home *** CD-ROM | disk | FTP | other *** search
- program least3; { --> 226 }
- { Pascal program to perform a linear least-squares fit }
- { on the properties of steam with Gauss-Jordan routine }
- { Seperate modules needed:
- GAUSSJ}
-
-
- const maxr = 20; { data prints }
- maxc = 4; { polynomial terms }
-
- type ary = array[1..maxr] of real;
- arys = array[1..maxc] of real;
- ary2 = array[1..maxr,1..maxc] of real;
- ary2s = array[1..maxc,1..maxc] of real;
-
- var p,t,v,
- y,y_calc : ary;
- resid : ary;
- coef,sig : arys;
- nrow,ncol : integer;
- correl_coef : real;
-
- external procedure cls;
-
- procedure get_data(var p,t: ary; { independant variable }
- var v: ary; { dependant variable }
- var nrow: integer); { length of vectors }
- { get values for n and arrays x,y }
-
- var i : integer;
-
- begin
- nrow:=12;
- t[1]:=400; p[1]:=120; v[1]:=4.079;
- t[2]:=450; p[2]:=120; v[2]:=4.36;
- t[3]:=500; p[3]:=120; v[3]:=4.633;
- t[4]:=400; p[4]:=140; v[4]:=3.466;
- t[5]:=450; p[5]:=140; v[5]:=3.713;
- t[6]:=500; p[6]:=140; v[6]:=3.952;
- t[7]:=400; p[7]:=160; v[7]:=3.007;
- t[8]:=450; p[8]:=160; v[8]:=3.228;
- t[9]:=500; p[9]:=160; v[9]:=3.440;
- t[10]:=400; p[10]:=180; v[10]:=2.648;
- t[11]:=450; p[11]:=180; v[11]:=2.850;
- t[12]:=500; p[12]:=180; v[12]:=3.042;
- for i:=1 to nrow do
- t[i]:=t[i]+460.0 { convert to Rankine }
- end; { proceddure get data }
-
- procedure write_data;
- { print out the answers }
- var i : integer;
- begin
- writeln;
- writeln(' I P T V Y YCALC %RES');
- for i:=1 to nrow do
- writeln(i:3,p[i]:7:1,t[i]:7:1,v[i]:7:3,y[i]:9:2,y_calc[i]:9:2,
- (100.0*resid[i]/y[i]):9:2);
- writeln; writeln(' Coefficients errors ');
- writeln(coef[1],' ',sig[1],' Constant term');
- for i:=2 to ncol do
- writeln(coef[i],' ',sig[i]); { other terms }
- writeln;
- writeln('Correlation coefficient is ',correl_coef:8:5)
- end; { write_data }
-
- {procedure square(x: ary2;
- y: ary;
- var a: ary2s;
- var g: arys;
- nrow,ncol: integer);}
- { matrix multiplication routine }
- { a= transpose x times x }
- { g= y times x }
- {$I SQUARE.LIB }
-
- {external procedure gaussj(var b: ary2s;
- y: arys;
- var coef: arys;
- ncol: integer;
- var error: boolean);
- }
- {$I GAUSSJ.LIB }
-
- procedure linfit(p,t,v: ary; { independant variable }
- var y: ary; { dependent variable }
- var y_calc: ary; { calculated dep. variable }
- var resid: ary; { array of residuals }
- var coef: arys; { coefficients }
- var sig: arys; { error on coefficients }
- nrow: integer; { length of array }
- var ncol: integer); { number of terms }
-
- { least squares fit to nrow sets of x and y pairs of points }
- { Seperate procedures needed:
- SQUARE -> form square coefficient matrix
- GAUSSJ -> Gauss-Jordan elimination }
-
- const r = 85.76; { gas constant for steam }
-
- var xmatr : ary2; { data matrix }
- a : ary2s; { coefficient matrix }
- g : arys; { constant vector }
- error : boolean;
- i,j,nm : integer;
- power,yi,yc,srs,see,
- sum_y,sum_y2 : real;
-
- begin { procedure linfit }
- ncol:=2; { number of terms }
- for i:=1 to nrow do
- begin { setup matrix }
- power:=t[i];
- xmatr[i,1]:=p[i]/power; { first column }
- xmatr[i,2]:=sqrt(p[i]); { second column }
- y[i]:=v[i]*p[i]-r*t[i]/144.0
- end;
- square(xmatr,y,a,g,nrow,ncol);
- gaussj(a,g,coef,ncol,error);
- sum_y:=0.0;
- sum_y2:=0.0;
- srs:=0.0;
- for i:=1 to nrow do
- begin
- yi:=y[i];
- yc:=0.0;
- for j:=1 to ncol do
- yc:=yc+coef[j]*xmatr[i,j];
- y_calc[i]:=yc;
- resid[i]:=yc-yi;
- srs:=srs+sqr(resid[i]);
- sum_y:=sum_y+yi;
- sum_y2:=sum_y2+yi*yi
- end;
- correl_coef:=sqrt(1.0-srs/(sum_y2-sqr(sum_y)/nrow));
- if nrow=ncol then nm:=1
- else nm:=nrow-ncol;
- see:=sqrt(srs/nm);
- for i:=1 to ncol do { errors on solution }
- sig[i]:=see*sqrt(a[i,i])
- end; { linfit }
-
- begin { main program }
- cls;
- get_data(p,t,v,nrow);
- linfit(p,t,v,y,y_calc,resid,coef,sig,nrow,ncol);
- write_data
- end.