home *** CD-ROM | disk | FTP | other *** search
- /* ARC - Archive utility - ARCLZW
-
- Version 2.03, created on 10/24/86 at 11:46:22
-
- (C) COPYRIGHT 1985,86 by System Enhancement Associates; ALL RIGHTS RESERVED
-
- By: Thom Henderson
-
- Description:
- This file contains the routines used to implement Lempel-Zev
- data compression, which calls for building a coding table on
- the fly. This form of compression is especially good for encoding
- files which contain repeated strings, and can often give dramatic
- improvements over traditional Huffman SQueezing.
-
- Language:
- Computer Innovations Optimizing C86
-
- Programming notes:
- In this section I am drawing heavily on the COMPRESS program
- from UNIX. The basic method is taken from "A Technique for High
- Performance Data Compression", Terry A. Welch, IEEE Computer
- Vol 17, No 6 (June 1984), pp 8-19. Also see "Knuth's Fundamental
- Algorithms", Donald Knuth, Vol 3, Section 6.4.
-
- As best as I can tell, this method works by tracing down a hash
- table of code strings where each entry has the property:
-
- if <string> <char> is in the table
- then <string> is in the table.
- */
- #include <stdio.h>
- #include "arc.h"
-
- /* definitions for older style crunching */
-
- #define FALSE 0
- #define TRUE !FALSE
- #define TABSIZE 4096
- #define NO_PRED 0xFFFF
- #define EMPTY 0xFFFF
- #define NOT_FND 0xFFFF
-
- static unsigned int inbuf; /* partial input code storage */
- static int sp; /* current stack pointer */
-
- static struct entry /* string table entry format */
- { char used; /* true when this entry is in use */
- unsigned int next; /* ptr to next in collision list */
- unsigned int predecessor; /* code for preceeding string */
- unsigned char follower; /* char following string */
- } string_tab[TABSIZE]; /* the code string table */
-
-
- /* definitions for the new dynamic Lempel-Zev crunching */
-
- #define BITS 12 /* maximum bits per code */
- #define HSIZE 5003 /* 80% occupancy */
- #define INIT_BITS 9 /* initial number of bits/code */
-
- static int n_bits; /* number of bits/code */
- static int maxcode; /* maximum code, given n_bits */
- #define MAXCODE(n) ((1<<(n)) - 1) /* maximum code calculation */
- static int maxcodemax = 1 << BITS; /* largest possible code (+1) */
-
- static char buf[BITS]; /* input/output buffer */
-
- static unsigned char lmask[9] = /* left side masks */
- { 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00 };
- static unsigned char rmask[9] = /* right side masks */
- { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
-
- static int offset; /* byte offset for code output */
- static long in_count; /* length of input */
- static long bytes_out; /* length of compressed output */
- static long bytes_ref; /* output quality reference */
- static long bytes_last; /* output size at last checkpoint */
- static unsigned int ent;
-
- /* To save much memory (which we badly need at this point), we overlay
- * the table used by the previous version of Lempel-Zev with those used
- * by the new version. Since no two of these routines will be used
- * together, we can safely do this.
- */
-
- static long *htab = string_tab; /* hash code table (crunch) */
- static unsigned int codetab[HSIZE]; /* string code table (crunch) */
-
- static unsigned int *prefix = codetab; /* prefix code table (uncrunch) */
- static unsigned char *suffix = string_tab; /* suffix table (uncrunch) */
-
- static int free_ent; /* first unused entry */
- static int firstcmp; /* true at start of compression */
- static unsigned char stack[HSIZE]; /* local push/pop stack */
-
- /*
- * block compression parameters -- after all codes are used up,
- * and compression rate changes, start over.
- */
-
- static int clear_flg;
- #define CHECK_GAP 2048 /* ratio check interval */
- static long checkpoint;
-
- /*
- * the next two codes should not be changed lightly, as they must not
- * lie within the contiguous general code space.
- */
- #define FIRST 257 /* first free entry */
- #define CLEAR 256 /* table clear output code */
-
- /* The cl_block() routine is called at each checkpoint to determine if
- * compression would likely improve by resetting the code table. The
- * method chosen to determine this is based on empirical observation that,
- * in general, every 2k of input data should compress at least as well
- * as the first 2k of input.
- */
-
- static cl_block(t) /* table clear for block compress */
- FILE *t; /* our output file */
- {
- checkpoint = in_count + CHECK_GAP;
-
- if(bytes_ref)
- { if(bytes_out-bytes_last > bytes_ref)
- { setmem(htab,HSIZE*sizeof(long),0xff);
- free_ent = FIRST;
- clear_flg = 1;
- putcode(CLEAR,t);
- bytes_ref = 0;
- }
- }
- else bytes_ref = bytes_out - bytes_last;
-
- bytes_last = bytes_out; /* remember where we were */
- }
-
- /*****************************************************************
- *
- * Output a given code.
- * Inputs:
- * code: A n_bits-bit integer. If == -1, then EOF. This assumes
- * that n_bits =< (long)wordsize - 1.
- * Outputs:
- * Outputs code to the file.
- * Assumptions:
- * Chars are 8 bits long.
- * Algorithm:
- * Maintain a BITS character long buffer (so that 8 codes will
- * fit in it exactly). When the buffer fills up empty it and start over.
- */
-
- static putcode(code,t) /* output a code */
- int code; /* code to output */
- FILE *t; /* where to put it */
- {
- int r_off = offset; /* right offset */
- int bits = n_bits; /* bits to go */
- char *bp = buf; /* buffer pointer */
- int n; /* index */
-
- if(code >= 0) /* if a real code */
- { /*
- * Get to the first byte.
- */
- bp += (r_off >> 3);
- r_off &= 7;
-
- /*
- * Since code is always >= 8 bits, only need to mask the first
- * hunk on the left.
- */
- *bp = (*bp&rmask[r_off]) | (code<<r_off) & lmask[r_off];
- bp++;
- bits -= (8 - r_off);
- code >>= (8 - r_off);
-
- /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
- if(bits >= 8)
- { *bp++ = code;
- code >>= 8;
- bits -= 8;
- }
-
- /* Last bits. */
- if(bits)
- *bp = code;
-
- offset += n_bits;
-
- if(offset == (n_bits << 3))
- { bp = buf;
- bits = n_bits;
- bytes_out += bits;
- do
- putc_pak(*bp++,t);
- while(--bits);
- offset = 0;
- }
-
- /*
- * If the next entry is going to be too big for the code size,
- * then increase it, if possible.
- */
- if(free_ent>maxcode || clear_flg>0)
- { /*
- * Write the whole buffer, because the input side won't
- * discover the size increase until after it has read it.
- */
- if(offset > 0)
- { bp = buf; /* reset pointer for writing */
- bytes_out += n = n_bits;
- while(n--)
- putc_pak(*bp++,t);
- }
- offset = 0;
-
- if(clear_flg) /* reset if clearing */
- { maxcode = MAXCODE(n_bits = INIT_BITS);
- clear_flg = 0;
- }
- else /* else use more bits */
- { n_bits++;
- if(n_bits == BITS)
- maxcode = maxcodemax;
- else
- maxcode = MAXCODE(n_bits);
- }
- }
- }
-
- else /* dump the buffer on EOF */
- { bytes_out += n = (offset+7) / 8;
-
- if(offset > 0)
- while(n--)
- putc_pak(*bp++,t);
- offset = 0;
- }
- }
-
- /*****************************************************************
- *
- * Read one code from the standard input. If EOF, return -1.
- * Inputs:
- * cmpin
- * Outputs:
- * code or -1 is returned.
- */
-
- static int getcode(f) /* get a code */
- FILE *f; /* file to get from */
- {
- int code;
- static int offset = 0, size = 0;
- int r_off, bits;
- unsigned char *bp = buf;
-
- if(clear_flg > 0 || offset >= size || free_ent > maxcode)
- { /*
- * If the next entry will be too big for the current code
- * size, then we must increase the size. This implies reading
- * a new buffer full, too.
- */
- if(free_ent > maxcode)
- { n_bits++;
- if(n_bits == BITS)
- maxcode = maxcodemax; /* won't get any bigger now */
- else maxcode = MAXCODE(n_bits);
- }
- if(clear_flg > 0)
- { maxcode = MAXCODE(n_bits = INIT_BITS);
- clear_flg = 0;
- }
-
- for(size=0; size<n_bits; size++)
- { if((code=getc_unp(f))==EOF)
- break;
- else buf[size] = code;
- }
- if(size <= 0)
- return -1; /* end of file */
-
- offset = 0;
- /* Round size down to integral number of codes */
- size = (size << 3)-(n_bits - 1);
- }
- r_off = offset;
- bits = n_bits;
-
- /*
- * Get to the first byte.
- */
- bp +=(r_off >> 3);
- r_off &= 7;
-
- /* Get first part (low order bits) */
- code = (*bp++ >> r_off);
- bits -= 8 - r_off;
- r_off = 8 - r_off; /* now, offset into code word */
-
- /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
- if(bits >= 8)
- { code |= *bp++ << r_off;
- r_off += 8;
- bits -= 8;
- }
- /* high order bits. */
- code |= (*bp & rmask[bits]) << r_off;
- offset += n_bits;
-
- return code & MAXCODE(BITS);
- }
-
- /*
- * compress a file
- *
- * Algorithm: use open addressing double hashing (no chaining) on the
- * prefix code / next character combination. We do a variant of Knuth's
- * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
- * secondary probe. Here, the modular division first probe is gives way
- * to a faster exclusive-or manipulation. Also do block compression with
- * an adaptive reset, where the code table is cleared when the compression
- * ratio decreases, but after the table fills. The variable-length output
- * codes are re-sized at this point, and a special CLEAR code is generated
- * for the decompressor.
- */
-
- init_cm(f,t) /* initialize for compression */
- FILE *f; /* file we will be compressing */
- FILE *t; /* where we will put it */
- {
- offset = 0;
- bytes_out = bytes_last = 1;
- bytes_ref = 0;
- clear_flg = 0;
- in_count = 1;
- checkpoint = CHECK_GAP;
- maxcode = MAXCODE(n_bits = INIT_BITS);
- free_ent = FIRST;
- setmem(htab,HSIZE*sizeof(long),0xff);
- n_bits = INIT_BITS; /* set starting code size */
-
- putc_pak(BITS,t); /* note our max code length */
-
- firstcmp = 1; /* next byte will be first */
- }
-
- putc_cm(c,t) /* compress a character */
- unsigned char c; /* character to compress */
- FILE *t; /* where to put it */
- {
- static long fcode;
- static int hshift;
- int i;
- int disp;
-
- if(firstcmp) /* special case for first byte */
- { ent = c; /* remember first byte */
-
- hshift = 0;
- for(fcode=(long)HSIZE; fcode<65536L; fcode*=2L)
- hshift++;
- hshift = 8 - hshift; /* set hash code range bound */
-
- firstcmp = 0; /* no longer first */
- return;
- }
-
- in_count++;
-
- fcode =(long)(((long)c << BITS)+ent);
- i = (c<<hshift)^ent; /* xor hashing */
-
- if(htab[i]==fcode)
- { ent = codetab[i];
- return;
- }
- else if(htab[i]<0) /* empty slot */
- goto nomatch;
- disp = HSIZE - i; /* secondary hash (after G.Knott) */
- if(i == 0)
- disp = 1;
-
- probe:
- if((i -= disp) < 0)
- i += HSIZE;
-
- if(htab[i] == fcode)
- { ent = codetab[i];
- return;
- }
- if(htab[i] > 0)
- goto probe;
-
- nomatch:
- putcode(ent,t);
- ent = c;
- if(free_ent < maxcodemax)
- { codetab[i] = free_ent++; /* code -> hashtable */
- htab[i] = fcode;
- }
-
- if(in_count >= checkpoint)
- cl_block(t); /* check for adaptive reset */
- }
-
- long pred_cm(t) /* finish compressing a file */
- FILE *t; /* where to put it */
- {
- putcode(ent,t); /* put out the final code */
- putcode(-1,t); /* tell output we are done */
-
- return bytes_out; /* say how big it got */
- }
-
- /*
- * Decompress a file. This routine adapts to the codes in the file
- * building the string table on-the-fly; requiring no table to be stored
- * in the compressed file. The tables used herein are shared with those of
- * the compress() routine. See the definitions above.
- */
-
- decomp(f,t) /* decompress a file */
- FILE *f; /* file to read codes from */
- FILE *t; /* file to write text to */
- {
- unsigned char *stackp;
- int finchar;
- int code, oldcode, incode;
-
- if((code=getc_unp(f))!=BITS)
- abort("File packed with %d bits, I can only handle %d",code,BITS);
-
- n_bits = INIT_BITS; /* set starting code size */
- clear_flg = 0;
-
- /*
- * As above, initialize the first 256 entries in the table.
- */
- maxcode = MAXCODE(n_bits=INIT_BITS);
- setmem(prefix,256*sizeof(int),0); /* reset decode string table */
- for(code = 255; code >= 0; code--)
- suffix[code] = (unsigned char)code;
-
- free_ent = FIRST;
-
- finchar = oldcode = getcode(f);
- if(oldcode == -1) /* EOF already? */
- return; /* Get out of here */
- putc_ncr((char)finchar,t); /* first code must be 8 bits=char */
- stackp = stack;
-
- while((code = getcode(f))> -1)
- { if(code==CLEAR) /* reset string table */
- { setmem(prefix,256*sizeof(int),0);
- clear_flg = 1;
- free_ent = FIRST - 1;
- if((code=getcode(f))==-1)/* O, untimely death! */
- break;
- }
- incode = code;
- /*
- * Special case for KwKwK string.
- */
- if(code >= free_ent)
- { *stackp++ = finchar;
- code = oldcode;
- }
-
- /*
- * Generate output characters in reverse order
- */
- while(code >= 256)
- { *stackp++ = suffix[code];
- code = prefix[code];
- }
- *stackp++ = finchar = suffix[code];
-
- /*
- * And put them out in forward order
- */
- do
- putc_ncr(*--stackp,t);
- while(stackp > stack);
-
- /*
- * Generate the new entry.
- */
- if((code=free_ent) < maxcodemax)
- { prefix[code] = (unsigned short)oldcode;
- suffix[code] = finchar;
- free_ent = code+1;
- }
- /*
- * Remember previous code.
- */
- oldcode = incode;
- }
- }
-
-
- /*************************************************************************
- * Please note how much trouble it can be to maintain upwards *
- * compatibility. All that follows is for the sole purpose of unpacking *
- * files which were packed using an older method. *
- *************************************************************************/
-
-
- /* The h() pointer points to the routine to use for calculating a hash
- value. It is set in the init routines to point to either of oldh()
- or newh().
-
- oldh() calculates a hash value by taking the middle twelve bits
- of the square of the key.
-
- newh() works somewhat differently, and was tried because it makes
- ARC about 23% faster. This approach was abandoned because dynamic
- Lempel-Zev (above) works as well, and packs smaller also. However,
- inadvertent release of a developmental copy forces us to leave this in.
- */
-
- static unsigned (*h)(); /* pointer to hash function */
-
- static unsigned oldh(pred,foll) /* old hash function */
- unsigned int pred; /* code for preceeding string */
- unsigned char foll; /* value of following char */
- {
- long local; /* local hash value */
-
- local = (pred + foll) | 0x0800; /* create the hash key */
- local *= local; /* square it */
- return (local >> 6) & 0x0FFF; /* return the middle 12 bits */
- }
-
- static unsigned newh(pred,foll) /* new hash function */
- unsigned int pred; /* code for preceeding string */
- unsigned char foll; /* value of following char */
- {
- return ((pred+foll)*15073)&0xFFF; /* faster hash */
- }
-
- /* The eolist() function is used to trace down a list of entries with
- duplicate keys until the last duplicate is found.
- */
-
- static unsigned eolist(index) /* find last duplicate */
- unsigned int index;
- {
- int temp;
-
- while(temp=string_tab[index].next) /* while more duplicates */
- index = temp;
-
- return index;
- }
-
- /* The hash() routine is used to find a spot in the hash table for a new
- entry. It performs a "hash and linear probe" lookup, using h() to
- calculate the starting hash value and eolist() to perform the linear
- probe. This routine DOES NOT detect a table full condition. That
- MUST be checked for elsewhere.
- */
-
- static unsigned hash(pred,foll) /* find spot in the string table */
- unsigned int pred; /* code for preceeding string */
- unsigned char foll; /* char following string */
- {
- unsigned int local, tempnext; /* scratch storage */
- struct entry *ep; /* allows faster table handling */
-
- local = (*h)(pred,foll); /* get initial hash value */
-
- if(!string_tab[local].used) /* if that spot is free */
- return local; /* then that's all we need */
-
- else /* else a collision has occured */
- { local = eolist(local); /* move to last duplicate */
-
- /* We must find an empty spot. We start looking 101 places
- down the table from the last duplicate.
- */
-
- tempnext = (local+101) & 0x0FFF;
- ep = &string_tab[tempnext]; /* initialize pointer */
-
- while(ep->used) /* while empty spot not found */
- { if(++tempnext==TABSIZE) /* if we are at the end */
- { tempnext = 0; /* wrap to beginning of table*/
- ep = string_tab;
- }
- else ++ep; /* point to next element in table */
- }
-
- /* local still has the pointer to the last duplicate, while
- tempnext has the pointer to the spot we found. We use
- this to maintain the chain of pointers to duplicates.
- */
-
- string_tab[local].next = tempnext;
-
- return tempnext;
- }
- }
-
- /* The unhash() function is used to search the hash table for a given key.
- Like hash(), it performs a hash and linear probe search. It returns
- either the number of the entry (if found) or NOT_FND (if not found).
- */
-
- static unsigned unhash(pred,foll) /* search string table for a key */
- unsigned int pred; /* code of preceeding string */
- unsigned char foll; /* character following string */
- {
- unsigned int local, offset; /* scratch storage */
- struct entry *ep; /* this speeds up access */
-
- local = (*h)(pred,foll); /* initial hash */
-
- while(1)
- { ep = &string_tab[local]; /* speed up table access */
-
- if((ep->predecessor==pred) && (ep->follower==foll))
- return local; /* we have a match */
-
- if(!ep->next) /* if no more duplicates */
- return NOT_FND; /* then key is not listed */
-
- local = ep->next; /* move on to next duplicate */
- }
- }
-
- /* The init_tab() routine is used to initialize our hash table.
- You realize, of course, that "initialize" is a complete misnomer.
- */
-
- static init_tab() /* set ground state in hash table */
- {
- unsigned int i; /* table index */
-
- setmem((char *)string_tab,sizeof(string_tab),0);
-
- for(i=0; i<256; i++) /* list all single byte strings */
- upd_tab(NO_PRED,i);
-
- inbuf = EMPTY; /* nothing is in our buffer */
- }
-
- /* The upd_tab routine is used to add a new entry to the string table.
- As previously stated, no checks are made to ensure that the table
- has any room. This must be done elsewhere.
- */
-
- upd_tab(pred,foll) /* add an entry to the table */
- unsigned int pred; /* code for preceeding string */
- unsigned int foll; /* character which follows string */
- {
- struct entry *ep; /* pointer to current entry */
-
- /* calculate offset just once */
-
- ep = &string_tab[hash(pred,foll)];
-
- ep->used = TRUE; /* this spot is now in use */
- ep->next = 0; /* no duplicates after this yet */
- ep->predecessor = pred; /* note code of preceeding string */
- ep->follower = foll; /* note char after string */
- }
-
- /* This algorithm encoded a file into twelve bit strings (three nybbles).
- The gocode() routine is used to read these strings a byte (or two)
- at a time.
- */
-
- static gocode(fd) /* read in a twelve bit code */
- FILE *fd; /* file to get code from */
- {
- unsigned int localbuf, returnval;
-
- if(inbuf==EMPTY) /* if on a code boundary */
- { if((localbuf=getc_unp(fd))==EOF) /* get start of next code */
- return EOF; /* pass back end of file status */
- localbuf &= 0xFF; /* mask down to true byte value */
- if((inbuf=getc_unp(fd))==EOF) /* get end of code, start of next */
- return EOF; /* this should never happen */
- inbuf &= 0xFF; /* mask down to true byte value */
-
- returnval = ((localbuf<<4)&0xFF0) + ((inbuf>>4)&0x00F);
- inbuf &= 0x000F; /* leave partial code pending */
- }
-
- else /* buffer contains first nybble */
- { if((localbuf=getc_unp(fd))==EOF)
- return EOF;
- localbuf &= 0xFF;
-
- returnval = localbuf + ((inbuf<<8)&0xF00);
- inbuf = EMPTY; /* note no hanging nybbles */
- }
- return returnval; /* pass back assembled code */
- }
-
- static push(c) /* push char onto stack */
- int c; /* character to push */
- {
- stack[sp] = ((char) c); /* coerce integer into a char */
-
- if(++sp >= TABSIZE)
- abort("Stack overflow\n");
- }
-
- static int pop() /* pop character from stack */
- {
- if(sp>0)
- return ((int) stack[--sp]); /* leave ptr at next empty slot */
-
- else return EMPTY;
- }
-
- /***** LEMPEL-ZEV DECOMPRESSION *****/
-
- static int code_count; /* needed to detect table full */
- static unsigned code; /* where we are so far */
- static int firstc; /* true only on first character */
-
- init_ucr(new) /* get set for uncrunching */
- int new; /* true to use new hash function */
- {
- if(new) /* set proper hash function */
- h = newh;
- else h = oldh;
-
- sp = 0; /* clear out the stack */
- init_tab(); /* set up atomic code definitions */
- code_count = TABSIZE - 256; /* note space left in table */
- firstc = 1; /* true only on first code */
- }
-
- int getc_ucr(f) /* get next uncrunched byte */
- FILE *f; /* file containing crunched data */
- {
- unsigned int c; /* a character of input */
- int code, newcode;
- static int oldcode, finchar;
- struct entry *ep; /* allows faster table handling */
-
- if(firstc) /* first code is always known */
- { firstc = FALSE; /* but next will not be first */
- oldcode = gocode(f);
- return finchar = string_tab[oldcode].follower;
- }
-
- if(!sp) /* if stack is empty */
- { if((code=newcode=gocode(f))==EOF)
- return EOF;
-
- ep = &string_tab[code]; /* initialize pointer */
-
- if(!ep->used) /* if code isn't known */
- { code = oldcode;
- ep = &string_tab[code]; /* re-initialize pointer */
- push(finchar);
- }
-
- while(ep->predecessor!=NO_PRED)
- { push(ep->follower); /* decode string backwards */
- code = ep->predecessor;
- ep = &string_tab[code];
- }
-
- push(finchar=ep->follower); /* save first character also */
-
- /* The above loop will terminate, one way or another,
- with string_tab[code].follower equal to the first
- character in the string.
- */
-
- if(code_count) /* if room left in string table */
- { upd_tab(oldcode,finchar);
- --code_count;
- }
-
- oldcode = newcode;
- }
-
- return pop(); /* return saved character */
- }
-