 45 20 41 |ITEM. LI|CENSEE A|
|00001e50| 4e 44 2f 4f 52 20 55 53 | 45 52 20 41 47 52 45 45 |ND/OR US|ER AGREE|
|00001e60| 53 20 54 4f 20 49 4e 44 | 45 4d 4e 49 46 59 20 41 |S TO IND|EMNIFY A|
|00001e70| 4e 44 20 48 4f 4c 44 0a | 2a 2a 20 54 41 45 53 20 |ND HOLD.|** TAES |
|00001e80| 41 4e 44 20 54 41 4d 55 | 53 20 48 41 52 4d 4c 45 |AND TAMU|S HARMLE|
|00001e90| 53 53 20 46 52 4f 4d 20 | 41 4e 59 20 43 4c 41 49 |SS FROM |ANY CLAI|
|00001ea0| 4d 53 20 41 52 49 53 49 | 4e 47 20 4f 55 54 20 4f |MS ARISI|NG OUT O|
|00001eb0| 46 20 54 48 45 20 55 53 | 45 20 4f 52 0a 2a 2a 20 |F THE US|E OR.** |
|00001ec0| 50 4f 53 53 45 53 53 49 | 4f 4e 20 4f 46 20 53 55 |POSSESSI|ON OF SU|
|00001ed0| 43 48 20 49 54 45 4d 53 | 2e 0a 2a 2f 0a 58 0a 23 |CH ITEMS|..*/.X.#|
|00001ee0| 69 6e 63 6c 75 64 65 20 | 22 70 67 6d 2e 68 22 0a |include |"pgm.h".|
|00001ef0| 23 69 6e 63 6c 75 64 65 | 3c 6d 61 74 68 2e 68 3e |#include|<math.h>|
|00001f00| 0a 58 0a 23 64 65 66 69 | 6e 65 20 52 41 44 49 58 |.X.#defi|ne RADIX|
|00001f10| 20 32 2e 30 0a 23 64 65 | 66 69 6e 65 20 45 50 53 | 2.0.#de|fine EPS|
|00001f20| 49 4c 4f 4e 20 30 2e 30 | 30 30 30 30 30 30 30 31 |ILON 0.0|00000001|
|00001f30| 0a 23 64 65 66 69 6e 65 | 20 42 4c 20 20 22 41 6e |.#define| BL "An|
|00001f40| 67 6c 65 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |gle | |
|00001f50| 20 20 20 20 22 0a 23 64 | 65 66 69 6e 65 20 46 31 | ".#d|efine F1|
|00001f60| 20 20 22 41 6e 67 75 6c | 61 72 20 53 65 63 6f 6e | "Angul|ar Secon|
|00001f70| 64 20 4d 6f 6d 65 6e 74 | 20 22 0a 23 64 65 66 69 |d Moment| ".#defi|
|00001f80| 6e 65 20 46 32 20 20 22 | 43 6f 6e 74 72 61 73 74 |ne F2 "|Contrast|
|00001f90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 22 0a | | ".|
|00001fa0| 23 64 65 66 69 6e 65 20 | 46 33 20 20 22 43 6f 72 |#define |F3 "Cor|
|00001fb0| 72 65 6c 61 74 69 6f 6e | 20 20 20 20 20 20 20 20 |relation| |
|00001fc0| 20 20 20 22 0a 23 64 65 | 66 69 6e 65 20 46 34 20 | ".#de|fine F4 |
|00001fd0| 20 22 56 61 72 69 61 6e | 63 65 20 20 20 20 20 20 | "Varian|ce |
|00001fe0| 20 20 20 20 20 20 20 20 | 22 0a 23 64 65 66 69 6e | |".#defin|
|00001ff0| 65 20 46 35 20 20 22 49 | 6e 76 65 72 73 65 20 44 |e F5 "I|nverse D|
|00002000| 69 66 66 20 4d 6f 6d 65 | 6e 74 20 20 20 22 0a 23 |iff Mome|nt ".#|
|00002010| 64 65 66 69 6e 65 20 46 | 36 20 20 22 53 75 6d 20 |define F|6 "Sum |
|00002020| 41 76 65 72 61 67 65 20 | 20 20 20 20 20 20 20 20 |Average | |
|00002030| 20 20 22 0a 23 64 65 66 | 69 6e 65 20 46 37 20 20 | ".#def|ine F7 |
|00002040| 22 53 75 6d 20 56 61 72 | 69 61 6e 63 65 20 20 20 |"Sum Var|iance |
|00002050| 20 20 20 20 20 20 20 22 | 0a 23 64 65 66 69 6e 65 | "|.#define|
|00002060| 20 46 38 20 20 22 53 75 | 6d 20 45 6e 74 72 6f 70 | F8 "Su|m Entrop|
|00002070| 79 20 20 20 20 20 20 20 | 20 20 20 20 22 0a 23 64 |y | ".#d|
|00002080| 65 66 69 6e 65 20 46 39 | 20 20 22 45 6e 74 72 6f |efine F9| "Entro|
|00002090| 70 79 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |py | |
|000020a0| 20 22 0a 23 64 65 66 69 | 6e 65 20 46 31 30 20 22 | ".#defi|ne F10 "|
|000020b0| 44 69 66 66 65 72 65 6e | 63 65 20 56 61 72 69 61 |Differen|ce Varia|
|000020c0| 6e 63 65 20 20 20 22 0a | 23 64 65 66 69 6e 65 20 |nce ".|#define |
|000020d0| 46 31 31 20 22 44 69 66 | 66 65 72 65 6e 63 65 20 |F11 "Dif|ference |
|000020e0| 45 6e 74 72 6f 70 79 20 | 20 20 20 22 0a 23 64 65 |Entropy | ".#de|
|000020f0| 66 69 6e 65 20 46 31 32 | 20 22 4d 65 61 73 20 6f |fine F12| "Meas o|
|00002100| 66 20 43 6f 72 72 65 6c | 61 74 69 6f 6e 2d 31 20 |f Correl|ation-1 |
|00002110| 22 0a 23 64 65 66 69 6e | 65 20 46 31 33 20 22 4d |".#defin|e F13 "M|
|00002120| 65 61 73 20 6f 66 20 43 | 6f 72 72 65 6c 61 74 69 |eas of C|orrelati|
|00002130| 6f 6e 2d 32 20 22 0a 23 | 64 65 66 69 6e 65 20 46 |on-2 ".#|define F|
|00002140| 31 34 20 22 4d 61 78 20 | 43 6f 72 72 65 6c 61 74 |14 "Max |Correlat|
|00002150| 69 6f 6e 20 43 6f 65 66 | 66 20 22 0a 58 0a 23 64 |ion Coef|f ".X.#d|
|00002160| 65 66 69 6e 65 20 53 49 | 47 4e 28 78 2c 79 29 20 |efine SI|GN(x,y) |
|00002170| 28 28 79 29 3c 30 20 3f | 20 2d 66 61 62 73 28 78 |((y)<0 ?| -fabs(x|
|00002180| 29 20 3a 20 66 61 62 73 | 28 78 29 29 0a 23 64 65 |) : fabs|(x)).#de|
|00002190| 66 69 6e 65 20 44 4f 54 | 20 66 70 72 69 6e 74 66 |fine DOT| fprintf|
|000021a0| 28 73 74 64 65 72 72 2c | 22 2e 22 29 0a 23 64 65 |(stderr,|".").#de|
|000021b0| 66 69 6e 65 20 53 57 41 | 50 28 61 2c 62 29 20 7b |fine SWA|P(a,b) {|
|000021c0| 79 3d 28 61 29 3b 28 61 | 29 3d 28 62 29 3b 28 62 |y=(a);(a|)=(b);(b|
|000021d0| 29 3d 79 3b 7d 0a 58 0a | 76 6f 69 64 20 72 65 73 |)=y;}.X.|void res|
|000021e0| 75 6c 74 73 20 28 29 2c | 20 68 65 73 73 65 6e 62 |ults (),| hessenb|
|000021f0| 65 72 67 20 28 29 2c 20 | 6d 6b 62 61 6c 61 6e 63 |erg (), |mkbalanc|
|00002200| 65 64 20 28 29 2c 20 72 | 65 64 75 63 74 69 6f 6e |ed (), r|eduction|
|00002210| 20 28 29 2c 20 73 69 6d | 70 6c 65 73 72 74 20 28 | (), sim|plesrt (|
|00002220| 29 3b 0a 66 6c 6f 61 74 | 20 66 31 5f 61 73 6d 20 |);.float| f1_asm |
|00002230| 28 29 2c 20 66 32 5f 63 | 6f 6e 74 72 61 73 74 20 |(), f2_c|ontrast |
|00002240| 28 29 2c 20 66 33 5f 63 | 6f 72 72 20 28 29 2c 20 |(), f3_c|orr (), |
|00002250| 66 34 5f 76 61 72 20 28 | 29 2c 20 66 35 5f 69 64 |f4_var (|), f5_id|
|00002260| 6d 20 28 29 2c 0a 58 20 | 66 36 5f 73 61 76 67 20 |m (),.X |f6_savg |
|00002270| 28 29 2c 20 66 37 5f 73 | 76 61 72 20 28 29 2c 20 |(), f7_s|var (), |
|00002280| 66 38 5f 73 65 6e 74 72 | 6f 70 79 20 28 29 2c 20 |f8_sentr|opy (), |
|00002290| 66 39 5f 65 6e 74 72 6f | 70 79 20 28 29 2c 20 66 |f9_entro|py (), f|
|000022a0| 31 30 5f 64 76 61 72 20 | 28 29 2c 0a 58 20 66 31 |10_dvar |(),.X f1|
|000022b0| 31 5f 64 65 6e 74 72 6f | 70 79 20 28 29 2c 20 66 |1_dentro|py (), f|
|000022c0| 31 32 5f 69 63 6f 72 72 | 20 28 29 2c 20 66 31 33 |12_icorr| (), f13|
|000022d0| 5f 69 63 6f 72 72 20 28 | 29 2c 20 66 31 34 5f 6d |_icorr (|), f14_m|
|000022e0| 61 78 63 6f 72 72 20 28 | 29 2c 20 2a 76 65 63 74 |axcorr (|), *vect|
|000022f0| 6f 72 20 28 29 2c 0a 58 | 20 2a 2a 6d 61 74 72 69 |or (),.X| **matri|
|00002300| 78 20 28 29 3b 0a 58 0a | 58 0a 76 6f 69 64 20 6d |x ();.X.|X.void m|
|00002310| 61 69 6e 20 28 61 72 67 | 63 2c 20 61 72 67 76 29 |ain (arg|c, argv)|
|00002320| 0a 58 20 20 69 6e 74 20 | 61 72 67 63 3b 0a 58 20 |.X int |argc;.X |
|00002330| 20 63 68 61 72 20 2a 61 | 72 67 76 5b 5d 3b 0a 7b | char *a|rgv[];.{|
|00002340| 0a 58 20 20 46 49 4c 45 | 20 2a 69 66 70 3b 0a 58 |.X FILE| *ifp;.X|
|00002350| 20 20 72 65 67 69 73 74 | 65 72 20 67 72 61 79 20 | regist|er gray |
|00002360| 2a 2a 67 72 61 79 73 2c | 20 2a 67 50 3b 0a 58 20 |**grays,| *gP;.X |
|00002370| 20 69 6e 74 20 74 6f 6e | 65 5b 50 47 4d 5f 4d 41 | int ton|e[PGM_MA|
|00002380| 58 4d 41 58 56 41 4c 5d | 2c 20 52 30 2c 20 52 34 |XMAXVAL]|, R0, R4|
|00002390| 35 2c 20 52 39 30 2c 20 | 61 6e 67 6c 65 2c 20 64 |5, R90, |angle, d|
|000023a0| 20 3d 20 31 2c 20 78 2c | 20 79 3b 0a 58 20 20 69 | = 1, x,| y;.X i|
|000023b0| 6e 74 20 61 72 67 6e 2c | 20 72 6f 77 73 2c 20 63 |nt argn,| rows, c|
|000023c0| 6f 6c 73 2c 20 62 70 73 | 2c 20 70 61 64 72 69 67 |ols, bps|, padrig|
|000023d0| 68 74 2c 20 72 6f 77 2c | 20 63 6f 6c 3b 0a 58 20 |ht, row,| col;.X |
|000023e0| 20 69 6e 74 20 69 74 6f | 6e 65 2c 20 6a 74 6f 6e | int ito|ne, jton|
|000023f0| 65 2c 20 74 6f 6e 65 73 | 3b 0a 58 20 20 66 6c 6f |e, tones|;.X flo|
|00002400| 61 74 20 2a 2a 50 5f 6d | 61 74 72 69 78 30 2c 20 |at **P_m|atrix0, |
|00002410| 2a 2a 50 5f 6d 61 74 72 | 69 78 34 35 2c 20 2a 2a |**P_matr|ix45, **|
|00002420| 50 5f 6d 61 74 72 69 78 | 39 30 2c 20 2a 2a 50 5f |P_matrix|90, **P_|
|00002430| 6d 61 74 72 69 78 31 33 | 35 3b 0a 58 20 20 66 6c |matrix13|5;.X fl|
|00002440| 6f 61 74 20 41 53 4d 5b | 34 5d 2c 20 63 6f 6e 74 |oat ASM[|4], cont|
|00002450| 72 61 73 74 5b 34 5d 2c | 20 63 6f 72 72 5b 34 5d |rast[4],| corr[4]|
|00002460| 2c 20 76 61 72 5b 34 5d | 2c 20 69 64 6d 5b 34 5d |, var[4]|, idm[4]|
|00002470| 2c 20 73 61 76 67 5b 34 | 5d 3b 0a 58 20 20 66 6c |, savg[4|];.X fl|
|00002480| 6f 61 74 20 73 65 6e 74 | 72 6f 70 79 5b 34 5d 2c |oat sent|ropy[4],|
|00002490| 20 73 76 61 72 5b 34 5d | 2c 20 65 6e 74 72 6f 70 | svar[4]|, entrop|
|000024a0| 79 5b 34 5d 2c 20 64 76 | 61 72 5b 34 5d 2c 20 64 |y[4], dv|ar[4], d|
|000024b0| 65 6e 74 72 6f 70 79 5b | 34 5d 3b 0a 58 20 20 66 |entropy[|4];.X f|
|000024c0| 6c 6f 61 74 20 69 63 6f | 72 72 5b 34 5d 2c 20 6d |loat ico|rr[4], m|
|000024d0| 61 78 63 6f 72 72 5b 34 | 5d 3b 0a 58 20 20 67 72 |axcorr[4|];.X gr|
|000024e0| 61 79 20 6d 61 78 76 61 | 6c 2c 20 6e 6d 61 78 76 |ay maxva|l, nmaxv|
|000024f0| 61 6c 3b 0a 58 20 20 63 | 68 61 72 20 2a 75 73 61 |al;.X c|har *usa|
|00002500| 67 65 20 3d 20 22 5b 2d | 64 20 3c 64 3e 5d 20 5b |ge = "[-|d <d>] [|
|00002510| 70 67 6d 66 69 6c 65 5d | 22 3b 0a 58 0a 58 20 20 |pgmfile]|";.X.X |
|00002520| 20 20 70 67 6d 5f 69 6e | 69 74 28 20 26 61 72 67 | pgm_in|it( &arg|
|00002530| 63 2c 20 61 72 67 76 20 | 29 3b 0a 58 0a 58 20 20 |c, argv |);.X.X |
|00002540| 20 20 61 72 67 6e 20 3d | 20 31 3b 0a 58 0a 58 20 | argn =| 1;.X.X |
|00002550| 20 20 20 2f 2a 20 43 68 | 65 63 6b 20 66 6f 72 20 | /* Ch|eck for |
|00002560| 66 6c 61 67 73 2e 20 2a | 2f 0a 58 20 20 20 20 69 |flags. *|/.X i|
|00002570| 66 20 28 20 61 72 67 6e | 20 3c 20 61 72 67 63 20 |f ( argn| < argc |
|00002580| 26 26 20 61 72 67 76 5b | 61 72 67 6e 5d 5b 30 5d |&& argv[|argn][0]|
|00002590| 20 3d 3d 20 27 2d 27 20 | 29 0a 58 09 7b 0a 58 09 | == '-' |).X.{.X.|
|000025a0| 69 66 20 28 20 61 72 67 | 76 5b 61 72 67 6e 5d 5b |if ( arg|v[argn][|
|000025b0| 31 5d 20 3d 3d 20 27 64 | 27 20 29 0a 58 09 20 20 |1] == 'd|' ).X. |
|000025c0| 20 20 7b 0a 58 09 20 20 | 20 20 2b 2b 61 72 67 6e | {.X. | ++argn|
|000025d0| 3b 0a 58 09 20 20 20 20 | 69 66 20 28 20 61 72 67 |;.X. |if ( arg|
|000025e0| 6e 20 3d 3d 20 61 72 67 | 63 20 7c 7c 20 73 73 63 |n == arg|c || ssc|
|000025f0| 61 6e 66 28 20 61 72 67 | 76 5b 61 72 67 6e 5d 2c |anf( arg|v[argn],|
|00002600| 20 22 25 64 22 2c 20 26 | 64 20 29 20 21 3d 20 31 | "%d", &|d ) != 1|
|00002610| 20 29 0a 58 09 09 70 6d | 5f 75 73 61 67 65 28 20 | ).X..pm|_usage( |
|00002620| 75 73 61 67 65 20 29 3b | 0a 58 09 20 20 20 20 7d |usage );|.X. }|
|00002630| 0a 58 09 65 6c 73 65 0a | 58 09 20 20 20 20 70 6d |.X.else.|X. pm|
|00002640| 5f 75 73 61 67 65 28 20 | 75 73 61 67 65 20 29 3b |_usage( |usage );|
|00002650| 0a 58 09 2b 2b 61 72 67 | 6e 3b 0a 58 09 7d 0a 58 |.X.++arg|n;.X.}.X|
|00002660| 0a 58 20 20 20 20 69 66 | 20 28 20 61 72 67 6e 20 |.X if| ( argn |
|00002670| 3c 20 61 72 67 63 20 29 | 0a 58 09 7b 0a 58 09 69 |< argc )|.X.{.X.i|
|00002680| 66 70 20 3d 20 70 6d 5f | 6f 70 65 6e 72 28 20 61 |fp = pm_|openr( a|
|00002690| 72 67 76 5b 61 72 67 6e | 5d 20 29 3b 0a 58 09 2b |rgv[argn|] );.X.+|
|000026a0| 2b 61 72 67 6e 3b 0a 58 | 09 7d 0a 58 20 20 20 20 |+argn;.X|.}.X |
|000026b0| 65 6c 73 65 0a 58 09 69 | 66 70 20 3d 20 73 74 64 |else.X.i|fp = std|
|000026c0| 69 6e 3b 0a 58 0a 58 20 | 20 20 20 69 66 20 28 20 |in;.X.X | if ( |
|000026d0| 61 72 67 6e 20 21 3d 20 | 61 72 67 63 20 29 0a 58 |argn != |argc ).X|
|000026e0| 09 70 6d 5f 75 73 61 67 | 65 28 20 75 73 61 67 65 |.pm_usag|e( usage|
|000026f0| 20 29 3b 0a 58 0a 58 0a | 58 20 20 67 72 61 79 73 | );.X.X.|X grays|
|00002700| 20 3d 20 70 67 6d 5f 72 | 65 61 64 70 67 6d 20 28 | = pgm_r|eadpgm (|
|00002710| 69 66 70 2c 20 26 63 6f | 6c 73 2c 20 26 72 6f 77 |ifp, &co|ls, &row|
|00002720| 73 2c 20 26 6d 61 78 76 | 61 6c 29 3b 0a 58 20 20 |s, &maxv|al);.X |
|00002730| 70 6d 5f 63 6c 6f 73 65 | 20 28 69 66 70 29 3b 0a |pm_close| (ifp);.|
|00002740| 58 0a 58 20 20 2f 2a 20 | 44 65 74 65 72 6d 69 6e |X.X /* |Determin|
|00002750| 65 20 74 68 65 20 6e 75 | 6d 62 65 72 20 6f 66 20 |e the nu|mber of |
|00002760| 64 69 66 66 65 72 65 6e | 74 20 67 72 61 79 20 73 |differen|t gray s|
|00002770| 63 61 6c 65 73 20 28 6e | 6f 74 20 6d 61 78 76 61 |cales (n|ot maxva|
|00002780| 6c 29 20 2a 2f 0a 58 20 | 20 66 6f 72 20 28 72 6f |l) */.X | for (ro|
|00002790| 77 20 3d 20 50 47 4d 5f | 4d 41 58 4d 41 58 56 41 |w = PGM_|MAXMAXVA|
|000027a0| 4c 3b 20 72 6f 77 20 3e | 3d 20 30 3b 20 2d 2d 72 |L; row >|= 0; --r|
|000027b0| 6f 77 29 0a 58 20 20 20 | 20 74 6f 6e 65 5b 72 6f |ow).X | tone[ro|
|000027c0| 77 5d 20 3d 20 2d 31 3b | 0a 58 20 20 66 6f 72 20 |w] = -1;|.X for |
|000027d0| 28 72 6f 77 20 3d 20 72 | 6f 77 73 20 2d 20 31 3b |(row = r|ows - 1;|
|000027e0| 20 72 6f 77 20 3e 3d 20 | 30 3b 20 2d 2d 72 6f 77 | row >= |0; --row|
|000027f0| 29 0a 58 20 20 20 20 66 | 6f 72 20 28 63 6f 6c 20 |).X f|or (col |
|00002800| 3d 20 30 3b 20 63 6f 6c | 20 3c 20 63 6f 6c 73 3b |= 0; col| < cols;|
|00002810| 20 2b 2b 63 6f 6c 29 0a | 58 20 20 20 20 20 20 74 | ++col).|X t|
|00002820| 6f 6e 65 5b 67 72 61 79 | 73 5b 72 6f 77 5d 5b 63 |one[gray|s[row][c|
|00002830| 6f 6c 5d 5d 20 3d 20 67 | 72 61 79 73 5b 72 6f 77 |ol]] = g|rays[row|
|00002840| 5d 5b 63 6f 6c 5d 3b 0a | 58 20 20 66 6f 72 20 28 |][col];.|X for (|
|00002850| 72 6f 77 20 3d 20 50 47 | 4d 5f 4d 41 58 4d 41 58 |row = PG|M_MAXMAX|
|00002860| 56 41 4c 2c 20 74 6f 6e | 65 73 20 3d 20 30 3b 20 |VAL, ton|es = 0; |
|00002870| 72 6f 77 20 3e 3d 20 30 | 3b 20 2d 2d 72 6f 77 29 |row >= 0|; --row)|
|00002880| 0a 58 20 20 20 20 69 66 | 20 28 74 6f 6e 65 5b 72 |.X if| (tone[r|
|00002890| 6f 77 5d 20 21 3d 20 2d | 31 29 0a 58 20 20 20 20 |ow] != -|1).X |
|000028a0| 20 20 74 6f 6e 65 73 2b | 2b 3b 0a 58 20 20 66 70 | tones+|+;.X fp|
|000028b0| 72 69 6e 74 66 20 28 73 | 74 64 65 72 72 2c 20 22 |rintf (s|tderr, "|
|000028c0| 28 49 6d 61 67 65 20 68 | 61 73 20 25 64 20 67 72 |(Image h|as %d gr|
|000028d0| 61 79 6c 65 76 65 6c 73 | 2e 29 5c 6e 22 2c 20 74 |aylevels|.)\n", t|
|000028e0| 6f 6e 65 73 29 3b 0a 58 | 0a 58 20 20 2f 2a 20 43 |ones);.X|.X /* C|
|000028f0| 6f 6c 6c 61 70 73 65 20 | 61 72 72 61 79 2c 20 74 |ollapse |array, t|
|00002900| 61 6b 69 6e 67 20 6f 75 | 74 20 61 6c 6c 20 7a 65 |aking ou|t all ze|
|00002910| 72 6f 20 76 61 6c 75 65 | 73 20 2a 2f 0a 58 20 20 |ro value|s */.X |
|00002920| 66 6f 72 20 28 72 6f 77 | 20 3d 20 30 2c 20 69 74 |for (row| = 0, it|
|00002930| 6f 6e 65 20 3d 20 30 3b | 20 72 6f 77 20 3c 3d 20 |one = 0;| row <= |
|00002940| 50 47 4d 5f 4d 41 58 4d | 41 58 56 41 4c 3b 20 72 |PGM_MAXM|AXVAL; r|
|00002950| 6f 77 2b 2b 29 0a 58 20 | 20 20 20 69 66 20 28 74 |ow++).X | if (t|
|00002960| 6f 6e 65 5b 72 6f 77 5d | 20 21 3d 20 2d 31 29 0a |one[row]| != -1).|
|00002970| 58 20 20 20 20 20 20 74 | 6f 6e 65 5b 69 74 6f 6e |X t|one[iton|
|00002980| 65 2b 2b 5d 20 3d 20 74 | 6f 6e 65 5b 72 6f 77 5d |e++] = t|one[row]|
|00002990| 3b 0a 58 20 20 2f 2a 20 | 4e 6f 77 20 61 72 72 61 |;.X /* |Now arra|
|000029a0| 79 20 63 6f 6e 74 61 69 | 6e 73 20 6f 6e 6c 79 20 |y contai|ns only |
|000029b0| 74 68 65 20 67 72 61 79 | 20 6c 65 76 65 6c 73 20 |the gray| levels |
|000029c0| 70 72 65 73 65 6e 74 20 | 28 69 6e 20 61 73 63 65 |present |(in asce|
|000029d0| 6e 64 69 6e 67 20 6f 72 | 64 65 72 29 20 2a 2f 0a |nding or|der) */.|
|000029e0| 58 0a 58 20 20 2f 2a 20 | 41 6c 6c 6f 63 61 74 65 |X.X /* |Allocate|
|000029f0| 20 6d 65 6d 6f 72 79 20 | 66 6f 72 20 67 72 61 79 | memory |for gray|
|00002a00| 2d 74 6f 6e 65 20 73 70 | 61 74 69 61 6c 20 64 65 |-tone sp|atial de|
|00002a10| 70 65 6e 64 65 6e 63 65 | 20 6d 61 74 72 69 78 20 |pendence| matrix |
|00002a20| 2a 2f 0a 58 20 20 50 5f | 6d 61 74 72 69 78 30 20 |*/.X P_|matrix0 |
|00002a30| 3d 20 6d 61 74 72 69 78 | 20 28 30 2c 20 74 6f 6e |= matrix| (0, ton|
|00002a40| 65 73 2c 20 30 2c 20 74 | 6f 6e 65 73 29 3b 0a 58 |es, 0, t|ones);.X|
|00002a50| 20 20 50 5f 6d 61 74 72 | 69 78 34 35 20 3d 20 6d | P_matr|ix45 = m|
|00002a60| 61 74 72 69 78 20 28 30 | 2c 20 74 6f 6e 65 73 2c |atrix (0|, tones,|
|00002a70| 20 30 2c 20 74 6f 6e 65 | 73 29 3b 0a 58 20 20 50 | 0, tone|s);.X P|
|00002a80| 5f 6d 61 74 72 69 78 39 | 30 20 3d 20 6d 61 74 72 |_matrix9|0 = matr|
|00002a90| 69 78 20 28 30 2c 20 74 | 6f 6e 65 73 2c 20 30 2c |ix (0, t|ones, 0,|
|00002aa0| 20 74 6f 6e 65 73 29 3b | 0a 58 20 20 50 5f 6d 61 | tones);|.X P_ma|
|00002ab0| 74 72 69 78 31 33 35 20 | 3d 20 6d 61 74 72 69 78 |trix135 |= matrix|
|00002ac0| 20 28 30 2c 20 74 6f 6e | 65 73 2c 20 30 2c 20 74 | (0, ton|es, 0, t|
|00002ad0| 6f 6e 65 73 29 3b 0a 58 | 20 20 66 6f 72 20 28 72 |ones);.X| for (r|
|00002ae0| 6f 77 20 3d 20 30 3b 20 | 72 6f 77 20 3c 20 74 6f |ow = 0; |row < to|
|00002af0| 6e 65 73 3b 20 2b 2b 72 | 6f 77 29 0a 58 20 20 20 |nes; ++r|ow).X |
|00002b00| 20 66 6f 72 20 28 63 6f | 6c 20 3d 20 30 3b 20 63 | for (co|l = 0; c|
|00002b10| 6f 6c 20 3c 20 74 6f 6e | 65 73 3b 20 2b 2b 63 6f |ol < ton|es; ++co|
|00002b20| 6c 29 0a 58 20 20 20 20 | 7b 0a 58 20 20 20 20 20 |l).X |{.X |
|00002b30| 20 50 5f 6d 61 74 72 69 | 78 30 5b 72 6f 77 5d 5b | P_matri|x0[row][|
|00002b40| 63 6f 6c 5d 20 3d 20 50 | 5f 6d 61 74 72 69 78 34 |col] = P|_matrix4|
|00002b50| 35 5b 72 6f 77 5d 5b 63 | 6f 6c 5d 20 3d 20 30 3b |5[row][c|ol] = 0;|
|00002b60| 0a 58 20 20 20 20 20 20 | 50 5f 6d 61 74 72 69 78 |.X |P_matrix|
|00002b70| 39 30 5b 72 6f 77 5d 5b | 63 6f 6c 5d 20 3d 20 50 |90[row][|col] = P|
|00002b80| 5f 6d 61 74 72 69 78 31 | 33 35 5b 72 6f 77 5d 5b |_matrix1|35[row][|
|00002b90| 63 6f 6c 5d 20 3d 20 30 | 3b 0a 58 20 20 20 20 7d |col] = 0|;.X }|
|00002ba0| 0a 58 0a 58 20 20 2f 2a | 20 46 69 6e 64 20 67 72 |.X.X /*| Find gr|
|00002bb0| 61 79 2d 74 6f 6e 65 20 | 73 70 61 74 69 61 6c 20 |ay-tone |spatial |
|00002bc0| 64 65 70 65 6e 64 65 6e | 63 65 20 6d 61 74 72 69 |dependen|ce matri|
|00002bd0| 78 20 2a 2f 0a 58 20 20 | 66 70 72 69 6e 74 66 20 |x */.X |fprintf |
|00002be0| 28 73 74 64 65 72 72 2c | 20 22 28 43 6f 6d 70 75 |(stderr,| "(Compu|
|00002bf0| 74 69 6e 67 20 73 70 61 | 74 69 61 6c 20 64 65 70 |ting spa|tial dep|
|00002c00| 65 6e 64 65 6e 63 65 20 | 6d 61 74 72 69 78 2e 2e |endence |matrix..|
|00002c10| 2e 22 29 3b 0a 58 20 20 | 66 6f 72 20 28 72 6f 77 |.");.X |for (row|
|00002c20| 20 3d 20 30 3b 20 72 6f | 77 20 3c 20 72 6f 77 73 | = 0; ro|w < rows|
|00002c30| 3b 20 2b 2b 72 6f 77 29 | 0a 58 20 20 20 20 66 6f |; ++row)|.X fo|
|00002c40| 72 20 28 63 6f 6c 20 3d | 20 30 3b 20 63 6f 6c 20 |r (col =| 0; col |
|00002c50| 3c 20 63 6f 6c 73 3b 20 | 2b 2b 63 6f 6c 29 0a 58 |< cols; |++col).X|
|00002c60| 20 20 20 20 20 20 66 6f | 72 20 28 78 20 3d 20 30 | fo|r (x = 0|
|00002c70| 2c 20 61 6e 67 6c 65 20 | 3d 20 30 3b 20 61 6e 67 |, angle |= 0; ang|
|00002c80| 6c 65 20 3c 3d 20 31 33 | 35 3b 20 61 6e 67 6c 65 |le <= 13|5; angle|
|00002c90| 20 2b 3d 20 34 35 29 0a | 58 20 20 20 20 20 20 7b | += 45).|X {|
|00002ca0| 0a 58 09 77 68 69 6c 65 | 20 28 74 6f 6e 65 5b 78 |.X.while| (tone[x|
|00002cb0| 5d 20 21 3d 20 67 72 61 | 79 73 5b 72 6f 77 5d 5b |] != gra|ys[row][|
|00002cc0| 63 6f 6c 5d 29 0a 58 09 | 20 20 78 2b 2b 3b 0a 58 |col]).X.| x++;.X|
|00002cd0| 09 69 66 20 28 61 6e 67 | 6c 65 20 3d 3d 20 30 20 |.if (ang|le == 0 |
|00002ce0| 26 26 20 63 6f 6c 20 2b | 20 64 20 3c 20 63 6f 6c |&& col +| d < col|
|00002cf0| 73 29 0a 58 09 7b 0a 58 | 09 20 20 79 20 3d 20 30 |s).X.{.X|. y = 0|
|00002d00| 3b 0a 58 09 20 20 77 68 | 69 6c 65 20 28 74 6f 6e |;.X. wh|ile (ton|
|00002d10| 65 5b 79 5d 20 21 3d 20 | 67 72 61 79 73 5b 72 6f |e[y] != |grays[ro|
|00002d20| 77 5d 5b 63 6f 6c 20 2b | 20 64 5d 29 0a 58 09 20 |w][col +| d]).X. |
|00002d30| 20 20 20 79 2b 2b 3b 0a | 58 09 20 20 50 5f 6d 61 | y++;.|X. P_ma|
|00002d40| 74 72 69 78 30 5b 78 5d | 5b 79 5d 2b 2b 3b 0a 58 |trix0[x]|[y]++;.X|
|00002d50| 09 20 20 50 5f 6d 61 74 | 72 69 78 30 5b 79 5d 5b |. P_mat|rix0[y][|
|00002d60| 78 5d 2b 2b 3b 0a 58 09 | 7d 0a 58 09 69 66 20 28 |x]++;.X.|}.X.if (|
|00002d70| 61 6e 67 6c 65 20 3d 3d | 20 39 30 20 26 26 20 72 |angle ==| 90 && r|
|00002d80| 6f 77 20 2b 20 64 20 3c | 20 72 6f 77 73 29 0a 58 |ow + d <| rows).X|
|00002d90| 09 7b 0a 58 09 20 20 79 | 20 3d 20 30 3b 0a 58 09 |.{.X. y| = 0;.X.|
|00002da0| 20 20 77 68 69 6c 65 20 | 28 74 6f 6e 65 5b 79 5d | while |(tone[y]|
|00002db0| 20 21 3d 20 67 72 61 79 | 73 5b 72 6f 77 20 2b 20 | != gray|s[row + |
|00002dc0| 64 5d 5b 63 6f 6c 5d 29 | 0a 58 09 20 20 20 20 79 |d][col])|.X. y|
|00002dd0| 2b 2b 3b 0a 58 09 20 20 | 50 5f 6d 61 74 72 69 78 |++;.X. |P_matrix|
|00002de0| 39 30 5b 78 5d 5b 79 5d | 2b 2b 3b 0a 58 09 20 20 |90[x][y]|++;.X. |
|00002df0| 50 5f 6d 61 74 72 69 78 | 39 30 5b 79 5d 5b 78 5d |P_matrix|90[y][x]|
|00002e00| 2b 2b 3b 0a 58 09 7d 0a | 58 09 69 66 20 28 61 6e |++;.X.}.|X.if (an|
|00002e10| 67 6c 65 20 3d 3d 20 34 | 35 20 26 26 20 72 6f 77 |gle == 4|5 && row|
|00002e20| 20 2b 20 64 20 3c 20 72 | 6f 77 73 20 26 26 20 63 | + d < r|ows && c|
|00002e30| 6f 6c 20 2d 20 64 20 3e | 3d 20 30 29 0a 58 09 7b |ol - d >|= 0).X.{|
|00002e40| 0a 58 09 20 20 79 20 3d | 20 30 3b 0a 58 09 20 20 |.X. y =| 0;.X. |
|00002e50| 77 68 69 6c 65 20 28 74 | 6f 6e 65 5b 79 5d 20 21 |while (t|one[y] !|
|00002e60| 3d 20 67 72 61 79 73 5b | 72 6f 77 20 2b 20 64 5d |= grays[|row + d]|
|00002e70| 5b 63 6f 6c 20 2d 20 64 | 5d 29 0a 58 09 20 20 20 |[col - d|]).X. |
|00002e80| 20 79 2b 2b 3b 0a 58 09 | 20 20 50 5f 6d 61 74 72 | y++;.X.| P_matr|
|00002e90| 69 78 34 35 5b 78 5d 5b | 79 5d 2b 2b 3b 0a 58 09 |ix45[x][|y]++;.X.|
|00002ea0| 20 20 50 5f 6d 61 74 72 | 69 78 34 35 5b 79 5d 5b | P_matr|ix45[y][|
|00002eb0| 78 5d 2b 2b 3b 0a 58 09 | 7d 0a 58 09 69 66 20 28 |x]++;.X.|}.X.if (|
|00002ec0| 61 6e 67 6c 65 20 3d 3d | 20 31 33 35 20 26 26 20 |angle ==| 135 && |
|00002ed0| 72 6f 77 20 2b 20 64 20 | 3c 20 72 6f 77 73 20 26 |row + d |< rows &|
|00002ee0| 26 20 63 6f 6c 20 2b 20 | 64 20 3c 20 63 6f 6c 73 |& col + |d < cols|
|00002ef0| 29 0a 58 09 7b 0a 58 09 | 20 20 79 20 3d 20 30 3b |).X.{.X.| y = 0;|
|00002f00| 0a 58 09 20 20 77 68 69 | 6c 65 20 28 74 6f 6e 65 |.X. whi|le (tone|
|00002f10| 5b 79 5d 20 21 3d 20 67 | 72 61 79 73 5b 72 6f 77 |[y] != g|rays[row|
|00002f20| 20 2b 20 64 5d 5b 63 6f | 6c 20 2b 20 64 5d 29 0a | + d][co|l + d]).|
|00002f30| 58 09 20 20 20 20 79 2b | 2b 3b 0a 58 09 20 20 50 |X. y+|+;.X. P|
|00002f40| 5f 6d 61 74 72 69 78 31 | 33 35 5b 78 5d 5b 79 5d |_matrix1|35[x][y]|
|00002f50| 2b 2b 3b 0a 58 09 20 20 | 50 5f 6d 61 74 72 69 78 |++;.X. |P_matrix|
|00002f60| 31 33 35 5b 79 5d 5b 78 | 5d 2b 2b 3b 0a 58 09 7d |135[y][x|]++;.X.}|
|00002f70| 0a 58 20 20 20 20 20 20 | 7d 0a 58 20 20 2f 2a 20 |.X |}.X /* |
|00002f80| 47 72 61 79 2d 74 6f 6e | 65 20 73 70 61 74 69 61 |Gray-ton|e spatia|
|00002f90| 6c 20 64 65 70 65 6e 64 | 65 6e 63 65 20 6d 61 74 |l depend|ence mat|
|00002fa0| 72 69 63 65 73 20 61 72 | 65 20 63 6f 6d 70 6c 65 |rices ar|e comple|
|00002fb0| 74 65 20 2a 2f 0a 58 0a | 58 20 20 2f 2a 20 46 69 |te */.X.|X /* Fi|
|00002fc0| 6e 64 20 6e 6f 72 6d 61 | 6c 69 7a 69 6e 67 20 63 |nd norma|lizing c|
|00002fd0| 6f 6e 73 74 61 6e 74 73 | 20 2a 2f 0a 58 20 20 52 |onstants| */.X R|
|00002fe0| 30 20 3d 20 32 20 2a 20 | 72 6f 77 73 20 2a 20 28 |0 = 2 * |rows * (|
|00002ff0| 63 6f 6c 73 20 2d 20 31 | 29 3b 0a 58 20 20 52 34 |cols - 1|);.X R4|
|00003000| 35 20 3d 20 32 20 2a 20 | 28 72 6f 77 73 20 2d 20 |5 = 2 * |(rows - |
|00003010| 31 29 20 2a 20 28 63 6f | 6c 73 20 2d 20 31 29 3b |1) * (co|ls - 1);|
|00003020| 0a 58 20 20 52 39 30 20 | 3d 20 32 20 2a 20 28 72 |.X R90 |= 2 * (r|
|00003030| 6f 77 73 20 2d 20 31 29 | 20 2a 20 63 6f 6c 73 3b |ows - 1)| * cols;|
|00003040| 0a 58 0a 58 20 20 2f 2a | 20 4e 6f 72 6d 61 6c 69 |.X.X /*| Normali|
|00003050| 7a 65 20 67 72 61 79 2d | 74 6f 6e 65 20 73 70 61 |ze gray-|tone spa|
|00003060| 74 69 61 6c 20 64 65 70 | 65 6e 64 65 6e 63 65 20 |tial dep|endence |
|00003070| 6d 61 74 72 69 78 20 2a | 2f 0a 58 20 20 66 6f 72 |matrix *|/.X for|
|00003080| 20 28 69 74 6f 6e 65 20 | 3d 20 30 3b 20 69 74 6f | (itone |= 0; ito|
|00003090| 6e 65 20 3c 20 74 6f 6e | 65 73 3b 20 2b 2b 69 74 |ne < ton|es; ++it|
|000030a0| 6f 6e 65 29 0a 58 20 20 | 20 20 66 6f 72 20 28 6a |one).X | for (j|
|000030b0| 74 6f 6e 65 20 3d 20 30 | 3b 20 6a 74 6f 6e 65 20 |tone = 0|; jtone |
|000030c0| 3c 20 74 6f 6e 65 73 3b | 20 2b 2b 6a 74 6f 6e 65 |< tones;| ++jtone|
|000030d0| 29 0a 58 20 20 20 20 7b | 0a 58 20 20 20 20 20 20 |).X {|.X |
|000030e0| 50 5f 6d 61 74 72 69 78 | 30 5b 69 74 6f 6e 65 5d |P_matrix|0[itone]|
|000030f0| 5b 6a 74 6f 6e 65 5d 20 | 2f 3d 20 52 30 3b 0a 58 |[jtone] |/= R0;.X|
|00003100| 20 20 20 20 20 20 50 5f | 6d 61 74 72 69 78 34 35 | P_|matrix45|
|00003110| 5b 69 74 6f 6e 65 5d 5b | 6a 74 6f 6e 65 5d 20 2f |[itone][|jtone] /|
|00003120| 3d 20 52 34 35 3b 0a 58 | 20 20 20 20 20 20 50 5f |= R45;.X| P_|
|00003130| 6d 61 74 72 69 78 39 30 | 5b 69 74 6f 6e 65 5d 5b |matrix90|[itone][|
|00003140| 6a 74 6f 6e 65 5d 20 2f | 3d 20 52 39 30 3b 0a 58 |jtone] /|= R90;.X|
|00003150| 20 20 20 20 20 20 50 5f | 6d 61 74 72 69 78 31 33 | P_|matrix13|
|00003160| 35 5b 69 74 6f 6e 65 5d | 5b 6a 74 6f 6e 65 5d 20 |5[itone]|[jtone] |
|00003170| 2f 3d 20 52 34 35 3b 0a | 58 20 20 20 20 7d 0a 58 |/= R45;.|X }.X|
|00003180| 0a 58 20 20 66 70 72 69 | 6e 74 66 20 28 73 74 64 |.X fpri|ntf (std|
|00003190| 65 72 72 2c 20 22 20 64 | 6f 6e 65 2e 29 5c 6e 22 |err, " d|one.)\n"|
|000031a0| 29 3b 0a 58 20 20 66 70 | 72 69 6e 74 66 20 28 73 |);.X fp|rintf (s|
|000031b0| 74 64 65 72 72 2c 20 22 | 28 43 6f 6d 70 75 74 69 |tderr, "|(Computi|
|000031c0| 6e 67 20 74 65 78 74 75 | 72 61 6c 20 66 65 61 74 |ng textu|ral feat|
|000031d0| 75 72 65 73 22 29 3b 0a | 58 20 20 66 70 72 69 6e |ures");.|X fprin|
|000031e0| 74 66 20 28 73 74 64 6f | 75 74 2c 20 22 5c 6e 22 |tf (stdo|ut, "\n"|
|000031f0| 29 3b 0a 58 20 20 44 4f | 54 3b 0a 58 20 20 66 70 |);.X DO|T;.X fp|
|00003200| 72 69 6e 74 66 20 28 73 | 74 64 6f 75 74 2c 0a 58 |rintf (s|tdout,.X|
|00003210| 09 20 20 20 22 25 73 20 | 20 20 20 20 20 20 20 20 |. "%s | |
|00003220| 30 20 20 20 20 20 20 20 | 20 20 34 35 20 20 20 20 |0 | 45 |
|00003230| 20 20 20 20 20 39 30 20 | 20 20 20 20 20 20 20 31 | 90 | 1|
|00003240| 33 35 20 20 20 20 20 20 | 20 20 41 76 67 5c 6e 22 |35 | Avg\n"|
|00003250| 2c 0a 58 09 20 20 20 42 | 4c 29 3b 0a 58 20 20 41 |,.X. B|L);.X A|
|00003260| 53 4d 5b 30 5d 20 3d 20 | 66 31 5f 61 73 6d 20 28 |SM[0] = |f1_asm (|
|00003270| 50 5f 6d 61 74 72 69 78 | 30 2c 20 74 6f 6e 65 73 |P_matrix|0, tones|
|00003280| 29 3b 0a 58 20 20 41 53 | 4d 5b 31 5d 20 3d 20 66 |);.X AS|M[1] = f|
|00003290| 31 5f 61 73 6d 20 28 50 | 5f 6d 61 74 72 69 78 34 |1_asm (P|_matrix4|
|000032a0| 35 2c 20 74 6f 6e 65 73 | 29 3b 0a 58 20 20 41 53 |5, tones|);.X AS|
|000032b0| 4d 5b 32 5d 20 3d 20 66 | 31 5f 61 73 6d 20 28 50 |M[2] = f|1_asm (P|
|000032c0| 5f 6d 61 74 72 69 78 39 | 30 2c 20 74 6f 6e 65 73 |_matrix9|0, tones|
|000032d0| 29 3b 0a 58 20 20 41 53 | 4d 5b 33 5d 20 3d 20 66 |);.X AS|M[3] = f|
|000032e0| 31 5f 61 73 6d 20 28 50 | 5f 6d 61 74 72 69 78 31 |1_asm (P|_matrix1|
|000032f0| 33 35 2c 20 74 6f 6e 65 | 73 29 3b 0a 58 20 20 72 |35, tone|s);.X r|
|00003300| 65 73 75 6c 74 73 20 28 | 46 31 2c 20 41 53 4d 29 |esults (|F1, ASM)|
|00003310| 3b 0a 58 0a 58 20 20 63 | 6f 6e 74 72 61 73 74 5b |;.X.X c|ontrast[|
|00003320| 30 5d 20 3d 20 66 32 5f | 63 6f 6e 74 72 61 73 74 |0] = f2_|contrast|
|00003330| 20 28 50 5f 6d 61 74 72 | 69 78 30 2c 20 74 6f 6e | (P_matr|ix0, ton|
|00003340| 65 73 29 3b 0a 58 20 20 | 63 6f 6e 74 72 61 73 74 |es);.X |contrast|
|00003350| 5b 31 5d 20 3d 20 66 32 | 5f 63 6f 6e 74 72 61 73 |[1] = f2|_contras|
|00003360| 74 20 28 50 5f 6d 61 74 | 72 69 78 34 35 2c 20 74 |t (P_mat|rix45, t|
|00003370| 6f 6e 65 73 29 3b 0a 58 | 20 20 63 6f 6e 74 72 61 |ones);.X| contra|
|00003380| 73 74 5b 32 5d 20 3d 20 | 66 32 5f 63 6f 6e 74 72 |st[2] = |f2_contr|
|00003390| 61 73 74 20 28 50 5f 6d | 61 74 72 69 78 39 30 2c |ast (P_m|atrix90,|
|000033a0| 20 74 6f 6e 65 73 29 3b | 0a 58 20 20 63 6f 6e 74 | tones);|.X cont|
|000033b0| 72 61 73 74 5b 33 5d 20 | 3d 20 66 32 5f 63 6f 6e |rast[3] |= f2_con|
|000033c0| 74 72 61 73 74 20 28 50 | 5f 6d 61 74 72 69 78 31 |trast (P|_matrix1|
|000033d0| 33 35 2c 20 74 6f 6e 65 | 73 29 3b 0a 58 20 20 72 |35, tone|s);.X r|
|000033e0| 65 73 75 6c 74 73 20 28 | 46 32 2c 20 63 6f 6e 74 |esults (|F2, cont|
|000033f0| 72 61 73 74 29 3b 0a 58 | 0a 58 20 20 63 6f 72 72 |rast);.X|.X corr|
|00003400| 5b 30 5d 20 3d 20 66 33 | 5f 63 6f 72 72 20 28 50 |[0] = f3|_corr (P|
|00003410| 5f 6d 61 74 72 69 78 30 | 2c 20 74 6f 6e 65 73 29 |_matrix0|, tones)|
|00003420| 3b 0a 58 20 20 63 6f 72 | 72 5b 31 5d 20 3d 20 66 |;.X cor|r[1] = f|
|00003430| 33 5f 63 6f 72 72 20 28 | 50 5f 6d 61 74 72 69 78 |3_corr (|P_matrix|
|00003440| 34 35 2c 20 74 6f 6e 65 | 73 29 3b 0a 58 20 20 63 |45, tone|s);.X c|
|00003450| 6f 72 72 5b 32 5d 20 3d | 20 66 33 5f 63 6f 72 72 |orr[2] =| f3_corr|
|00003460| 20 28 50 5f 6d 61 74 72 | 69 78 39 30 2c 20 74 6f | (P_matr|ix90, to|
|00003470| 6e 65 73 29 3b 0a 58 20 | 20 63 6f 72 72 5b 33 5d |nes);.X | corr[3]|
|00003480| 20 3d 20 66 33 5f 63 6f | 72 72 20 28 50 5f 6d 61 | = f3_co|rr (P_ma|
|00003490| 74 72 69 78 31 33 35 2c | 20 74 6f 6e 65 73 29 3b |trix135,| tones);|
|000034a0| 0a 58 20 20 72 65 73 75 | 6c 74 73 20 28 46 33 2c |.X resu|lts (F3,|
|000034b0| 20 63 6f 72 72 29 3b 0a | 58 0a 58 20 20 76 61 72 | corr);.|X.X var|
|000034c0| 5b 30 5d 20 3d 20 66 34 | 5f 76 61 72 20 28 50 5f |[0] = f4|_var (P_|
|000034d0| 6d 61 74 72 69 78 30 2c | 20 74 6f 6e 65 73 29 3b |matrix0,| tones);|
|000034e0| 0a 58 20 20 76 61 72 5b | 31 5d 20 3d 20 66 34 5f |.X var[|1] = f4_|
|000034f0| 76 61 72 20 28 50 5f 6d | 61 74 72 69 78 34 35 2c |var (P_m|atrix45,|
|00003500| 20 74 6f 6e 65 73 29 3b | 0a 58 20 20 76 61 72 5b | tones);|.X var[|
|00003510| 32 5d 20 3d 20 66 34 5f | 76 61 72 20 28 50 5f 6d |2] = f4_|var (P_m|
|00003520| 61 74 72 69 78 39 30 2c | 20 74 6f 6e 65 73 29 3b |atrix90,| tones);|
|00003530| 0a 58 20 20 76 61 72 5b | 33 5d 20 3d 20 66 34 5f |.X var[|3] = f4_|
|00003540| 76 61 72 20 28 50 5f 6d | 61 74 72 69 78 31 33 35 |var (P_m|atrix135|
|00003550| 2c 20 74 6f 6e 65 73 29 | 3b 0a 58 20 20 72 65 73 |, tones)|;.X res|
|00003560| 75 6c 74 73 20 28 46 34 | 2c 20 76 61 72 29 3b 0a |ults (F4|, var);.|
|00003570| 58 0a 58 20 20 69 64 6d | 5b 30 5d 20 3d 20 66 35 |X.X idm|[0] = f5|
|00003580| 5f 69 64 6d 20 28 50 5f | 6d 61 74 72 69 78 30 2c |_idm (P_|matrix0,|
|00003590| 20 74 6f 6e 65 73 29 3b | 0a 58 20 20 69 64 6d 5b | tones);|.X idm[|
|000035a0| 31 5d 20 3d 20 66 35 5f | 69 64 6d 20 28 50 5f 6d |1] = f5_|idm (P_m|
|000035b0| 61 74 72 69 78 34 35 2c | 20 74 6f 6e 65 73 29 3b |atrix45,| tones);|
|000035c0| 0a 58 20 20 69 64 6d 5b | 32 5d 20 3d 20 66 35 5f |.X idm[|2] = f5_|
|000035d0| 69 64 6d 20 28 50 5f 6d | 61 74 72 69 78 39 30 2c |idm (P_m|atrix90,|
|000035e0| 20 74 6f 6e 65 73 29 3b | 0a 58 20 20 69 64 6d 5b | tones);|.X idm[|
|000035f0| 33 5d 20 3d 20 66 35 5f | 69 64 6d 20 28 50 5f 6d |3] = f5_|idm (P_m|
|00003600| 61 74 72 69 78 31 33 35 | 2c 20 74 6f 6e 65 73 29 |atrix135|, tones)|
|00003610| 3b 0a 58 20 20 72 65 73 | 75 6c 74 73 20 28 46 35 |;.X res|ults (F5|
|00003620| 2c 20 69 64 6d 29 3b 0a | 58 0a 58 20 20 73 61 76 |, idm);.|X.X sav|
|00003630| 67 5b 30 5d 20 3d 20 66 | 36 5f 73 61 76 67 20 28 |g[0] = f|6_savg (|
|00003640| 50 5f 6d 61 74 72 69 78 | 30 2c 20 74 6f 6e 65 73 |P_matrix|0, tones|
|00003650| 29 3b 0a 58 20 20 73 61 | 76 67 5b 31 5d 20 3d 20 |);.X sa|vg[1] = |
|00003660| 66 36 5f 73 61 76 67 20 | 28 50 5f 6d 61 74 72 69 |f6_savg |(P_matri|
|00003670| 78 34 35 2c 20 74 6f 6e | 65 73 29 3b 0a 58 20 20 |x45, ton|es);.X |
|00003680| 73 61 76 67 5b 32 5d 20 | 3d 20 66 36 5f 73 61 76 |savg[2] |= f6_sav|
|00003690| 67 20 28 50 5f 6d 61 74 | 72 69 78 39 30 2c 20 74 |g (P_mat|rix90, t|
|000036a0| 6f 6e 65 73 29 3b 0a 58 | 20 20 73 61 76 67 5b 33 |ones);.X| savg[3|
|000036b0| 5d 20 3d 20 66 36 5f 73 | 61 76 67 20 28 50 5f 6d |] = f6_s|avg (P_m|
|000036c0| 61 74 72 69 78 31 33 35 | 2c 20 74 6f 6e 65 73 29 |atrix135|, tones)|
|000036d0| 3b 0a 58 20 20 72 65 73 | 75 6c 74 73 20 28 46 36 |;.X res|ults (F6|
|000036e0| 2c 20 73 61 76 67 29 3b | 0a 58 0a 58 20 20 73 65 |, savg);|.X.X se|
|000036f0| 6e 74 72 6f 70 79 5b 30 | 5d 20 3d 20 66 38 5f 73 |ntropy[0|] = f8_s|
|00003700| 65 6e 74 72 6f 70 79 20 | 28 50 5f 6d 61 74 72 69 |entropy |(P_matri|
|00003710| 78 30 2c 20 74 6f 6e 65 | 73 29 3b 0a 58 20 20 73 |x0, tone|s);.X s|
|00003720| 65 6e 74 72 6f 70 79 5b | 31 5d 20 3d 20 66 38 5f |entropy[|1] = f8_|
|00003730| 73 65 6e 74 72 6f 70 79 | 20 28 50 5f 6d 61 74 72 |sentropy| (P_matr|
|00003740| 69 78 34 35 2c 20 74 6f | 6e 65 73 29 3b 0a 58 20 |ix45, to|nes);.X |
|00003750| 20 73 65 6e 74 72 6f 70 | 79 5b 32 5d 20 3d 20 66 | sentrop|y[2] = f|
|00003760| 38 5f 73 65 6e 74 72 6f | 70 79 20 28 50 5f 6d 61 |8_sentro|py (P_ma|
|00003770| 74 72 69 78 39 30 2c 20 | 74 6f 6e 65 73 29 3b 0a |trix90, |tones);.|
|00003780| 58 20 20 73 65 6e 74 72 | 6f 70 79 5b 33 5d 20 3d |X sentr|opy[3] =|
|00003790| 20 66 38 5f 73 65 6e 74 | 72 6f 70 79 20 28 50 5f | f8_sent|ropy (P_|
|000037a0| 6d 61 74 72 69 78 31 33 | 35 2c 20 74 6f 6e 65 73 |matrix13|5, tones|
|000037b0| 29 3b 0a 58 20 20 73 76 | 61 72 5b 30 5d 20 3d 20 |);.X sv|ar[0] = |
|000037c0| 66 37 5f 73 76 61 72 20 | 28 50 5f 6d 61 74 72 69 |f7_svar |(P_matri|
|000037d0| 78 30 2c 20 74 6f 6e 65 | 73 2c 20 73 65 6e 74 72 |x0, tone|s, sentr|
|000037e0| 6f 70 79 5b 30 5d 29 3b | 0a 58 20 20 73 76 61 72 |opy[0]);|.X svar|
|000037f0| 5b 31 5d 20 3d 20 66 37 | 5f 73 76 61 72 20 28 50 |[1] = f7|_svar (P|
|00003800| 5f 6d 61 74 72 69 78 34 | 35 2c 20 74 6f 6e 65 73 |_matrix4|5, tones|
|00003810| 2c 20 73 65 6e 74 72 6f | 70 79 5b 31 5d 29 3b 0a |, sentro|py[1]);.|
|00003820| 58 20 20 73 76 61 72 5b | 32 5d 20 3d 20 66 37 5f |X svar[|2] = f7_|
|00003830| 73 76 61 72 20 28 50 5f | 6d 61 74 72 69 78 39 30 |svar (P_|matrix90|
|00003840| 2c 20 74 6f 6e 65 73 2c | 20 73 65 6e 74 72 6f 70 |, tones,| sentrop|
|00003850| 79 5b 32 5d 29 3b 0a 58 | 20 20 73 76 61 72 5b 33 |y[2]);.X| svar[3|
|00003860| 5d 20 3d 20 66 37 5f 73 | 76 61 72 20 28 50 5f 6d |] = f7_s|var (P_m|
|00003870| 61 74 72 69 78 31 33 35 | 2c 20 74 6f 6e 65 73 2c |atrix135|, tones,|
|00003880| 20 73 65 6e 74 72 6f 70 | 79 5b 33 5d 29 3b 0a 58 | sentrop|y[3]);.X|
|00003890| 20 20 72 65 73 75 6c 74 | 73 20 28 46 37 2c 20 73 | result|s (F7, s|
|000038a0| 76 61 72 29 3b 0a 58 20 | 20 72 65 73 75 6c 74 73 |var);.X | results|
|000038b0| 20 28 46 38 2c 20 73 65 | 6e 74 72 6f 70 79 29 3b | (F8, se|ntropy);|
|000038c0| 0a 58 0a 58 20 20 65 6e | 74 72 6f 70 79 5b 30 5d |.X.X en|tropy[0]|
|000038d0| 20 3d 20 66 39 5f 65 6e | 74 72 6f 70 79 20 28 50 | = f9_en|tropy (P|
|000038e0| 5f 6d 61 74 72 69 78 30 | 2c 20 74 6f 6e 65 73 29 |_matrix0|, tones)|
|000038f0| 3b 0a 58 20 20 65 6e 74 | 72 6f 70 79 5b 31 5d 20 |;.X ent|ropy[1] |
|00003900| 3d 20 66 39 5f 65 6e 74 | 72 6f 70 79 20 28 50 5f |= f9_ent|ropy (P_|
|00003910| 6d 61 74 72 69 78 34 35 | 2c 20 74 6f 6e 65 73 29 |matrix45|, tones)|
|00003920| 3b 0a 58 20 20 65 6e 74 | 72 6f 70 79 5b 32 5d 20 |;.X ent|ropy[2] |
|00003930| 3d 20 66 39 5f 65 6e 74 | 72 6f 70 79 20 28 50 5f |= f9_ent|ropy (P_|
|00003940| 6d 61 74 72 69 78 39 30 | 2c 20 74 6f 6e 65 73 29 |matrix90|, tones)|
|00003950| 3b 0a 58 20 20 65 6e 74 | 72 6f 70 79 5b 33 5d 20 |;.X ent|ropy[3] |
|00003960| 3d 20 66 39 5f 65 6e 74 | 72 6f 70 79 20 28 50 5f |= f9_ent|ropy (P_|
|00003970| 6d 61 74 72 69 78 31 33 | 35 2c 20 74 6f 6e 65 73 |matrix13|5, tones|
|00003980| 29 3b 0a 58 20 20 72 65 | 73 75 6c 74 73 20 28 46 |);.X re|sults (F|
|00003990| 39 2c 20 65 6e 74 72 6f | 70 79 29 3b 0a 58 0a 58 |9, entro|py);.X.X|
|000039a0| 20 20 64 76 61 72 5b 30 | 5d 20 3d 20 66 31 30 5f | dvar[0|] = f10_|
|000039b0| 64 76 61 72 20 28 50 5f | 6d 61 74 72 69 78 30 2c |dvar (P_|matrix0,|
|000039c0| 20 74 6f 6e 65 73 29 3b | 0a 58 20 20 64 76 61 72 | tones);|.X dvar|
|000039d0| 5b 31 5d 20 3d 20 66 31 | 30 5f 64 76 61 72 20 28 |[1] = f1|0_dvar (|
|000039e0| 50 5f 6d 61 74 72 69 78 | 34 35 2c 20 74 6f 6e 65 |P_matrix|45, tone|
|000039f0| 73 29 3b 0a 58 20 20 64 | 76 61 72 5b 32 5d 20 3d |s);.X d|var[2] =|
|00003a00| 20 66 31 30 5f 64 76 61 | 72 20 28 50 5f 6d 61 74 | f10_dva|r (P_mat|
|00003a10| 72 69 78 39 30 2c 20 74 | 6f 6e 65 73 29 3b 0a 58 |rix90, t|ones);.X|
|00003a20| 20 20 64 76 61 72 5b 33 | 5d 20 3d 20 66 31 30 5f | dvar[3|] = f10_|
|00003a30| 64 76 61 72 20 28 50 5f | 6d 61 74 72 69 78 31 33 |dvar (P_|matrix13|
|00003a40| 35 2c 20 74 6f 6e 65 73 | 29 3b 0a 58 20 20 72 65 |5, tones|);.X re|
|00003a50| 73 75 6c 74 73 20 28 46 | 31 30 2c 20 64 76 61 72 |sults (F|10, dvar|
|00003a60| 29 3b 0a 58 0a 58 20 20 | 64 65 6e 74 72 6f 70 79 |);.X.X |dentropy|
|00003a70| 5b 30 5d 20 3d 20 66 31 | 31 5f 64 65 6e 74 72 6f |[0] = f1|1_dentro|
|00003a80| 70 79 20 28 50 5f 6d 61 | 74 72 69 78 30 2c 20 74 |py (P_ma|trix0, t|
|00003a90| 6f 6e 65 73 29 3b 0a 58 | 20 20 64 65 6e 74 72 6f |ones);.X| dentro|
|00003aa0| 70 79 5b 31 5d 20 3d 20 | 66 31 31 5f 64 65 6e 74 |py[1] = |f11_dent|
|00003ab0| 72 6f 70 79 20 28 50 5f | 6d 61 74 72 69 78 34 35 |ropy (P_|matrix45|
|00003ac0| 2c 20 74 6f 6e 65 73 29 | 3b 0a 58 20 20 64 65 6e |, tones)|;.X den|
|00003ad0| 74 72 6f 70 79 5b 32 5d | 20 3d 20 66 31 31 5f 64 |tropy[2]| = f11_d|
|00003ae0| 65 6e 74 72 6f 70 79 20 | 28 50 5f 6d 61 74 72 69 |entropy |(P_matri|
|00003af0| 78 39 30 2c 20 74 6f 6e | 65 73 29 3b 0a 58 20 20 |x90, ton|es);.X |
|00003b00| 64 65 6e 74 72 6f 70 79 | 5b 33 5d 20 3d 20 66 31 |dentropy|[3] = f1|
|00003b10| 31 5f 64 65 6e 74 72 6f | 70 79 20 28 50 5f 6d 61 |1_dentro|py (P_ma|
|00003b20| 74 72 69 78 31 33 35 2c | 20 74 6f 6e 65 73 29 3b |trix135,| tones);|
|00003b30| 0a 58 20 20 72 65 73 75 | 6c 74 73 20 28 46 31 31 |.X resu|lts (F11|
|00003b40| 2c 20 64 65 6e 74 72 6f | 70 79 29 3b 0a 58 0a 58 |, dentro|py);.X.X|
|00003b50| 20 20 69 63 6f 72 72 5b | 30 5d 20 3d 20 66 31 32 | icorr[|0] = f12|
|00003b60| 5f 69 63 6f 72 72 20 28 | 50 5f 6d 61 74 72 69 78 |_icorr (|P_matrix|
|00003b70| 30 2c 20 74 6f 6e 65 73 | 29 3b 0a 58 20 20 69 63 |0, tones|);.X ic|
|00003b80| 6f 72 72 5b 31 5d 20 3d | 20 66 31 32 5f 69 63 6f |orr[1] =| f12_ico|
|00003b90| 72 72 20 28 50 5f 6d 61 | 74 72 69 78 34 35 2c 20 |rr (P_ma|trix45, |
|00003ba0| 74 6f 6e 65 73 29 3b 0a | 58 20 20 69 63 6f 72 72 |tones);.|X icorr|
|00003bb0| 5b 32 5d 20 3d 20 66 31 | 32 5f 69 63 6f 72 72 20 |[2] = f1|2_icorr |
|00003bc0| 28 50 5f 6d 61 74 72 69 | 78 39 30 2c 20 74 6f 6e |(P_matri|x90, ton|
|00003bd0| 65 73 29 3b 0a 58 20 20 | 69 63 6f 72 72 5b 33 5d |es);.X |icorr[3]|
|00003be0| 20 3d 20 66 31 32 5f 69 | 63 6f 72 72 20 28 50 5f | = f12_i|corr (P_|
|00003bf0| 6d 61 74 72 69 78 31 33 | 35 2c 20 74 6f 6e 65 73 |matrix13|5, tones|
|00003c00| 29 3b 0a 58 20 20 72 65 | 73 75 6c 74 73 20 28 46 |);.X re|sults (F|
|00003c10| 31 32 2c 20 69 63 6f 72 | 72 29 3b 0a 58 0a 58 20 |12, icor|r);.X.X |
|00003c20| 20 69 63 6f 72 72 5b 30 | 5d 20 3d 20 66 31 33 5f | icorr[0|] = f13_|
|00003c30| 69 63 6f 72 72 20 28 50 | 5f 6d 61 74 72 69 78 30 |icorr (P|_matrix0|
|00003c40| 2c 20 74 6f 6e 65 73 29 | 3b 0a 58 20 20 69 63 6f |, tones)|;.X ico|
|00003c50| 72 72 5b 31 5d 20 3d 20 | 66 31 33 5f 69 63 6f 72 |rr[1] = |f13_icor|
|00003c60| 72 20 28 50 5f 6d 61 74 | 72 69 78 34 35 2c 20 74 |r (P_mat|rix45, t|
|00003c70| 6f 6e 65 73 29 3b 0a 58 | 20 20 69 63 6f 72 72 5b |ones);.X| icorr[|
|00003c80| 32 5d 20 3d 20 66 31 33 | 5f 69 63 6f 72 72 20 28 |2] = f13|_icorr (|
|00003c90| 50 5f 6d 61 74 72 69 78 | 39 30 2c 20 74 6f 6e 65 |P_matrix|90, tone|
|00003ca0| 73 29 3b 0a 58 20 20 69 | 63 6f 72 72 5b 33 5d 20 |s);.X i|corr[3] |
|00003cb0| 3d 20 66 31 33 5f 69 63 | 6f 72 72 20 28 50 5f 6d |= f13_ic|orr (P_m|
|00003cc0| 61 74 72 69 78 31 33 35 | 2c 20 74 6f 6e 65 73 29 |atrix135|, tones)|
|00003cd0| 3b 0a 58 20 20 72 65 73 | 75 6c 74 73 20 28 46 31 |;.X res|ults (F1|
|00003ce0| 33 2c 20 69 63 6f 72 72 | 29 3b 0a 58 0a 58 20 20 |3, icorr|);.X.X |
|00003cf0| 6d 61 78 63 6f 72 72 5b | 30 5d 20 3d 20 66 31 34 |maxcorr[|0] = f14|
|00003d00| 5f 6d 61 78 63 6f 72 72 | 20 28 50 5f 6d 61 74 72 |_maxcorr| (P_matr|
|00003d10| 69 78 30 2c 20 74 6f 6e | 65 73 29 3b 0a 58 20 20 |ix0, ton|es);.X |
|00003d20| 6d 61 78 63 6f 72 72 5b | 31 5d 20 3d 20 66 31 34 |maxcorr[|1] = f14|
|00003d30| 5f 6d 61 78 63 6f 72 72 | 20 28 50 5f 6d 61 74 72 |_maxcorr| (P_matr|
|00003d40| 69 78 34 35 2c 20 74 6f | 6e 65 73 29 3b 0a 58 20 |ix45, to|nes);.X |
|00003d50| 20 6d 61 78 63 6f 72 72 | 5b 32 5d 20 3d 20 66 31 | maxcorr|[2] = f1|
|00003d60| 34 5f 6d 61 78 63 6f 72 | 72 20 28 50 5f 6d 61 74 |4_maxcor|r (P_mat|
|00003d70| 72 69 78 39 30 2c 20 74 | 6f 6e 65 73 29 3b 0a 58 |rix90, t|ones);.X|
|00003d80| 20 20 6d 61 78 63 6f 72 | 72 5b 33 5d 20 3d 20 66 | maxcor|r[3] = f|
|00003d90| 31 34 5f 6d 61 78 63 6f | 72 72 20 28 50 5f 6d 61 |14_maxco|rr (P_ma|
|00003da0| 74 72 69 78 31 33 35 2c | 20 74 6f 6e 65 73 29 3b |trix135,| tones);|
|00003db0| 0a 58 20 20 72 65 73 75 | 6c 74 73 20 28 46 31 34 |.X resu|lts (F14|
|00003dc0| 2c 20 6d 61 78 63 6f 72 | 72 29 3b 0a 58 0a 58 0a |, maxcor|r);.X.X.|
|00003dd0| 58 20 20 66 70 72 69 6e | 74 66 20 28 73 74 64 65 |X fprin|tf (stde|
|00003de0| 72 72 2c 20 22 20 64 6f | 6e 65 2e 29 5c 6e 22 29 |rr, " do|ne.)\n")|
|00003df0| 3b 0a 58 20 20 65 78 69 | 74 20 28 30 29 3b 0a 7d |;.X exi|t (0);.}|
|00003e00| 0a 58 0a 66 6c 6f 61 74 | 20 66 31 5f 61 73 6d 20 |.X.float| f1_asm |
|00003e10| 28 50 2c 20 4e 67 29 0a | 58 20 20 66 6c 6f 61 74 |(P, Ng).|X float|
|00003e20| 20 2a 2a 50 3b 0a 58 20 | 20 69 6e 74 20 4e 67 3b | **P;.X | int Ng;|
|00003e30| 0a 58 0a 2f 2a 20 41 6e | 67 75 6c 61 72 20 53 65 |.X./* An|gular Se|
|00003e40| 63 6f 6e 64 20 4d 6f 6d | 65 6e 74 20 2a 2f 0a 7b |cond Mom|ent */.{|
|00003e50| 0a 58 20 20 69 6e 74 20 | 69 2c 20 6a 3b 0a 58 20 |.X int |i, j;.X |
|00003e60| 20 66 6c 6f 61 74 20 73 | 75 6d 20 3d 20 30 3b 0a | float s|um = 0;.|
|00003e70| 58 0a 58 20 20 66 6f 72 | 20 28 69 20 3d 20 30 3b |X.X for| (i = 0;|
|00003e80| 20 69 20 3c 20 4e 67 3b | 20 2b 2b 69 29 0a 58 20 | i < Ng;| ++i).X |
|00003e90| 20 20 20 66 6f 72 20 28 | 6a 20 3d 20 30 3b 20 6a | for (|j = 0; j|
|00003ea0| 20 3c 20 4e 67 3b 20 2b | 2b 6a 29 0a 58 20 20 20 | < Ng; +|+j).X |
|00003eb0| 20 20 20 73 75 6d 20 2b | 3d 20 50 5b 69 5d 5b 6a | sum +|= P[i][j|
|00003ec0| 5d 20 2a 20 50 5b 69 5d | 5b 6a 5d 3b 0a 58 0a 58 |] * P[i]|[j];.X.X|
|00003ed0| 20 20 72 65 74 75 72 6e | 20 73 75 6d 3b 0a 58 0a | return| sum;.X.|
|00003ee0| 58 20 20 2f 2a 0a 58 20 | 20 20 2a 20 54 68 65 20 |X /*.X | * The |
|00003ef0| 61 6e 67 75 6c 61 72 20 | 73 65 63 6f 6e 64 2d 6d |angular |second-m|
|00003f00| 6f 6d 65 6e 74 20 66 65 | 61 74 75 72 65 20 28 41 |oment fe|ature (A|
|00003f10| 53 4d 29 20 66 31 20 69 | 73 20 61 20 6d 65 61 73 |SM) f1 i|s a meas|
|00003f20| 75 72 65 20 6f 66 20 68 | 6f 6d 6f 67 65 6e 65 69 |ure of h|omogenei|
|00003f30| 74 79 0a 58 20 20 20 2a | 20 6f 66 20 74 68 65 20 |ty.X *| of the |
|00003f40| 69 6d 61 67 65 2e 20 49 | 6e 20 61 20 68 6f 6d 6f |image. I|n a homo|
|00003f50| 67 65 6e 65 6f 75 73 20 | 69 6d 61 67 65 2c 20 74 |geneous |image, t|
|00003f60| 68 65 72 65 20 61 72 65 | 20 76 65 72 79 20 66 65 |here are| very fe|
|00003f70| 77 20 64 6f 6d 69 6e 61 | 6e 74 0a 58 20 20 20 2a |w domina|nt.X *|
|00003f80| 20 67 72 61 79 2d 74 6f | 6e 65 20 74 72 61 6e 73 | gray-to|ne trans|
|00003f90| 69 74 69 6f 6e 73 2e 20 | 48 65 6e 63 65 20 74 68 |itions. |Hence th|
|00003fa0| 65 20 50 20 6d 61 74 72 | 69 78 20 66 6f 72 20 73 |e P matr|ix for s|
|00003fb0| 75 63 68 20 61 6e 20 69 | 6d 61 67 65 20 77 69 6c |uch an i|mage wil|
|00003fc0| 6c 20 68 61 76 65 0a 58 | 20 20 20 2a 20 66 65 77 |l have.X| * few|
|00003fd0| 65 72 20 65 6e 74 72 69 | 65 73 20 6f 66 20 6c 61 |er entri|es of la|
|00003fe0| 72 67 65 20 6d 61 67 6e | 69 74 75 64 65 2e 0a 58 |rge magn|itude..X|
|00003ff0| 20 20 20 2a 2f 0a 7d 0a | 58 0a 58 0a 66 6c 6f 61 | */.}.|X.X.floa|
|00004000| 74 20 66 32 5f 63 6f 6e | 74 72 61 73 74 20 28 50 |t f2_con|trast (P|
|00004010| 2c 20 4e 67 29 0a 58 20 | 20 66 6c 6f 61 74 20 2a |, Ng).X | float *|
|00004020| 2a 50 3b 0a 58 20 20 69 | 6e 74 20 4e 67 3b 0a 58 |*P;.X i|nt Ng;.X|
|00004030| 0a 2f 2a 20 43 6f 6e 74 | 72 61 73 74 20 2a 2f 0a |./* Cont|rast */.|
|00004040| 7b 0a 58 20 20 69 6e 74 | 20 69 2c 20 6a 2c 20 6e |{.X int| i, j, n|
|00004050| 3b 0a 58 20 20 66 6c 6f | 61 74 20 73 75 6d 20 3d |;.X flo|at sum =|
|00004060| 20 30 2c 20 62 69 67 73 | 75 6d 20 3d 20 30 3b 0a | 0, bigs|um = 0;.|
|00004070| 58 0a 58 20 20 66 6f 72 | 20 28 6e 20 3d 20 30 3b |X.X for| (n = 0;|
|00004080| 20 6e 20 3c 20 4e 67 3b | 20 2b 2b 6e 29 0a 58 20 | n < Ng;| ++n).X |
|00004090| 20 7b 0a 58 20 20 20 20 | 66 6f 72 20 28 69 20 3d | {.X |for (i =|
|000040a0| 20 30 3b 20 69 20 3c 20 | 4e 67 3b 20 2b 2b 69 29 | 0; i < |Ng; ++i)|
|000040b0| 0a 58 20 20 20 20 20 20 | 66 6f 72 20 28 6a 20 3d |.X |for (j =|
|000040c0| 20 30 3b 20 6a 20 3c 20 | 4e 67 3b 20 2b 2b 6a 29 | 0; j < |Ng; ++j)|
|000040d0| 0a 58 09 69 66 20 28 28 | 69 20 2d 20 6a 29 20 3d |.X.if ((|i - j) =|
|000040e0| 3d 20 6e 20 7c 7c 20 28 | 6a 20 2d 20 69 29 20 3d |= n || (|j - i) =|
|000040f0| 3d 20 6e 29 0a 58 09 20 | 20 73 75 6d 20 2b 3d 20 |= n).X. | sum += |
|00004100| 50 5b 69 5d 5b 6a 5d 3b | 0a 58 20 20 20 20 62 69 |P[i][j];|.X bi|
|00004110| 67 73 75 6d 20 2b 3d 20 | 6e 20 2a 20 6e 20 2a 20 |gsum += |n * n * |
|00004120| 73 75 6d 3b 0a 58 0a 58 | 20 20 20 20 73 75 6d 20 |sum;.X.X| sum |
|00004130| 3d 20 30 3b 0a 58 20 20 | 7d 0a 58 20 20 72 65 74 |= 0;.X |}.X ret|
|00004140| 75 72 6e 20 62 69 67 73 | 75 6d 3b 0a 58 0a 58 20 |urn bigs|um;.X.X |
|00004150| 20 2f 2a 0a 58 20 20 20 | 2a 20 54 68 65 20 63 6f | /*.X |* The co|
|00004160| 6e 74 72 61 73 74 20 66 | 65 61 74 75 72 65 20 69 |ntrast f|eature i|
|00004170| 73 20 61 20 64 69 66 66 | 65 72 65 6e 63 65 20 6d |s a diff|erence m|
|00004180| 6f 6d 65 6e 74 20 6f 66 | 20 74 68 65 20 50 20 6d |oment of| the P m|
|00004190| 61 74 72 69 78 20 61 6e | 64 20 69 73 20 61 0a 58 |atrix an|d is a.X|
|000041a0| 20 20 20 2a 20 6d 65 61 | 73 75 72 65 20 6f 66 20 | * mea|sure of |
|000041b0| 74 68 65 20 63 6f 6e 74 | 72 61 73 74 20 6f 72 20 |the cont|rast or |
|000041c0| 74 68 65 20 61 6d 6f 75 | 6e 74 20 6f 66 20 6c 6f |the amou|nt of lo|
|000041d0| 63 61 6c 20 76 61 72 69 | 61 74 69 6f 6e 73 20 70 |cal vari|ations p|
|000041e0| 72 65 73 65 6e 74 20 69 | 6e 20 61 6e 0a 58 20 20 |resent i|n an.X |
|000041f0| 20 2a 20 69 6d 61 67 65 | 2e 0a 58 20 20 20 2a 2f | * image|..X */|
|00004200| 0a 7d 0a 58 0a 66 6c 6f | 61 74 20 66 33 5f 63 6f |.}.X.flo|at f3_co|
|00004210| 72 72 20 28 50 2c 20 4e | 67 29 0a 58 20 20 66 6c |rr (P, N|g).X fl|
|00004220| 6f 61 74 20 2a 2a 50 3b | 0a 58 20 20 69 6e 74 20 |oat **P;|.X int |
|00004230| 4e 67 3b 0a 58 0a 2f 2a | 20 43 6f 72 72 65 6c 61 |Ng;.X./*| Correla|
|00004240| 74 69 6f 6e 20 2a 2f 0a | 7b 0a 58 20 20 69 6e 74 |tion */.|{.X int|
|00004250| 20 69 2c 20 6a 3b 0a 58 | 20 20 66 6c 6f 61 74 20 | i, j;.X| float |
|00004260| 73 75 6d 78 20 3d 20 30 | 2c 20 73 75 6d 5f 73 71 |sumx = 0|, sum_sq|
|00004270| 72 78 20 3d 20 30 2c 20 | 73 75 6d 79 20 3d 20 30 |rx = 0, |sumy = 0|
|00004280| 2c 20 73 75 6d 5f 73 71 | 72 79 20 3d 20 30 2c 20 |, sum_sq|ry = 0, |
|00004290| 74 6d 70 2c 20 2a 70 78 | 2c 20 2a 70 79 3b 0a 58 |tmp, *px|, *py;.X|
|000042a0| 20 20 66 6c 6f 61 74 20 | 6d 65 61 6e 78 2c 20 6d | float |meanx, m|
|000042b0| 65 61 6e 79 2c 20 73 74 | 64 64 65 76 78 2c 20 73 |eany, st|ddevx, s|
|000042c0| 74 64 64 65 76 79 3b 0a | 58 20 20 66 6c 6f 61 74 |tddevy;.|X float|
|000042d0| 20 6d 61 72 67 70 78 2c | 20 6d 61 72 67 70 79 3b | margpx,| margpy;|
|000042e0| 0a 58 0a 58 20 20 70 78 | 20 3d 20 76 65 63 74 6f |.X.X px| = vecto|
|000042f0| 72 20 28 30 2c 20 4e 67 | 29 3b 0a 58 20 20 70 79 |r (0, Ng|);.X py|
|00004300| 20 3d 20 76 65 63 74 6f | 72 20 28 30 2c 20 4e 67 | = vecto|r (0, Ng|
|00004310| 29 3b 0a 58 20 20 66 6f | 72 20 28 69 20 3d 20 30 |);.X fo|r (i = 0|
|00004320| 3b 20 69 20 3c 20 4e 67 | 3b 20 2b 2b 69 29 0a 58 |; i < Ng|; ++i).X|
|00004330| 20 20 20 20 70 78 5b 69 | 5d 20 3d 20 70 79 5b 69 | px[i|] = py[i|
|00004340| 5d 20 3d 20 30 3b 0a 58 | 0a 58 20 20 2f 2a 0a 58 |] = 0;.X|.X /*.X|
|00004350| 20 20 20 2a 20 70 78 5b | 69 5d 20 69 73 20 74 68 | * px[|i] is th|
|00004360| 65 20 28 69 2d 31 29 74 | 68 20 65 6e 74 72 79 20 |e (i-1)t|h entry |
|00004370| 69 6e 20 74 68 65 20 6d | 61 72 67 69 6e 61 6c 20 |in the m|arginal |
|00004380| 70 72 6f 62 61 62 69 6c | 69 74 79 20 6d 61 74 72 |probabil|ity matr|
|00004390| 69 78 20 6f 62 74 61 69 | 6e 65 64 0a 58 20 20 20 |ix obtai|ned.X |
|000043a0| 2a 20 62 79 20 73 75 6d | 6d 69 6e 67 20 74 68 65 |* by sum|ming the|
|000043b0| 20 72 6f 77 73 20 6f 66 | 20 70 5b 69 5d 5b 6a 5d | rows of| p[i][j]|
|000043c0| 0a 58 20 20 20 2a 2f 0a | 58 20 20 66 6f 72 20 28 |.X */.|X for (|
|000043d0| 69 20 3d 20 30 3b 20 69 | 20 3c 20 4e 67 3b 20 2b |i = 0; i| < Ng; +|
|000043e0| 2b 69 29 0a 58 20 20 7b | 0a 58 20 20 20 20 66 6f |+i).X {|.X fo|
|000043f0| 72 20 28 6a 20 3d 20 30 | 3b 20 6a 20 3c 20 4e 67 |r (j = 0|; j < Ng|
|00004400| 3b 20 2b 2b 6a 29 0a 58 | 20 20 20 20 7b 0a 58 20 |; ++j).X| {.X |
|00004410| 20 20 20 20 20 70 78 5b | 69 5d 20 2b 3d 20 50 5b | px[|i] += P[|
|00004420| 69 5d 5b 6a 5d 3b 0a 58 | 20 20 20 20 20 20 70 79 |i][j];.X| py|
|00004430| 5b 6a 5d 20 2b 3d 20 50 | 5b 69 5d 5b 6a 5d 3b 0a |[j] += P|[i][j];.|
|00004440| 58 20 20 20 20 7d 0a 58 | 20 20 7d 0a 58 0a 58 20 |X }.X| }.X.X |
|00004450| 20 2f 2a 20 4e 6f 77 20 | 63 61 6c 63 75 6c 61 74 | /* Now |calculat|
|00004460| 65 20 74 68 65 20 6d 65 | 61 6e 73 20 61 6e 64 20 |e the me|ans and |
|00004470| 73 74 61 6e 64 61 72 64 | 20 64 65 76 69 61 74 69 |standard| deviati|
|00004480| 6f 6e 73 20 6f 66 20 70 | 78 20 61 6e 64 20 70 79 |ons of p|x and py|
|00004490| 20 2a 2f 0a 58 20 20 66 | 6f 72 20 28 69 20 3d 20 | */.X f|or (i = |
|000044a0| 30 3b 20 69 20 3c 20 4e | 67 3b 20 2b 2b 69 29 0a |0; i < N|g; ++i).|
|000044b0| 58 20 20 7b 0a 58 20 20 | 20 20 73 75 6d 78 20 2b |X {.X | sumx +|
|000044c0| 3d 20 70 78 5b 69 5d 3b | 0a 58 20 20 20 20 73 75 |= px[i];|.X su|
|000044d0| 6d 5f 73 71 72 78 20 2b | 3d 20 28 70 78 5b 69 5d |m_sqrx +|= (px[i]|
|000044e0| 20 2a 20 70 78 5b 69 5d | 29 3b 0a 58 20 20 20 20 | * px[i]|);.X |
|000044f0| 73 75 6d 79 20 2b 3d 20 | 70 79 5b 69 5d 3b 0a 58 |sumy += |py[i];.X|
|00004500| 20 20 20 20 73 75 6d 5f | 73 71 72 79 20 2b 3d 20 | sum_|sqry += |
|00004510| 28 70 79 5b 69 5d 20 2a | 20 70 79 5b 69 5d 29 3b |(py[i] *| py[i]);|
|00004520| 0a 58 20 20 7d 0a 58 0a | 58 20 20 74 6d 70 20 3d |.X }.X.|X tmp =|
|00004530| 20 4e 67 20 2a 20 4e 67 | 3b 0a 58 20 20 6d 65 61 | Ng * Ng|;.X mea|
|00004540| 6e 78 20 3d 20 73 75 6d | 78 20 2f 20 74 6d 70 3b |nx = sum|x / tmp;|
|00004550| 0a 58 20 20 73 74 64 64 | 65 76 78 20 3d 20 73 71 |.X stdd|evx = sq|
|00004560| 72 74 20 28 28 28 74 6d | 70 20 2a 20 73 75 6d 5f |rt (((tm|p * sum_|
|00004570| 73 71 72 78 29 20 2d 20 | 28 73 75 6d 78 20 2a 20 |sqrx) - |(sumx * |
|00004580| 73 75 6d 78 29 29 20 2f | 20 28 74 6d 70 20 2a 20 |sumx)) /| (tmp * |
|00004590| 74 6d 70 20 2d 20 31 29 | 29 3b 0a 58 20 20 6d 65 |tmp - 1)|);.X me|
|000045a0| 61 6e 79 20 3d 20 73 75 | 6d 79 20 2f 20 74 6d 70 |any = su|my / tmp|
|000045b0| 3b 0a 58 20 20 73 74 64 | 64 65 76 79 20 3d 20 73 |;.X std|devy = s|
|000045c0| 71 72 74 20 28 28 28 74 | 6d 70 20 2a 20 73 75 6d |qrt (((t|mp * sum|
|000045d0| 5f 73 71 72 79 29 20 2d | 20 28 73 75 6d 79 20 2a |_sqry) -| (sumy *|
|000045e0| 20 73 75 6d 79 29 29 20 | 2f 20 28 74 6d 70 20 2a | sumy)) |/ (tmp *|
|000045f0| 20 74 6d 70 20 2d 20 31 | 29 29 3b 0a 58 0a 58 20 | tmp - 1|));.X.X |
|00004600| 20 2f 2a 20 46 69 6e 61 | 6c 6c 79 2c 20 74 68 65 | /* Fina|lly, the|
|00004610| 20 63 6f 72 72 65 6c 61 | 74 69 6f 6e 20 2e 2e 2e | correla|tion ...|
|00004620| 20 2a 2f 0a 58 20 20 66 | 6f 72 20 28 74 6d 70 20 | */.X f|or (tmp |
|00004630| 3d 20 30 2c 20 69 20 3d | 20 30 3b 20 69 20 3c 20 |= 0, i =| 0; i < |
|00004640| 4e 67 3b 20 2b 2b 69 29 | 0a 58 20 20 20 20 66 6f |Ng; ++i)|.X fo|
|00004650| 72 20 28 6a 20 3d 20 30 | 3b 20 6a 20 3c 20 4e 67 |r (j = 0|; j < Ng|
|00004660| 3b 20 2b 2b 6a 29 0a 58 | 20 20 20 20 20 20 74 6d |; ++j).X| tm|
|00004670| 70 20 2b 3d 20 28 69 20 | 2b 20 31 29 20 2a 20 28 |p += (i |+ 1) * (|
|00004680| 6a 20 2b 20 31 29 20 2a | 20 50 5b 69 5d 5b 6a 5d |j + 1) *| P[i][j]|
|00004690| 3b 0a 58 0a 58 20 20 69 | 66 20 28 74 6d 70 20 2d |;.X.X i|f (tmp -|
|000046a0| 20 6d 65 61 6e 78 20 2a | 20 6d 65 61 6e 79 29 20 | meanx *| meany) |
|000046b0| 0a 58 20 20 20 72 65 74 | 75 72 6e 20 28 28 74 6d |.X ret|urn ((tm|
|000046c0| 70 20 2d 20 6d 65 61 6e | 78 20 2a 20 6d 65 61 6e |p - mean|x * mean|
|000046d0| 79 29 20 2f 20 28 73 74 | 64 64 65 76 78 20 2a 20 |y) / (st|ddevx * |
|000046e0| 73 74 64 64 65 76 79 29 | 29 3b 0a 58 20 20 65 6c |stddevy)|);.X el|
|000046f0| 73 65 0a 58 20 20 20 72 | 65 74 75 72 6e 20 30 3b |se.X r|eturn 0;|
|00004700| 0a 58 20 20 2f 2a 0a 58 | 20 20 20 2a 20 54 68 69 |.X /*.X| * Thi|
|00004710| 73 20 63 6f 72 72 65 6c | 61 74 69 6f 6e 20 66 65 |s correl|ation fe|
|00004720| 61 74 75 72 65 20 69 73 | 20 61 20 6d 65 61 73 75 |ature is| a measu|
|00004730| 72 65 20 6f 66 20 67 72 | 61 79 2d 74 6f 6e 65 20 |re of gr|ay-tone |
|00004740| 6c 69 6e 65 61 72 2d 64 | 65 70 65 6e 64 65 6e 63 |linear-d|ependenc|
|00004750| 69 65 73 0a 58 20 20 20 | 2a 20 69 6e 20 74 68 65 |ies.X |* in the|
|00004760| 20 69 6d 61 67 65 2e 0a | 58 20 20 20 2a 2f 0a 7d | image..|X */.}|
|00004770| 0a 58 0a 66 6c 6f 61 74 | 20 66 34 5f 76 61 72 20 |.X.float| f4_var |
|00004780| 28 50 2c 20 4e 67 29 0a | 58 20 20 66 6c 6f 61 74 |(P, Ng).|X float|
|00004790| 20 2a 2a 50 3b 0a 58 20 | 20 69 6e 74 20 4e 67 3b | **P;.X | int Ng;|
|000047a0| 0a 58 0a 2f 2a 20 53 75 | 6d 20 6f 66 20 53 71 75 |.X./* Su|m of Squ|
|000047b0| 61 72 65 73 3a 20 56 61 | 72 69 61 6e 63 65 20 2a |ares: Va|riance *|
|000047c0| 2f 0a 7b 0a 58 20 20 69 | 6e 74 20 69 2c 20 6a 3b |/.{.X i|nt i, j;|
|000047d0| 0a 58 20 20 66 6c 6f 61 | 74 20 6d 65 61 6e 20 3d |.X floa|t mean =|
|000047e0| 20 30 2c 20 76 61 72 20 | 3d 20 30 3b 0a 58 0a 58 | 0, var |= 0;.X.X|
|000047f0| 20 20 2f 2a 20 46 69 6e | 64 20 70 6f 70 75 6c 61 | /* Fin|d popula|
|00004800| 74 69 6f 6e 20 6d 65 61 | 6e 20 2a 2f 0a 58 20 20 |tion mea|n */.X |
|00004810| 66 6f 72 20 28 69 20 3d | 20 30 3b 20 69 20 3c 20 |for (i =| 0; i < |
|00004820| 4e 67 3b 20 2b 2b 69 29 | 0a 58 20 20 20 20 66 6f |Ng; ++i)|.X fo|
|00004830| 72 20 28 6a 20 3d 20 30 | 3b 20 6a 20 3c 20 4e 67 |r (j = 0|; j < Ng|
|00004840| 3b 20 2b 2b 6a 29 0a 58 | 20 20 20 20 20 20 6d 65 |; ++j).X| me|
|00004850| 61 6e 20 2b 3d 20 50 5b | 69 5d 5b 6a 5d 3b 0a 58 |an += P[|i][j];.X|
|00004860| 20 20 6d 65 61 6e 20 2f | 3d 20 28 4e 67 20 2a 20 | mean /|= (Ng * |
|00004870| 4e 67 29 3b 0a 58 0a 58 | 20 20 2f 2a 20 66 70 72 |Ng);.X.X| /* fpr|
|00004880| 69 6e 74 66 28 73 74 64 | 65 72 72 2c 22 66 34 3a |intf(std|err,"f4:|
|00004890| 6d 65 61 6e 3d 25 66 5c | 6e 22 2c 6d 65 61 6e 29 |mean=%f\|n",mean)|
|000048a0| 3b 20 2a 2f 0a 58 20 20 | 66 6f 72 20 28 69 20 3d |; */.X |for (i =|
|000048b0| 20 30 3b 20 69 20 3c 20 | 4e 67 3b 20 2b 2b 69 29 | 0; i < |Ng; ++i)|
|000048c0| 0a 58 20 20 20 20 66 6f | 72 20 28 6a 20 3d 20 30 |.X fo|r (j = 0|
|000048d0| 3b 20 6a 20 3c 20 4e 67 | 3b 20 2b 2b 6a 29 0a 58 |; j < Ng|; ++j).X|
|000048e0| 20 20 20 20 20 20 76 61 | 72 20 2b 3d 20 28 69 20 | va|r += (i |
|000048f0| 2b 20 31 20 2d 20 6d 65 | 61 6e 29 20 2a 20 28 69 |+ 1 - me|an) * (i|
|00004900| 20 2b 20 31 20 2d 20 6d | 65 61 6e 29 20 2a 20 50 | + 1 - m|ean) * P|
|00004910| 5b 69 5d 5b 6a 5d 3b 0a | 58 0a 58 20 20 72 65 74 |[i][j];.|X.X ret|
|00004920| 75 72 6e 20 76 61 72 3b | 0a 7d 0a 58 0a 66 6c 6f |urn var;|.}.X.flo|
|00004930| 61 74 20 66 35 5f 69 64 | 6d 20 28 50 2c 20 4e 67 |at f5_id|m (P, Ng|
|00004940| 29 0a 58 20 20 66 6c 6f | 61 74 20 2a 2a 50 3b 0a |).X flo|at **P;.|
|00004950| 58 20 20 69 6e 74 20 4e | 67 3b 0a 58 0a 2f 2a 20 |X int N|g;.X./* |
|00004960| 49 6e 76 65 72 73 65 20 | 44 69 66 66 65 72 65 6e |Inverse |Differen|
|00004970| 63 65 20 4d 6f 6d 65 6e | 74 20 2a 2f 0a 7b 0a 58 |ce Momen|t */.{.X|
|00004980| 20 20 69 6e 74 20 69 2c | 20 6a 3b 0a 58 20 20 66 | int i,| j;.X f|
|00004990| 6c 6f 61 74 20 69 64 6d | 20 3d 20 30 3b 0a 58 0a |loat idm| = 0;.X.|
|000049a0| 58 20 20 66 6f 72 20 28 | 69 20 3d 20 30 3b 20 69 |X for (|i = 0; i|
|000049b0| 20 3c 20 4e 67 3b 20 2b | 2b 69 29 0a 58 20 20 20 | < Ng; +|+i).X |
|000049c0| 20 66 6f 72 20 28 6a 20 | 3d 20 30 3b 20 6a 20 3c | for (j |= 0; j <|
|000049d0| 20 4e 67 3b 20 2b 2b 6a | 29 0a 58 20 20 20 20 20 | Ng; ++j|).X |
|000049e0| 20 69 64 6d 20 2b 3d 20 | 50 5b 69 5d 5b 6a 5d 20 | idm += |P[i][j] |
|000049f0| 2f 20 28 31 20 2b 20 28 | 69 20 2d 20 6a 29 20 2a |/ (1 + (|i - j) *|
|00004a00| 20 28 69 20 2d 20 6a 29 | 29 3b 0a 58 0a 58 20 20 | (i - j)|);.X.X |
|00004a10| 72 65 74 75 72 6e 20 69 | 64 6d 3b 0a 7d 0a 58 0a |return i|dm;.}.X.|
|00004a20| 66 6c 6f 61 74 20 50 78 | 70 79 5b 32 20 2a 20 50 |float Px|py[2 * P|
|00004a30| 47 4d 5f 4d 41 58 4d 41 | 58 56 41 4c 5d 3b 0a 58 |GM_MAXMA|XVAL];.X|
|00004a40| 0a 66 6c 6f 61 74 20 66 | 36 5f 73 61 76 67 20 28 |.float f|6_savg (|
|00004a50| 50 2c 20 4e 67 29 0a 58 | 20 20 66 6c 6f 61 74 20 |P, Ng).X| float |
|00004a60| 2a 2a 50 3b 0a 58 20 20 | 69 6e 74 20 4e 67 3b 0a |**P;.X |int Ng;.|
|00004a70| 58 0a 2f 2a 20 53 75 6d | 20 41 76 65 72 61 67 65 |X./* Sum| Average|
|00004a80| 20 2a 2f 0a 7b 0a 58 20 | 20 69 6e 74 20 69 2c 20 | */.{.X | int i, |
|00004a90| 6a 3b 0a 58 20 20 65 78 | 74 65 72 6e 20 66 6c 6f |j;.X ex|tern flo|
|00004aa0| 61 74 20 50 78 70 79 5b | 32 20 2a 20 50 47 4d 5f |at Pxpy[|2 * PGM_|
|00004ab0| 4d 41 58 4d 41 58 56 41 | 4c 5d 3b 0a 58 20 20 66 |MAXMAXVA|L];.X f|
|00004ac0| 6c 6f 61 74 20 73 61 76 | 67 20 3d 20 30 3b 0a 58 |loat sav|g = 0;.X|
|00004ad0| 0a 58 20 20 66 6f 72 20 | 28 69 20 3d 20 30 3b 20 |.X for |(i = 0; |
|00004ae0| 69 20 3c 3d 20 32 20 2a | 20 4e 67 3b 20 2b 2b 69 |i <= 2 *| Ng; ++i|
|00004af0| 29 0a 58 20 20 20 20 50 | 78 70 79 5b 69 5d 20 3d |).X P|xpy[i] =|
|00004b00| 20 30 3b 0a 58 0a 58 20 | 20 66 6f 72 20 28 69 20 | 0;.X.X | for (i |
|00004b10| 3d 20 30 3b 20 69 20 3c | 20 4e 67 3b 20 2b 2b 69 |= 0; i <| Ng; ++i|
|00004b20| 29 0a 58 20 20 20 20 66 | 6f 72 20 28 6a 20 3d 20 |).X f|or (j = |
|00004b30| 30 3b 20 6a 20 3c 20 4e | 67 3b 20 2b 2b 6a 29 0a |0; j < N|g; ++j).|
|00004b40| 58 20 20 20 20 20 20 50 | 78 70 79 5b 69 20 2b 20 |X P|xpy[i + |
|00004b50| 6a 20 2b 20 32 5d 20 2b | 3d 20 50 5b 69 5d 5b 6a |j + 2] +|= P[i][j|
|00004b60| 5d 3b 0a 58 20 20 66 6f | 72 20 28 69 20 3d 20 32 |];.X fo|r (i = 2|
|00004b70| 3b 20 69 20 3c 3d 20 32 | 20 2a 20 4e 67 3b 20 2b |; i <= 2| * Ng; +|
|00004b80| 2b 69 29 0a 58 20 20 20 | 20 73 61 76 67 20 2b 3d |+i).X | savg +=|
|00004b90| 20 69 20 2a 20 50 78 70 | 79 5b 69 5d 3b 0a 58 0a | i * Pxp|y[i];.X.|
|00004ba0| 58 20 20 72 65 74 75 72 | 6e 20 73 61 76 67 3b 0a |X retur|n savg;.|
|00004bb0| 7d 0a 58 0a 58 0a 66 6c | 6f 61 74 20 66 37 5f 73 |}.X.X.fl|oat f7_s|
|00004bc0| 76 61 72 20 28 50 2c 20 | 4e 67 2c 20 53 29 0a 58 |var (P, |Ng, S).X|
|00004bd0| 20 20 66 6c 6f 61 74 20 | 2a 2a 50 2c 20 53 3b 0a | float |**P, S;.|
|00004be0| 58 20 20 69 6e 74 20 4e | 67 3b 0a 58 0a 2f 2a 20 |X int N|g;.X./* |
|00004bf0| 53 75 6d 20 56 61 72 69 | 61 6e 63 65 20 2a 2f 0a |Sum Vari|ance */.|
|00004c00| 7b 0a 58 20 20 69 6e 74 | 20 69 2c 20 6a 3b 0a 58 |{.X int| i, j;.X|
|00004c10| 20 20 65 78 74 65 72 6e | 20 66 6c 6f 61 74 20 50 | extern| float P|
|00004c20| 78 70 79 5b 32 20 2a 20 | 50 47 4d 5f 4d 41 58 4d |xpy[2 * |PGM_MAXM|
|00004c30| 41 58 56 41 4c 5d 3b 0a | 58 20 20 66 6c 6f 61 74 |AXVAL];.|X float|
|00004c40| 20 76 61 72 20 3d 20 30 | 3b 0a 58 0a 58 20 20 66 | var = 0|;.X.X f|
|00004c50| 6f 72 20 28 69 20 3d 20 | 30 3b 20 69 20 3c 3d 20 |or (i = |0; i <= |
|00004c60| 32 20 2a 20 4e 67 3b 20 | 2b 2b 69 29 0a 58 20 20 |2 * Ng; |++i).X |
|00004c70| 20 20 50 78 70 79 5b 69 | 5d 20 3d 20 30 3b 0a 58 | Pxpy[i|] = 0;.X|
|00004c80| 0a 58 20 20 66 6f 72 20 | 28 69 20 3d 20 30 3b 20 |.X for |(i = 0; |
|00004c90| 69 20 3c 20 4e 67 3b 20 | 2b 2b 69 29 0a 58 20 20 |i < Ng; |++i).X |
|00004ca0| 20 20 66 6f 72 20 28 6a | 20 3d 20 30 3b 20 6a 20 | for (j| = 0; j |
|00004cb0| 3c 20 4e 67 3b 20 2b 2b | 6a 29 0a 58 20 20 20 20 |< Ng; ++|j).X |
|00004cc0| 20 20 50 78 70 79 5b 69 | 20 2b 20 6a 20 2b 20 32 | Pxpy[i| + j + 2|
|00004cd0| 5d 20 2b 3d 20 50 5b 69 | 5d 5b 6a 5d 3b 0a 58 0a |] += P[i|][j];.X.|
|00004ce0| 58 20 20 66 6f 72 20 28 | 69 20 3d 20 32 3b 20 69 |X for (|i = 2; i|
|00004cf0| 20 3c 3d 20 32 20 2a 20 | 4e 67 3b 20 2b 2b 69 29 | <= 2 * |Ng; ++i)|
|00004d00| 0a 58 20 20 20 20 76 61 | 72 20 2b 3d 20 28 69 20 |.X va|r += (i |
|00004d10| 2d 20 53 29 20 2a 20 28 | 69 20 2d 20 53 29 20 2a |- S) * (|i - S) *|
|00004d20| 20 50 78 70 79 5b 69 5d | 3b 0a 58 0a 58 20 20 72 | Pxpy[i]|;.X.X r|
|00004d30| 65 74 75 72 6e 20 76 61 | 72 3b 0a 7d 0a 58 0a 66 |eturn va|r;.}.X.f|
|00004d40| 6c 6f 61 74 20 66 38 5f | 73 65 6e 74 72 6f 70 79 |loat f8_|sentropy|
|00004d50| 20 28 50 2c 20 4e 67 29 | 0a 58 20 20 66 6c 6f 61 | (P, Ng)|.X floa|
|00004d60| 74 20 2a 2a 50 3b 0a 58 | 20 20 69 6e 74 20 4e 67 |t **P;.X| int Ng|
|00004d70| 3b 0a 58 0a 2f 2a 20 53 | 75 6d 20 45 6e 74 72 6f |;.X./* S|um Entro|
|00004d80| 70 79 20 2a 2f 0a 7b 0a | 58 20 20 69 6e 74 20 69 |py */.{.|X int i|
|00004d90| 2c 20 6a 3b 0a 58 20 20 | 65 78 74 65 72 6e 20 66 |, j;.X |extern f|
|00004da0| 6c 6f 61 74 20 50 78 70 | 79 5b 32 20 2a 20 50 47 |loat Pxp|y[2 * PG|
|00004db0| 4d 5f 4d 41 58 4d 41 58 | 56 41 4c 5d 3b 0a 58 20 |M_MAXMAX|VAL];.X |
|00004dc0| 20 66 6c 6f 61 74 20 73 | 65 6e 74 72 6f 70 79 20 | float s|entropy |
|00004dd0| 3d 20 30 3b 0a 58 0a 58 | 20 20 66 6f 72 20 28 69 |= 0;.X.X| for (i|
|00004de0| 20 3d 20 30 3b 20 69 20 | 3c 3d 20 32 20 2a 20 4e | = 0; i |<= 2 * N|
|00004df0| 67 3b 20 2b 2b 69 29 0a | 58 20 20 20 20 50 78 70 |g; ++i).|X Pxp|
|00004e00| 79 5b 69 5d 20 3d 20 30 | 3b 0a 58 0a 58 20 20 66 |y[i] = 0|;.X.X f|
|00004e10| 6f 72 20 28 69 20 3d 20 | 30 3b 20 69 20 3c 20 4e |or (i = |0; i < N|
|00004e20| 67 3b 20 2b 2b 69 29 0a | 58 20 20 20 20 66 6f 72 |g; ++i).|X for|
|00004e30| 20 28 6a 20 3d 20 30 3b | 20 6a 20 3c 20 4e 67 3b | (j = 0;| j < Ng;|
|00004e40| 20 2b 2b 6a 29 0a 58 20 | 20 20 20 20 20 50 78 70 | ++j).X | Pxp|
|00004e50| 79 5b 69 20 2b 20 6a 20 | 2b 20 32 5d 20 2b 3d 20 |y[i + j |+ 2] += |
|00004e60| 50 5b 69 5d 5b 6a 5d 3b | 0a 58 0a 58 20 20 66 6f |P[i][j];|.X.X fo|
|00004e70| 72 20 28 69 20 3d 20 32 | 3b 20 69 20 3c 3d 20 32 |r (i = 2|; i <= 2|
|00004e80| 20 2a 20 4e 67 3b 20 2b | 2b 69 29 0a 58 20 20 20 | * Ng; +|+i).X |
|00004e90| 20 73 65 6e 74 72 6f 70 | 79 20 2d 3d 20 50 78 70 | sentrop|y -= Pxp|
|00004ea0| 79 5b 69 5d 20 2a 20 6c | 6f 67 31 30 20 28 50 78 |y[i] * l|og10 (Px|
|00004eb0| 70 79 5b 69 5d 20 2b 20 | 45 50 53 49 4c 4f 4e 29 |py[i] + |EPSILON)|
|00004ec0| 3b 0a 58 0a 58 20 20 72 | 65 74 75 72 6e 20 73 65 |;.X.X r|eturn se|
|00004ed0| 6e 74 72 6f 70 79 3b 0a | 7d 0a 58 0a 58 0a 66 6c |ntropy;.|}.X.X.fl|
|00004ee0| 6f 61 74 20 66 39 5f 65 | 6e 74 72 6f 70 79 20 28 |oat f9_e|ntropy (|
|00004ef0| 50 2c 20 4e 67 29 0a 58 | 20 20 66 6c 6f 61 74 20 |P, Ng).X| float |
|00004f00| 2a 2a 50 3b 0a 58 20 20 | 69 6e 74 20 4e 67 3b 0a |**P;.X |int Ng;.|
|00004f10| 58 0a 2f 2a 20 45 6e 74 | 72 6f 70 79 20 2a 2f 0a |X./* Ent|ropy */.|
|00004f20| 7b 0a 58 20 20 69 6e 74 | 20 69 2c 20 6a 3b 0a 58 |{.X int| i, j;.X|
|00004f30| 20 20 66 6c 6f 61 74 20 | 65 6e 74 72 6f 70 79 20 | float |entropy |
|00004f40| 3d 20 30 3b 0a 58 0a 58 | 20 20 66 6f 72 20 28 69 |= 0;.X.X| for (i|
|00004f50| 20 3d 20 30 3b 20 69 20 | 3c 20 4e 67 3b 20 2b 2b | = 0; i |< Ng; ++|
|00004f60| 69 29 0a 58 20 20 20 20 | 66 6f 72 20 28 6a 20 3d |i).X |for (j =|
|00004f70| 20 30 3b 20 6a 20 3c 20 | 4e 67 3b 20 2b 2b 6a 29 | 0; j < |Ng; ++j)|
|00004f80| 0a 58 20 20 20 20 20 20 | 65 6e 74 72 6f 70 79 20 |.X |entropy |
|00004f90| 2b 3d 20 50 5b 69 5d 5b | 6a 5d 20 2a 20 6c 6f 67 |+= P[i][|j] * log|
|00004fa0| 31 30 20 28 50 5b 69 5d | 5b 6a 5d 20 2b 20 45 50 |10 (P[i]|[j] + EP|
|00004fb0| 53 49 4c 4f 4e 29 3b 0a | 58 0a 58 20 20 72 65 74 |SILON);.|X.X ret|
|00004fc0| 75 72 6e 20 2d 65 6e 74 | 72 6f 70 79 3b 0a 7d 0a |urn -ent|ropy;.}.|
|00004fd0| 58 0a 58 0a 66 6c 6f 61 | 74 20 66 31 30 5f 64 76 |X.X.floa|t f10_dv|
|00004fe0| 61 72 20 28 50 2c 20 4e | 67 29 0a 58 20 20 66 6c |ar (P, N|g).X fl|
|00004ff0| 6f 61 74 20 2a 2a 50 3b | 0a 58 20 20 69 6e 74 20 |oat **P;|.X int |
|00005000| 4e 67 3b 0a 58 0a 2f 2a | 20 44 69 66 66 65 72 65 |Ng;.X./*| Differe|
|00005010| 6e 63 65 20 56 61 72 69 | 61 6e 63 65 20 2a 2f 0a |nce Vari|ance */.|
|00005020| 7b 0a 58 20 20 69 6e 74 | 20 69 2c 20 6a 2c 20 74 |{.X int| i, j, t|
|00005030| 6d 70 3b 0a 58 20 20 65 | 78 74 65 72 6e 20 66 6c |mp;.X e|xtern fl|
|00005040| 6f 61 74 20 50 78 70 79 | 5b 32 20 2a 20 50 47 4d |oat Pxpy|[2 * PGM|
|00005050| 5f 4d 41 58 4d 41 58 56 | 41 4c 5d 3b 0a 58 20 20 |_MAXMAXV|AL];.X |
|00005060| 66 6c 6f 61 74 20 73 75 | 6d 20 3d 20 30 2c 20 73 |float su|m = 0, s|
|00005070| 75 6d 5f 73 71 72 20 3d | 20 30 2c 20 76 61 72 20 |um_sqr =| 0, var |
|00005080| 3d 20 30 3b 0a 58 0a 58 | 20 20 66 6f 72 20 28 69 |= 0;.X.X| for (i|
|00005090| 20 3d 20 30 3b 20 69 20 | 3c 3d 20 32 20 2a 20 4e | = 0; i |<= 2 * N|
|000050a0| 67 3b 20 2b 2b 69 29 0a | 58 20 20 20 20 50 78 70 |g; ++i).|X Pxp|
|000050b0| 79 5b 69 5d 20 3d 20 30 | 3b 0a 58 0a 58 20 20 66 |y[i] = 0|;.X.X f|
|000050c0| 6f 72 20 28 69 20 3d 20 | 30 3b 20 69 20 3c 20 4e |or (i = |0; i < N|
|000050d0| 67 3b 20 2b 2b 69 29 0a | 58 20 20 20 20 66 6f 72 |g; ++i).|X for|
|000050e0| 20 28 6a 20 3d 20 30 3b | 20 6a 20 3c 20 4e 67 3b | (j = 0;| j < Ng;|
|000050f0| 20 2b 2b 6a 29 0a 58 20 | 20 20 20 20 20 50 78 70 | ++j).X | Pxp|
|00005100| 79 5b 61 62 73 20 28 69 | 20 2d 20 6a 29 5d 20 2b |y[abs (i| - j)] +|
|00005110| 3d 20 50 5b 69 5d 5b 6a | 5d 3b 0a 58 0a 58 20 20 |= P[i][j|];.X.X |
|00005120| 2f 2a 20 4e 6f 77 20 63 | 61 6c 63 75 6c 61 74 65 |/* Now c|alculate|
|00005130| 20 74 68 65 20 76 61 72 | 69 61 6e 63 65 20 6f 66 | the var|iance of|
|00005140| 20 50 78 70 79 20 28 50 | 78 2d 79 29 20 2a 2f 0a | Pxpy (P|x-y) */.|
|00005150| 58 20 20 66 6f 72 20 28 | 69 20 3d 20 30 3b 20 69 |X for (|i = 0; i|
|00005160| 20 3c 20 4e 67 3b 20 2b | 2b 69 29 0a 58 20 20 7b | < Ng; +|+i).X {|
|00005170| 0a 58 20 20 20 20 73 75 | 6d 20 2b 3d 20 50 78 70 |.X su|m += Pxp|
|00005180| 79 5b 69 5d 3b 0a 58 20 | 20 20 20 73 75 6d 5f 73 |y[i];.X | sum_s|
|00005190| 71 72 20 2b 3d 20 50 78 | 70 79 5b 69 5d 20 2a 20 |qr += Px|py[i] * |
|000051a0| 50 78 70 79 5b 69 5d 3b | 0a 58 20 20 7d 0a 58 20 |Pxpy[i];|.X }.X |
|000051b0| 20 74 6d 70 20 3d 20 4e | 67 20 2a 20 4e 67 3b 0a | tmp = N|g * Ng;.|
|000051c0| 58 20 20 76 61 72 20 3d | 20 28 28 74 6d 70 20 2a |X var =| ((tmp *|
|000051d0| 20 73 75 6d 5f 73 71 72 | 29 20 2d 20 28 73 75 6d | sum_sqr|) - (sum|
|000051e0| 20 2a 20 73 75 6d 29 29 | 20 2f 20 28 74 6d 70 20 | * sum))| / (tmp |
|000051f0| 2a 20 74 6d 70 29 3b 0a | 58 0a 58 20 20 72 65 74 |* tmp);.|X.X ret|
|00005200| 75 72 6e 20 76 61 72 3b | 0a 7d 0a 58 0a 66 6c 6f |urn var;|.}.X.flo|
|00005210| 61 74 20 66 31 31 5f 64 | 65 6e 74 72 6f 70 79 20 |at f11_d|entropy |
|00005220| 28 50 2c 20 4e 67 29 0a | 58 20 20 66 6c 6f 61 74 |(P, Ng).|X float|
|00005230| 20 2a 2a 50 3b 0a 58 20 | 20 69 6e 74 20 4e 67 3b | **P;.X | int Ng;|
|00005240| 0a 58 0a 2f 2a 20 44 69 | 66 66 65 72 65 6e 63 65 |.X./* Di|fference|
|00005250| 20 45 6e 74 72 6f 70 79 | 20 2a 2f 0a 7b 0a 58 20 | Entropy| */.{.X |
|00005260| 20 69 6e 74 20 69 2c 20 | 6a 2c 20 74 6d 70 3b 0a | int i, |j, tmp;.|
|00005270| 58 20 20 65 78 74 65 72 | 6e 20 66 6c 6f 61 74 20 |X exter|n float |
|00005280| 50 78 70 79 5b 32 20 2a | 20 50 47 4d 5f 4d 41 58 |Pxpy[2 *| PGM_MAX|
|00005290| 4d 41 58 56 41 4c 5d 3b | 0a 58 20 20 66 6c 6f 61 |MAXVAL];|.X floa|
|000052a0| 74 20 73 75 6d 20 3d 20 | 30 2c 20 73 75 6d 5f 73 |t sum = |0, sum_s|
|000052b0| 71 72 20 3d 20 30 2c 20 | 76 61 72 20 3d 20 30 3b |qr = 0, |var = 0;|
|000052c0| 0a 58 0a 58 20 20 66 6f | 72 20 28 69 20 3d 20 30 |.X.X fo|r (i = 0|
|000052d0| 3b 20 69 20 3c 3d 20 32 | 20 2a 20 4e 67 3b 20 2b |; i <= 2| * Ng; +|
|000052e0| 2b 69 29 0a 58 20 20 20 | 20 50 78 70 79 5b 69 5d |+i).X | Pxpy[i]|
|000052f0| 20 3d 20 30 3b 0a 58 0a | 58 20 20 66 6f 72 20 28 | = 0;.X.|X for (|
|00005300| 69 20 3d 20 30 3b 20 69 | 20 3c 20 4e 67 3b 20 2b |i = 0; i| < Ng; +|
|00005310| 2b 69 29 0a 58 20 20 20 | 20 66 6f 72 20 28 6a 20 |+i).X | for (j |
|00005320| 3d 20 30 3b 20 6a 20 3c | 20 4e 67 3b 20 2b 2b 6a |= 0; j <| Ng; ++j|
|00005330| 29 0a 58 20 20 20 20 20 | 20 50 78 70 79 5b 61 62 |).X | Pxpy[ab|
|00005340| 73 20 28 69 20 2d 20 6a | 29 5d 20 2b 3d 20 50 5b |s (i - j|)] += P[|
|00005350| 69 5d 5b 6a 5d 3b 0a 58 | 0a 58 20 20 66 6f 72 20 |i][j];.X|.X for |
|00005360| 28 69 20 3d 20 30 3b 20 | 69 20 3c 20 4e 67 3b 20 |(i = 0; |i < Ng; |
|00005370| 2b 2b 69 29 0a 58 20 20 | 20 20 73 75 6d 20 2b 3d |++i).X | sum +=|
|00005380| 20 50 78 70 79 5b 69 5d | 20 2a 20 6c 6f 67 31 30 | Pxpy[i]| * log10|
|00005390| 20 28 50 78 70 79 5b 69 | 5d 20 2b 20 45 50 53 49 | (Pxpy[i|] + EPSI|
|000053a0| 4c 4f 4e 29 3b 0a 58 0a | 58 20 20 72 65 74 75 72 |LON);.X.|X retur|
|000053b0| 6e 20 2d 73 75 6d 3b 0a | 7d 0a 58 0a 66 6c 6f 61 |n -sum;.|}.X.floa|
|000053c0| 74 20 66 31 32 5f 69 63 | 6f 72 72 20 28 50 2c 20 |t f12_ic|orr (P, |
|000053d0| 4e 67 29 0a 58 20 20 66 | 6c 6f 61 74 20 2a 2a 50 |Ng).X f|loat **P|
|000053e0| 3b 0a 58 20 20 69 6e 74 | 20 4e 67 3b 0a 58 0a 2f |;.X int| Ng;.X./|
|000053f0| 2a 20 49 6e 66 6f 72 6d | 61 74 69 6f 6e 20 4d 65 |* Inform|ation Me|
|00005400| 61 73 75 72 65 73 20 6f | 66 20 43 6f 72 72 65 6c |asures o|f Correl|
|00005410| 61 74 69 6f 6e 20 2a 2f | 0a 7b 0a 58 20 20 69 6e |ation */|.{.X in|
|00005420| 74 20 69 2c 20 6a 2c 20 | 74 6d 70 3b 0a 58 20 20 |t i, j, |tmp;.X |
|00005430| 66 6c 6f 61 74 20 2a 70 | 78 2c 20 2a 70 79 3b 0a |float *p|x, *py;.|
|00005440| 58 20 20 66 6c 6f 61 74 | 20 68 78 20 3d 20 30 2c |X float| hx = 0,|
|00005450| 20 68 79 20 3d 20 30 2c | 20 68 78 79 20 3d 20 30 | hy = 0,| hxy = 0|
|00005460| 2c 20 68 78 79 31 20 3d | 20 30 2c 20 68 78 79 32 |, hxy1 =| 0, hxy2|
|00005470| 20 3d 20 30 3b 0a 58 0a | 58 20 20 70 78 20 3d 20 | = 0;.X.|X px = |
|00005480| 76 65 63 74 6f 72 20 28 | 30 2c 20 4e 67 29 3b 0a |vector (|0, Ng);.|
|00005490| 58 20 20 70 79 20 3d 20 | 76 65 63 74 6f 72 20 28 |X py = |vector (|
|000054a0| 30 2c 20 4e 67 29 3b 0a | 58 0a 58 20 20 2f 2a 0a |0, Ng);.|X.X /*.|
|000054b0| 58 20 20 20 2a 20 70 78 | 5b 69 5d 20 69 73 20 74 |X * px|[i] is t|
|000054c0| 68 65 20 28 69 2d 31 29 | 74 68 20 65 6e 74 72 79 |he (i-1)|th entry|
|000054d0| 20 69 6e 20 74 68 65 20 | 6d 61 72 67 69 6e 61 6c | in the |marginal|
|000054e0| 20 70 72 6f 62 61 62 69 | 6c 69 74 79 20 6d 61 74 | probabi|lity mat|
|000054f0| 72 69 78 20 6f 62 74 61 | 69 6e 65 64 0a 58 20 20 |rix obta|ined.X |
|00005500| 20 2a 20 62 79 20 73 75 | 6d 6d 69 6e 67 20 74 68 | * by su|mming th|
|00005510| 65 20 72 6f 77 73 20 6f | 66 20 70 5b 69 5d 5b 6a |e rows o|f p[i][j|
|00005520| 5d 0a 58 20 20 20 2a 2f | 0a 58 20 20 66 6f 72 20 |].X */|.X for |
|00005530| 28 69 20 3d 20 30 3b 20 | 69 20 3c 20 4e 67 3b 20 |(i = 0; |i < Ng; |
|00005540| 2b 2b 69 29 0a 58 20 20 | 7b 0a 58 20 20 20 20 66 |++i).X |{.X f|
|00005550| 6f 72 20 28 6a 20 3d 20 | 30 3b 20 6a 20 3c 20 4e |or (j = |0; j < N|
|00005560| 67 3b 20 2b 2b 6a 29 0a | 58 20 20 20 20 7b 0a 58 |g; ++j).|X {.X|
|00005570| 20 20 20 20 20 20 70 78 | 5b 69 5d 20 2b 3d 20 50 | px|[i] += P|
|00005580| 5b 69 5d 5b 6a 5d 3b 0a | 58 20 20 20 20 20 20 70 |[i][j];.|X p|
|00005590| 79 5b 6a 5d 20 2b 3d 20 | 50 5b 69 5d 5b 6a 5d 3b |y[j] += |P[i][j];|
|000055a0| 0a 58 20 20 20 20 7d 0a | 58 20 20 7d 0a 58 0a 58 |.X }.|X }.X.X|
|000055b0| 20 20 66 6f 72 20 28 69 | 20 3d 20 30 3b 20 69 20 | for (i| = 0; i |
|000055c0| 3c 20 4e 67 3b 20 2b 2b | 69 29 0a 58 20 20 20 20 |< Ng; ++|i).X |
|000055d0| 66 6f 72 20 28 6a 20 3d | 20 30 3b 20 6a 20 3c 20 |for (j =| 0; j < |
|000055e0| 4e 67 3b 20 2b 2b 6a 29 | 0a 58 20 20 20 20 7b 0a |Ng; ++j)|.X {.|
|000055f0| 58 20 20 20 20 20 20 68 | 78 79 31 20 2d 3d 20 50 |X h|xy1 -= P|
|00005600| 5b 69 5d 5b 6a 5d 20 2a | 20 6c 6f 67 31 30 20 28 |[i][j] *| log10 (|
|00005610| 70 78 5b 69 5d 20 2a 20 | 70 79 5b 6a 5d 20 2b 20 |px[i] * |py[j] + |
|00005620| 45 50 53 49 4c 4f 4e 29 | 3b 0a 58 20 20 20 20 20 |EPSILON)|;.X |
|00005630| 20 68 78 79 32 20 2d 3d | 20 70 78 5b 69 5d 20 2a | hxy2 -=| px[i] *|
|00005640| 20 70 79 5b 6a 5d 20 2a | 20 6c 6f 67 31 30 20 28 | py[j] *| log10 (|
|00005650| 70 78 5b 69 5d 20 2a 20 | 70 79 5b 6a 5d 20 2b 20 |px[i] * |py[j] + |
|00005660| 45 50 53 49 4c 4f 4e 29 | 3b 0a 58 20 20 20 20 20 |EPSILON)|;.X |
|00005670| 20 68 78 79 20 2d 3d 20 | 50 5b 69 5d 5b 6a 5d 20 | hxy -= |P[i][j] |
|00005680| 2a 20 6c 6f 67 31 30 20 | 28 50 5b 69 5d 5b 6a 5d |* log10 |(P[i][j]|
|00005690| 20 2b 20 45 50 53 49 4c | 4f 4e 29 3b 0a 58 20 20 | + EPSIL|ON);.X |
|000056a0| 20 20 7d 0a 58 0a 58 20 | 20 2f 2a 20 43 61 6c 63 | }.X.X | /* Calc|
|000056b0| 75 6c 61 74 65 20 65 6e | 74 72 6f 70 69 65 73 20 |ulate en|tropies |
|000056c0| 6f 66 20 70 78 20 61 6e | 64 20 70 79 20 2d 20 69 |of px an|d py - i|
|000056d0| 73 20 74 68 69 73 20 72 | 69 67 68 74 3f 20 2a 2f |s this r|ight? */|
|000056e0| 0a 58 20 20 66 6f 72 20 | 28 69 20 3d 20 30 3b 20 |.X for |(i = 0; |
|000056f0| 69 20 3c 20 4e 67 3b 20 | 2b 2b 69 29 0a 58 20 20 |i < Ng; |++i).X |
|00005700| 7b 0a 58 20 20 20 20 68 | 78 20 2d 3d 20 70 78 5b |{.X h|x -= px[|
|00005710| 69 5d 20 2a 20 6c 6f 67 | 31 30 20 28 70 78 5b 69 |i] * log|10 (px[i|
|00005720| 5d 20 2b 20 45 50 53 49 | 4c 4f 4e 29 3b 0a 58 20 |] + EPSI|LON);.X |
|00005730| 20 20 20 68 79 20 2d 3d | 20 70 79 5b 69 5d 20 2a | hy -=| py[i] *|
|00005740| 20 6c 6f 67 31 30 20 28 | 70 79 5b 69 5d 20 2b 20 | log10 (|py[i] + |
|00005750| 45 50 53 49 4c 4f 4e 29 | 3b 0a 58 20 20 7d 0a 58 |EPSILON)|;.X }.X|
|00005760| 20 20 66 70 72 69 6e 74 | 66 28 73 74 64 65 72 72 | fprint|f(stderr|
|00005770| 2c 22 68 78 79 31 3d 25 | 66 5c 74 68 78 79 3d 25 |,"hxy1=%|f\thxy=%|
|00005780| 66 5c 74 68 78 3d 25 66 | 5c 74 68 79 3d 25 66 5c |f\thx=%f|\thy=%f\|
|00005790| 6e 22 2c 68 78 79 31 2c | 68 78 79 2c 68 78 2c 68 |n",hxy1,|hxy,hx,h|
|000057a0| 79 29 3b 20 0a 58 20 20 | 72 65 74 75 72 6e 20 28 |y); .X |return (|
|000057b0| 28 68 78 79 20 2d 20 68 | 78 79 31 29 20 2f 20 28 |(hxy - h|xy1) / (|
|000057c0| 68 78 20 3e 20 68 79 20 | 3f 20 68 78 20 3a 20 68 |hx > hy |? hx : h|
|000057d0| 79 29 29 3b 0a 7d 0a 58 | 0a 66 6c 6f 61 74 20 66 |y));.}.X|.float f|
|000057e0| 31 33 5f 69 63 6f 72 72 | 20 28 50 2c 20 4e 67 29 |13_icorr| (P, Ng)|
|000057f0| 0a 58 20 20 66 6c 6f 61 | 74 20 2a 2a 50 3b 0a 58 |.X floa|t **P;.X|
|00005800| 20 20 69 6e 74 20 4e 67 | 3b 0a 58 0a 2f 2a 20 49 | int Ng|;.X./* I|
|00005810| 6e 66 6f 72 6d 61 74 69 | 6f 6e 20 4d 65 61 73 75 |nformati|on Measu|
|00005820| 72 65 73 20 6f 66 20 43 | 6f 72 72 65 6c 61 74 69 |res of C|orrelati|
|00005830| 6f 6e 20 2a 2f 0a 7b 0a | 58 20 20 69 6e 74 20 69 |on */.{.|X int i|
|00005840| 2c 20 6a 3b 0a 58 20 20 | 66 6c 6f 61 74 20 2a 70 |, j;.X |float *p|
|00005850| 78 2c 20 2a 70 79 3b 0a | 58 20 20 66 6c 6f 61 74 |x, *py;.|X float|
|00005860| 20 68 78 20 3d 20 30 2c | 20 68 79 20 3d 20 30 2c | hx = 0,| hy = 0,|
|00005870| 20 68 78 79 20 3d 20 30 | 2c 20 68 78 79 31 20 3d | hxy = 0|, hxy1 =|
|00005880| 20 30 2c 20 68 78 79 32 | 20 3d 20 30 3b 0a 58 0a | 0, hxy2| = 0;.X.|
|00005890| 58 20 20 70 78 20 3d 20 | 76 65 63 74 6f 72 20 28 |X px = |vector (|
|000058a0| 30 2c 20 4e 67 29 3b 0a | 58 20 20 70 79 20 3d 20 |0, Ng);.|X py = |
|000058b0| 76 65 63 74 6f 72 20 28 | 30 2c 20 4e 67 29 3b 0a |vector (|0, Ng);.|
|000058c0| 58 0a 58 20 20 2f 2a 0a | 58 20 20 20 2a 20 70 78 |X.X /*.|X * px|
|000058d0| 5b 69 5d 20 69 73 20 74 | 68 65 20 28 69 2d 31 29 |[i] is t|he (i-1)|
|000058e0| 74 68 20 65 6e 74 72 79 | 20 69 6e 20 74 68 65 20 |th entry| in the |
|000058f0| 6d 61 72 67 69 6e 61 6c | 20 70 72 6f 62 61 62 69 |marginal| probabi|
|00005900| 6c 69 74 79 20 6d 61 74 | 72 69 78 20 6f 62 74 61 |lity mat|rix obta|
|00005910| 69 6e 65 64 0a 58 20 20 | 20 2a 20 62 79 20 73 75 |ined.X | * by su|
|00005920| 6d 6d 69 6e 67 20 74 68 | 65 20 72 6f 77 73 20 6f |mming th|e rows o|
|00005930| 66 20 70 5b 69 5d 5b 6a | 5d 0a 58 20 20 20 2a 2f |f p[i][j|].X */|
|00005940| 0a 58 20 20 66 6f 72 20 | 28 69 20 3d 20 30 3b 20 |.X for |(i = 0; |
|00005950| 69 20 3c 20 4e 67 3b 20 | 2b 2b 69 29 0a 58 20 20 |i < Ng; |++i).X |
|00005960| 7b 0a 58 20 20 20 20 66 | 6f 72 20 28 6a 20 3d 20 |{.X f|or (j = |
|00005970| 30 3b 20 6a 20 3c 20 4e | 67 3b 20 2b 2b 6a 29 0a |0; j < N|g; ++j).|
|00005980| 58 20 20 20 20 7b 0a 58 | 20 20 20 20 20 20 70 78 |X {.X| px|
|00005990| 5b 69 5d 20 2b 3d 20 50 | 5b 69 5d 5b 6a 5d 3b 0a |[i] += P|[i][j];.|
|000059a0| 58 20 20 20 20 20 20 70 | 79 5b 6a 5d 20 2b 3d 20 |X p|y[j] += |
|000059b0| 50 5b 69 5d 5b 6a 5d 3b | 0a 58 20 20 20 20 7d 0a |P[i][j];|.X }.|
|000059c0| 58 20 20 7d 0a 58 0a 58 | 20 20 66 6f 72 20 28 69 |X }.X.X| for (i|
|000059d0| 20 3d 20 30 3b 20 69 20 | 3c 20 4e 67 3b 20 2b 2b | = 0; i |< Ng; ++|
|000059e0| 69 29 0a 58 20 20 20 20 | 66 6f 72 20 28 6a 20 3d |i).X |for (j =|
|000059f0| 20 30 3b 20 6a 20 3c 20 | 4e 67 3b 20 2b 2b 6a 29 | 0; j < |Ng; ++j)|
|00005a00| 0a 58 20 20 20 20 7b 0a | 58 20 20 20 20 20 20 68 |.X {.|X h|
|00005a10| 78 79 31 20 2d 3d 20 50 | 5b 69 5d 5b 6a 5d 20 2a |xy1 -= P|[i][j] *|
|00005a20| 20 6c 6f 67 31 30 20 28 | 70 78 5b 69 5d 20 2a 20 | log10 (|px[i] * |
|00005a30| 70 79 5b 6a 5d 20 2b 20 | 45 50 53 49 4c 4f 4e 29 |py[j] + |EPSILON)|
|00005a40| 3b 0a 58 20 20 20 20 20 | 20 68 78 79 32 20 2d 3d |;.X | hxy2 -=|
|00005a50| 20 70 78 5b 69 5d 20 2a | 20 70 79 5b 6a 5d 20 2a | px[i] *| py[j] *|
|00005a60| 20 6c 6f 67 31 30 20 28 | 70 78 5b 69 5d 20 2a 20 | log10 (|px[i] * |
|00005a70| 70 79 5b 6a 5d 20 2b 20 | 45 50 53 49 4c 4f 4e 29 |py[j] + |EPSILON)|
|00005a80| 3b 0a 58 20 20 20 20 20 | 20 68 78 79 20 2d 3d 20 |;.X | hxy -= |
|00005a90| 50 5b 69 5d 5b 6a 5d 20 | 2a 20 6c 6f 67 31 30 20 |P[i][j] |* log10 |
|00005aa0| 28 50 5b 69 5d 5b 6a 5d | 20 2b 20 45 50 53 49 4c |(P[i][j]| + EPSIL|
|00005ab0| 4f 4e 29 3b 0a 58 20 20 | 20 20 7d 0a 58 0a 58 20 |ON);.X | }.X.X |
|00005ac0| 20 2f 2a 20 43 61 6c 63 | 75 6c 61 74 65 20 65 6e | /* Calc|ulate en|
|00005ad0| 74 72 6f 70 69 65 73 20 | 6f 66 20 70 78 20 61 6e |tropies |of px an|
|00005ae0| 64 20 70 79 20 2a 2f 0a | 58 20 20 66 6f 72 20 28 |d py */.|X for (|
|00005af0| 69 20 3d 20 30 3b 20 69 | 20 3c 20 4e 67 3b 20 2b |i = 0; i| < Ng; +|
|00005b00| 2b 69 29 0a 58 20 20 7b | 0a 58 20 20 20 20 68 78 |+i).X {|.X hx|
|00005b10| 20 2d 3d 20 70 78 5b 69 | 5d 20 2a 20 6c 6f 67 31 | -= px[i|] * log1|
|00005b20| 30 20 28 70 78 5b 69 5d | 20 2b 20 45 50 53 49 4c |0 (px[i]| + EPSIL|
|00005b30| 4f 4e 29 3b 0a 58 20 20 | 20 20 68 79 20 2d 3d 20 |ON);.X | hy -= |
|00005b40| 70 79 5b 69 5d 20 2a 20 | 6c 6f 67 31 30 20 28 70 |py[i] * |log10 (p|
|00005b50| 79 5b 69 5d 20 2b 20 45 | 50 53 49 4c 4f 4e 29 3b |y[i] + E|PSILON);|
|00005b60| 0a 58 20 20 7d 0a 58 20 | 20 66 70 72 69 6e 74 66 |.X }.X | fprintf|
|00005b70| 28 73 74 64 65 72 72 2c | 22 68 78 3d 25 66 5c 74 |(stderr,|"hx=%f\t|
|00005b80| 68 78 79 32 3d 25 66 5c | 6e 22 2c 68 78 2c 68 78 |hxy2=%f\|n",hx,hx|
|00005b90| 79 32 29 3b 20 0a 58 20 | 20 72 65 74 75 72 6e 20 |y2); .X | return |
|00005ba0| 28 73 71 72 74 20 28 61 | 62 73 20 28 31 20 2d 20 |(sqrt (a|bs (1 - |
|00005bb0| 65 78 70 20 28 2d 32 2e | 30 20 2a 20 28 68 78 79 |exp (-2.|0 * (hxy|
|00005bc0| 32 20 2d 20 68 78 79 29 | 29 29 29 29 3b 0a 7d 0a |2 - hxy)|))));.}.|
|00005bd0| 58 0a 66 6c 6f 61 74 20 | 66 31 34 5f 6d 61 78 63 |X.float |f14_maxc|
|00005be0| 6f 72 72 20 28 50 2c 20 | 4e 67 29 0a 58 20 20 66 |orr (P, |Ng).X f|
|00005bf0| 6c 6f 61 74 20 2a 2a 50 | 3b 0a 58 20 20 69 6e 74 |loat **P|;.X int|
|00005c00| 20 4e 67 3b 0a 58 0a 2f | 2a 20 52 65 74 75 72 6e | Ng;.X./|* Return|
|00005c10| 73 20 74 68 65 20 4d 61 | 78 69 6d 61 6c 20 43 6f |s the Ma|ximal Co|
|00005c20| 72 72 65 6c 61 74 69 6f | 6e 20 43 6f 65 66 66 69 |rrelatio|n Coeffi|
|00005c30| 63 69 65 6e 74 20 2a 2f | 0a 7b 0a 58 20 20 69 6e |cient */|.{.X in|
|00005c40| 74 20 69 2c 20 6a 2c 20 | 6b 3b 0a 58 20 20 66 6c |t i, j, |k;.X fl|
|00005c50| 6f 61 74 20 2a 70 78 2c | 20 2a 70 79 2c 20 2a 2a |oat *px,| *py, **|
|00005c60| 51 3b 0a 58 20 20 66 6c | 6f 61 74 20 2a 78 2c 20 |Q;.X fl|oat *x, |
|00005c70| 2a 69 79 2c 20 74 6d 70 | 3b 0a 58 0a 58 20 20 70 |*iy, tmp|;.X.X p|
|00005c80| 78 20 3d 20 76 65 63 74 | 6f 72 20 28 30 2c 20 4e |x = vect|or (0, N|
|00005c90| 67 29 3b 0a 58 20 20 70 | 79 20 3d 20 76 65 63 74 |g);.X p|y = vect|
|00005ca0| 6f 72 20 28 30 2c 20 4e | 67 29 3b 0a 58 20 20 51 |or (0, N|g);.X Q|
|00005cb0| 20 3d 20 6d 61 74 72 69 | 78 20 28 31 2c 20 4e 67 | = matri|x (1, Ng|
|00005cc0| 20 2b 20 31 2c 20 31 2c | 20 4e 67 20 2b 20 31 29 | + 1, 1,| Ng + 1)|
|00005cd0| 3b 0a 58 20 20 78 20 3d | 20 76 65 63 74 6f 72 20 |;.X x =| vector |
|00005ce0| 28 31 2c 20 4e 67 29 3b | 0a 58 20 20 69 79 20 3d |(1, Ng);|.X iy =|
|00005cf0| 20 76 65 63 74 6f 72 20 | 28 31 2c 20 4e 67 29 3b | vector |(1, Ng);|
|00005d00| 0a 58 0a 58 20 20 2f 2a | 0a 58 20 20 20 2a 20 70 |.X.X /*|.X * p|
|00005d10| 78 5b 69 5d 20 69 73 20 | 74 68 65 20 28 69 2d 31 |x[i] is |the (i-1|
|00005d20| 29 74 68 20 65 6e 74 72 | 79 20 69 6e 20 74 68 65 |)th entr|y in the|
|00005d30| 20 6d 61 72 67 69 6e 61 | 6c 20 70 72 6f 62 61 62 | margina|l probab|
|00005d40| 69 6c 69 74 79 20 6d 61 | 74 72 69 78 20 6f 62 74 |ility ma|trix obt|
|00005d50| 61 69 6e 65 64 0a 58 20 | 20 20 2a 20 62 79 20 73 |ained.X | * by s|
|00005d60| 75 6d 6d 69 6e 67 20 74 | 68 65 20 72 6f 77 73 20 |umming t|he rows |
|00005d70| 6f 66 20 70 5b 69 5d 5b | 6a 5d 0a 58 20 20 20 2a |of p[i][|j].X *|
|00005d80| 2f 0a 58 20 20 66 6f 72 | 20 28 69 20 3d 20 30 3b |/.X for| (i = 0;|
|00005d90| 20 69 20 3c 20 4e 67 3b | 20 2b 2b 69 29 0a 58 20 | i < Ng;| ++i).X |
|00005da0| 20 7b 0a 58 20 20 20 20 | 66 6f 72 20 28 6a 20 3d | {.X |for (j =|
|00005db0| 20 30 3b 20 6a 20 3c 20 | 4e 67 3b 20 2b 2b 6a 29 | 0; j < |Ng; ++j)|
|00005dc0| 0a 58 20 20 20 20 7b 0a | 58 20 20 20 20 20 20 70 |.X {.|X p|
|00005dd0| 78 5b 69 5d 20 2b 3d 20 | 50 5b 69 5d 5b 6a 5d 3b |x[i] += |P[i][j];|
|00005de0| 0a 58 20 20 20 20 20 20 | 70 79 5b 6a 5d 20 2b 3d |.X |py[j] +=|
|00005df0| 20 50 5b 69 5d 5b 6a 5d | 3b 0a 58 20 20 20 20 7d | P[i][j]|;.X }|
|00005e00| 0a 58 20 20 7d 0a 58 0a | 58 20 20 2f 2a 20 46 69 |.X }.X.|X /* Fi|
|00005e10| 6e 64 20 74 68 65 20 51 | 20 6d 61 74 72 69 78 20 |nd the Q| matrix |
|00005e20| 2a 2f 0a 58 20 20 66 6f | 72 20 28 69 20 3d 20 30 |*/.X fo|r (i = 0|
|00005e30| 3b 20 69 20 3c 20 4e 67 | 3b 20 2b 2b 69 29 0a 58 |; i < Ng|; ++i).X|
|00005e40| 20 20 7b 0a 58 20 20 20 | 20 66 6f 72 20 28 6a 20 | {.X | for (j |
|00005e50| 3d 20 30 3b 20 6a 20 3c | 20 4e 67 3b 20 2b 2b 6a |= 0; j <| Ng; ++j|
|00005e60| 29 0a 58 20 20 20 20 7b | 0a 58 20 20 20 20 20 20 |).X {|.X |
|00005e70| 51 5b 69 20 2b 20 31 5d | 5b 6a 20 2b 20 31 5d 20 |Q[i + 1]|[j + 1] |
|00005e80| 3d 20 30 3b 0a 58 20 20 | 20 20 20 20 66 6f 72 20 |= 0;.X | for |
|00005e90| 28 6b 20 3d 20 30 3b 20 | 6b 20 3c 20 4e 67 3b 20 |(k = 0; |k < Ng; |
|00005ea0| 2b 2b 6b 29 0a 58 09 51 | 5b 69 20 2b 20 31 5d 5b |++k).X.Q|[i + 1][|
|00005eb0| 6a 20 2b 20 31 5d 20 2b | 3d 20 50 5b 69 5d 5b 6b |j + 1] +|= P[i][k|
|00005ec0| 5d 20 2a 20 50 5b 6a 5d | 5b 6b 5d 20 2f 20 70 78 |] * P[j]|[k] / px|
|00005ed0| 5b 69 5d 20 2f 20 70 79 | 5b 6b 5d 3b 0a 58 20 20 |[i] / py|[k];.X |
|00005ee0| 20 20 7d 0a 58 20 20 7d | 0a 58 0a 58 20 20 2f 2a | }.X }|.X.X /*|
|00005ef0| 20 42 61 6c 61 6e 63 65 | 20 74 68 65 20 6d 61 74 | Balance| the mat|
|00005f00| 72 69 78 20 2a 2f 0a 58 | 20 20 6d 6b 62 61 6c 61 |rix */.X| mkbala|
|00005f10| 6e 63 65 64 20 28 51 2c | 20 4e 67 29 3b 0a 58 20 |nced (Q,| Ng);.X |
|00005f20| 20 2f 2a 20 52 65 64 75 | 63 74 69 6f 6e 20 74 6f | /* Redu|ction to|
|00005f30| 20 48 65 73 73 65 6e 62 | 65 72 67 20 46 6f 72 6d | Hessenb|erg Form|
|00005f40| 20 2a 2f 0a 58 20 20 72 | 65 64 75 63 74 69 6f 6e | */.X r|eduction|
|00005f50| 20 28 51 2c 20 4e 67 29 | 3b 0a 58 20 20 2f 2a 20 | (Q, Ng)|;.X /* |
|00005f60| 46 69 6e 64 69 6e 67 20 | 65 69 67 65 6e 76 61 6c |Finding |eigenval|
|00005f70| 75 65 20 66 6f 72 20 6e | 6f 6e 73 79 6d 65 74 72 |ue for n|onsymetr|
|00005f80| 69 63 20 6d 61 74 72 69 | 78 20 75 73 69 6e 67 20 |ic matri|x using |
|00005f90| 51 52 20 61 6c 67 6f 72 | 69 74 68 6d 20 2a 2f 0a |QR algor|ithm */.|
|00005fa0| 58 20 20 68 65 73 73 65 | 6e 62 65 72 67 20 28 51 |X hesse|nberg (Q|
|00005fb0| 2c 20 4e 67 2c 20 78 2c | 20 69 79 29 3b 0a 58 20 |, Ng, x,| iy);.X |
|00005fc0| 20 2f 2a 20 73 69 6d 70 | 6c 65 73 72 74 28 4e 67 | /* simp|lesrt(Ng|
|00005fd0| 2c 78 29 3b 20 2a 2f 0a | 58 20 20 2f 2a 20 52 65 |,x); */.|X /* Re|
|00005fe0| 74 75 72 6e 73 20 74 68 | 65 20 73 71 72 74 20 6f |turns th|e sqrt o|
|00005ff0| 66 20 74 68 65 20 73 65 | 63 6f 6e 64 20 6c 61 72 |f the se|cond lar|
|00006000| 67 65 73 74 20 65 69 67 | 65 6e 76 61 6c 75 65 20 |gest eig|envalue |
|00006010| 6f 66 20 51 20 2a 2f 0a | 58 20 20 66 6f 72 20 28 |of Q */.|X for (|
|00006020| 69 20 3d 20 32 2c 20 74 | 6d 70 20 3d 20 78 5b 31 |i = 2, t|mp = x[1|
|00006030| 5d 3b 20 69 20 3c 3d 20 | 4e 67 3b 20 2b 2b 69 29 |]; i <= |Ng; ++i)|
|00006040| 0a 58 20 20 20 20 74 6d | 70 20 3d 20 28 74 6d 70 |.X tm|p = (tmp|
|00006050| 20 3e 20 78 5b 69 5d 29 | 20 3f 20 74 6d 70 20 3a | > x[i])| ? tmp :|
|00006060| 20 78 5b 69 5d 3b 0a 58 | 20 20 72 65 74 75 72 6e | x[i];.X| return|
|00006070| 20 73 71 72 74 20 28 78 | 5b 4e 67 20 2d 20 31 5d | sqrt (x|[Ng - 1]|
|00006080| 29 3b 0a 7d 0a 58 0a 66 | 6c 6f 61 74 20 2a 76 65 |);.}.X.f|loat *ve|
|00006090| 63 74 6f 72 20 28 6e 6c | 2c 20 6e 68 29 0a 58 20 |ctor (nl|, nh).X |
|000060a0| 20 69 6e 74 20 6e 6c 2c | 20 6e 68 3b 0a 7b 0a 58 | int nl,| nh;.{.X|
|000060b0| 20 20 66 6c 6f 61 74 20 | 2a 76 3b 0a 58 0a 58 20 | float |*v;.X.X |
|000060c0| 20 76 20 3d 20 28 66 6c | 6f 61 74 20 2a 29 20 6d | v = (fl|oat *) m|
|000060d0| 61 6c 6c 6f 63 20 28 28 | 75 6e 73 69 67 6e 65 64 |alloc ((|unsigned|
|000060e0| 29 20 28 6e 68 20 2d 20 | 6e 6c 20 2b 20 31 29 20 |) (nh - |nl + 1) |
|000060f0| 2a 20 73 69 7a 65 6f 66 | 20 28 66 6c 6f 61 74 29 |* sizeof| (float)|
|00006100| 29 3b 0a 58 20 20 69 66 | 20 28 21 76 29 0a 58 20 |);.X if| (!v).X |
|00006110| 20 20 20 66 70 72 69 6e | 74 66 20 28 73 74 64 65 | fprin|tf (stde|
|00006120| 72 72 2c 20 22 6d 65 6d | 6f 72 79 20 61 6c 6c 6f |rr, "mem|ory allo|
|00006130| 63 61 74 69 6f 6e 20 66 | 61 69 6c 75 72 65 22 29 |cation f|ailure")|
|00006140| 2c 20 65 78 69 74 20 28 | 31 29 3b 0a 58 20 20 72 |, exit (|1);.X r|
|00006150| 65 74 75 72 6e 20 76 20 | 2d 20 6e 6c 3b 0a 7d 0a |eturn v |- nl;.}.|
|00006160| 58 0a 58 0a 66 6c 6f 61 | 74 20 2a 2a 6d 61 74 72 |X.X.floa|t **matr|
|00006170| 69 78 20 28 6e 72 6c 2c | 20 6e 72 68 2c 20 6e 63 |ix (nrl,| nrh, nc|
|00006180| 6c 2c 20 6e 63 68 29 0a | 58 20 20 69 6e 74 20 6e |l, nch).|X int n|
|00006190| 72 6c 2c 20 6e 72 68 2c | 20 6e 63 6c 2c 20 6e 63 |rl, nrh,| ncl, nc|
|000061a0| 68 3b 0a 58 0a 2f 2a 20 | 41 6c 6c 6f 63 61 74 65 |h;.X./* |Allocate|
|000061b0| 73 20 61 20 66 6c 6f 61 | 74 20 6d 61 74 72 69 78 |s a floa|t matrix|
|000061c0| 20 77 69 74 68 20 72 61 | 6e 67 65 20 5b 6e 72 6c | with ra|nge [nrl|
|000061d0| 2e 2e 6e 72 68 5d 5b 6e | 63 6c 2e 2e 6e 63 68 5d |..nrh][n|cl..nch]|
|000061e0| 20 2a 2f 0a 7b 0a 58 20 | 20 69 6e 74 20 69 3b 0a | */.{.X | int i;.|
|000061f0| 58 20 20 66 6c 6f 61 74 | 20 2a 2a 6d 3b 0a 58 0a |X float| **m;.X.|
|00006200| 58 20 20 2f 2a 20 61 6c | 6c 6f 63 61 74 65 20 70 |X /* al|locate p|
|00006210| 6f 69 6e 74 65 72 73 20 | 74 6f 20 72 6f 77 73 20 |ointers |to rows |
|00006220| 2a 2f 0a 58 20 20 6d 20 | 3d 20 28 66 6c 6f 61 74 |*/.X m |= (float|
|00006230| 20 2a 2a 29 20 6d 61 6c | 6c 6f 63 20 28 28 75 6e | **) mal|loc ((un|
|00006240| 73 69 67 6e 65 64 29 20 | 28 6e 72 68 20 2d 20 6e |signed) |(nrh - n|
|00006250| 72 6c 20 2b 20 31 29 20 | 2a 20 73 69 7a 65 6f 66 |rl + 1) |* sizeof|
|00006260| 20 28 66 6c 6f 61 74 20 | 2a 29 29 3b 0a 58 20 20 | (float |*));.X |
|00006270| 69 66 20 28 21 6d 29 0a | 58 20 20 20 20 66 70 72 |if (!m).|X fpr|
|00006280| 69 6e 74 66 20 28 73 74 | 64 65 72 72 2c 20 22 6d |intf (st|derr, "m|
|00006290| 65 6d 6f 72 79 20 61 6c | 6c 6f 63 61 74 69 6f 6e |emory al|location|
|000062a0| 20 66 61 69 6c 75 72 65 | 22 29 2c 20 65 78 69 74 | failure|"), exit|
|000062b0| 20 28 31 29 3b 0a 58 20 | 20 6d 20 2d 3d 20 6e 63 | (1);.X | m -= nc|
|000062c0| 6c 3b 0a 58 0a 58 20 20 | 2f 2a 20 61 6c 6c 6f 63 |l;.X.X |/* alloc|
|000062d0| 61 74 65 20 72 6f 77 73 | 20 61 6e 64 20 73 65 74 |ate rows| and set|
|000062e0| 20 70 6f 69 6e 74 65 72 | 73 20 74 6f 20 74 68 65 | pointer|s to the|
|000062f0| 6d 20 2a 2f 0a 58 20 20 | 66 6f 72 20 28 69 20 3d |m */.X |for (i =|
|00006300| 20 6e 72 6c 3b 20 69 20 | 3c 3d 20 6e 72 68 3b 20 | nrl; i |<= nrh; |
|00006310| 69 2b 2b 29 0a 58 20 20 | 7b 0a 58 20 20 20 20 6d |i++).X |{.X m|
|00006320| 5b 69 5d 20 3d 20 28 66 | 6c 6f 61 74 20 2a 29 20 |[i] = (f|loat *) |
|00006330| 6d 61 6c 6c 6f 63 20 28 | 28 75 6e 73 69 67 6e 65 |malloc (|(unsigne|
|00006340| 64 29 20 28 6e 63 68 20 | 2d 20 6e 63 6c 20 2b 20 |d) (nch |- ncl + |
|00006350| 31 29 20 2a 20 73 69 7a | 65 6f 66 20 28 66 6c 6f |1) * siz|eof (flo|
|00006360| 61 74 29 29 3b 0a 58 20 | 20 20 20 69 66 20 28 21 |at));.X | if (!|
|00006370| 6d 5b 69 5d 29 0a 58 20 | 20 20 20 20 20 66 70 72 |m[i]).X | fpr|
|00006380| 69 6e 74 66 20 28 73 74 | 64 65 72 72 2c 20 22 6d |intf (st|derr, "m|
|00006390| 65 6d 6f 72 79 20 61 6c | 6c 6f 63 61 74 69 6f 6e |emory al|location|
|000063a0| 20 66 61 69 6c 75 72 65 | 22 29 2c 20 65 78 69 74 | failure|"), exit|
|000063b0| 20 28 32 29 3b 0a 58 20 | 20 20 20 6d 5b 69 5d 20 | (2);.X | m[i] |
|000063c0| 2d 3d 20 6e 63 6c 3b 0a | 58 20 20 7d 0a 58 20 20 |-= ncl;.|X }.X |
|000063d0| 2f 2a 20 72 65 74 75 72 | 6e 20 70 6f 69 6e 74 65 |/* retur|n pointe|
|000063e0| 72 20 74 6f 20 61 72 72 | 61 79 20 6f 66 20 70 6f |r to arr|ay of po|
|000063f0| 69 6e 74 65 72 73 20 74 | 6f 20 72 6f 77 73 20 2a |inters t|o rows *|
+--------+-------------------------+-------------------------+--------+--------+
Only 25.0 KB of data is shown above.