home *** CD-ROM | disk | FTP | other *** search
- PROGRAM DSqrt; { ported from Fortran original 05-01-92 Norbert Juffa }
-
- {$A+,B-,D-,E+,F-,G-,I-,L-,N-,O-,R-,S-,V-,X-}
-
- USES MachArit;
-
- {
- C PROGRAM TO TEST DSQRT
- C
- C DATA REQUIRED
- C
- C NONE
- C
- C SUBPROGRAMS REQUIRED FROM THIS PACKAGE
- C
- C MACHAR - AN ENVIRONMENTAL INQUIRY PROGRAM PROVIDING
- C INFORMATION ON THE FLOATING-POINT ARITHMETIC
- C SYSTEM. NOTE THAT THE CALL TO MACHAR CAN
- C BE DELETED PROVIDED THE FOLLOWING SIX
- C PARAMETERS ARE ASSIGNED THE VALUES INDICATED
- C
- C IBETA - THE RADIX OF THE FLOATING-POINT SYSTEM
- C IT - THE NUMBER OF BASE-IBETA DIGITS IN THE
- C SIGNIFICAND OF A FLOATING-POINT NUMBER
- C EPS - THE SMALLEST POSITIVE FLOATING-POINT
- C NUMBER SUCH THAT 1.0+EPS .NE. 1.0
- C EPSNEG - THE SMALLEST POSITIVE FLOATING-POINT
- C NUMBER SUCH THAT 1.0-EPSNEG .NE. 1.0
- C XMIN - THE SMALLEST NON-VANISHING FLOATING-POINT
- C POWER OF THE RADIX
- C XMAX - THE LARGEST FINITE FLOATING-POINT NO.
- C
- C RANDL(X) - A FUNCTION SUBPROGRAM RETURNING LOGARITHMICALLY
- C DISTRIBUTED RANDOM REAL NUMBERS. IN PARTICULAR,
- C A * RANDL(DLOG(B/A))
- C IS LOGARITHMICALLY DISTRIBUTED OVER (A,B)
- C
- C REN(K) - A FUNCTION SUBPROGRAM RETURNING RANDOM REAL
- C NUMBERS UNIFORMLY DISTRIBUTED OVER (0,1)
- C
- C
- C STANDARD FORTRAN SUBPROGRAMS REQUIRED
- C
- C DABS, DLOG, DMAX1, DFLOAT, DSQRT
- C
- C
- C LATEST REVISION - AUGUST 2, 1979
- C
- C AUTHOR - W. J. CODY
- C ARGONNE NATIONAL LABORATORY
- C
- C
- }
-
-
- FUNCTION REN (K: LONGINT): REAL;
-
- {
- DOUBLE PRECISION FUNCTION REN(K)
- C
- C RANDOM NUMBER GENERATOR - BASED ON ALGORITHM 266 BY PIKE AND
- C HILL (MODIFIED BY HANSSON), COMMUNICATIONS OF THE ACM,
- C VOL. 8, NO. 10, OCTOBER 1965.
- C
- C THIS SUBPROGRAM IS INTENDED FOR USE ON COMPUTERS WITH
- C FIXED POINT WORDLENGTH OF AT LEAST 29 BITS. IT IS
- C BEST IF THE FLOATING POINT SIGNIFICAND HAS AT MOST
- C 29 BITS.
- C
- }
-
- VAR J: LONGINT;
- CONST IY: LONGINT = 100001;
-
- BEGIN
- J := K;
- IY := IY * 125;
- IY := IY - (IY DIV 2796203) * 2796203;
- REN:= 1.0 * (IY) / 2796203.0e0 * (1.0e0 + 1.0e-6 + 1.0e-12);
- END;
-
-
- FUNCTION MAX1 (A, B:REAL): REAL;
- BEGIN
- IF A > B THEN
- MAX1 := A
- ELSE
- MAX1 := B;
- END;
-
-
-
- FUNCTION RANDL(X: REAL): REAL;
- {
- C
- C RETURNS PSEUDO RANDOM NUMBERS LOGARITHMICALLY DISTRIBUTED
- C OVER (1,EXP(X)). THUS A*RANDL(LN(B/A)) IS LOGARITHMICALLY
- C DISTRIBUTED IN (A,B).
- C
- C OTHER SUBROUTINES REQUIRED
- C
- C EXP(X) - THE EXPONENTIAL ROUTINE
- C
- C REN(K) - A FUNCTION PROGRAM RETURNING RANDOM REAL
- C NUMBERS UNIFORMLY DISTRIBUTED OVER (0,1).
- C THE ARGUMENT K IS A DUMMY.
- C
- C
- }
-
- CONST K:LONGINT=1;
- BEGIN
- RANDL := EXP (X*REN(K));
- END;
-
-
-
- VAR I,IBETA,IEXP,IOUT,IRND,IT,J,K1,K2,
- K3,MACHEP,MAXEXP,MINEXP,N,NEGEP,NGRD: LONGINT;
- A,AIT,ALBETA,B,BETA,C,EPS,EPSNEG,ONE,
- R6,R7,SQBETA,W,X,XMAX,XMIN,XN,X1,Y,Z,ZERO: REAL;
-
- LABEL 100, 110, 120, 150, 160, 210, 220, 230, 240, 300;
-
- BEGIN
-
- N := 1000000; { number of trials }
-
- MACHAR (IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,MAXEXP,
- EPS,EPSNEG,XMIN,XMAX);
- PRINTPARAM (IBETA,IT,IRND,NGRD,MACHEP,NEGEP,IEXP,MINEXP,MAXEXP,
- EPS,EPSNEG,XMIN,XMAX);
- BETA := IBETA;
- SQBETA:= SQRT (BETA);
- ALBETA:= LN (BETA);
- AIT := (IT);
- ONE := 1;
- ZERO := 0;
- A := ONE / SQBETA;
- B := ONE;
- XN := N;
-
- {-----------------------------------------------------------------}
- { RANDOM ARGUMENT ACCURACY TESTS }
- {-----------------------------------------------------------------}
-
- FOR J := 1 TO 2 DO BEGIN
- C := LN (B/A);
- K1 := 0;
- K3 := 0;
- X1 := ZERO;
- R6 := ZERO;
- R7 := ZERO;
-
- FOR I := 1 TO N DO BEGIN
- X := A * RANDL(C);
- Y := X * X;
- Z := SQRT (Y);
- IF X <> ZERO THEN
- W := (Z - X) / X
- ELSE IF Z <> ZERO THEN
- W := ONE;
- IF W > ZERO THEN
- K1 := K1 + 1;
- IF W < ZERO THEN
- K3 := K3 + 1;
- W := ABS (W);
- IF W <= R6 THEN
- GOTO 120;
- R6 := W;
- X1 := X;
- 120: R7 := R7 + W * W;
- END;
-
- K2 := N - K1 - K3;
- R7 := SQRT (R7/XN);
-
- WRITELN;
- WRITELN;
- WRITELN ('TEST OF SQRT(X*X) - X ');
- WRITELN;
- WRITELN (N, ' RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL');
- WRITELN ('(', A, ',', B, ')');
- WRITELN;
- WRITELN ('SQRT (X) WAS LARGER', K1:6, ' TIMES');
- WRITELN (' AGREED', K2:6, ' TIMES');
- WRITELN (' AND WAS SMALLER', K3:6, ' TIMES');
- WRITELN;
- WRITELN ('THERE ARE ', IT, ' BASE ', IBETA,
- ' SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER');
- WRITELN;
- W := -999.0;
- IF R6 <> ZERO THEN
- W := LN (ABS(R6))/ALBETA;
- WRITELN ('THE MAXIMUM RELATIVE ERROR OF ', R6:12,
- ' = ', IBETA, ' **', W:7:2);
- WRITELN ('OCCURED FOR X = ', X1);
- W := MAX1 (AIT+W,ZERO);
- WRITELN;
- WRITELN ('THE ESTIMATED LOSS OF BASE ', IBETA,
- ' SIGNIFICANT DIGITS IS ', W:7:2);
- W := -999;
- IF R7 <> ZERO THEN
- W := LN (ABS(R7))/ALBETA;
- WRITELN;
- WRITELN ('THE ROOT MEAN SQUARE RELATIVE ERROR WAS', R7:12,
- ' = ', IBETA, ' **' , W:7:2);
- W := MAX1 (AIT+W,ZERO);
- WRITELN;
- WRITELN ('THE ESTIMATED LOSS OF BASE ', IBETA,
- ' SIGNIFICANT DIGITS IS ', W:7:2);
- A := ONE;
- B := SQBETA;
- END;
-
- {-----------------------------------------------------------------}
- { SPECIAL TESTS }
- {-----------------------------------------------------------------}
-
- WRITELN;
- WRITELN;
- WRITELN ('TEST OF SPECIAL ARGUMENTS');
- WRITELN;
- X := XMIN;
- Y := SQRT (X);
- WRITELN ('SQRT (XMIN) = SQRT ( ', X:18, ') = ', Y:18);
- WRITELN;
- X := ONE - EPSNEG;
- Y := SQRT(X);
- WRITELN ('SQRT(1-EPSNEG) = SQRT (1-', EPSNEG:18, ') = ', Y:18);
- WRITELN;
- X := ONE;
- Y := SQRT(X);
- WRITELN ('SQRT (1.0) = SQRT ( ', X:18, ') = ', Y:18);
- WRITELN;
- X := ONE + EPS;
- Y := SQRT(X);
- WRITELN ('SQRT (1+EPS) = SQRT (1+', EPS:18, ') = ', Y:18);
- WRITELN;
- X := XMAX;
- Y := SQRT(X);
- WRITELN ('SQRT (XMAX) = SQRT ( ', X:18, ') = ', Y:18);
- WRITELN;
-
- {-----------------------------------------------------------------}
- { TEST OF ERROR RETURNS }
- {-----------------------------------------------------------------}
-
- WRITELN;
- WRITELN;
- WRITELN ('TEST OF ERROR RETURNS');
- WRITELN;
- X := ZERO;
- WRITELN ('SQRT WILL BE CALLED WITH THE ARGUMENT ', X:15);
- WRITELN ('THIS SHOULD NOT TRIGGER AN ERROR MESSAGE');
- Y := SQRT(X);
- WRITELN ('SQRT RETURNED THE VALUE ', Y:15);
- X := -ONE;
- WRITELN ('SQRT WILL BE CALLED WITH THE ARGUMENT ', X:15);
- WRITELN ('THIS SHOULD TRIGGER AN ERROR MESSAGE');
- Y := SQRT(X);
- WRITELN ('SQRT RETURNED THE VALUE ', Y:15);
- WRITELN;
- WRITELN ('THIS CONCLUDES THE TESTS');
- END. { DSqrt }