home *** CD-ROM | disk | FTP | other *** search
- program fitpol; { -> 295 }
- { Pascal program to perform a linear least-squares fit }
- { to the ratio of 2 polynomials }
- { with Gauss-Jordan routine }
- { Sperate modules needed:
- GAUSSJ}
-
-
- const maxr = 20; { data prints }
- maxc = 4; { polynomial terms }
-
- type
- ary = array[1..maxr] of real;
- arys = array[1..maxc] of real;
- ary2 = array[1..maxr,1..maxc] of real;
- ary2s = array[1..maxc,1..maxc] of real;
-
- var
- x,y,y_calc : ary;
- resid : ary;
- coef,sig : arys;
- nrow,ncol : integer;
- correl_coef : real;
-
- external procedure cls;
-
- procedure get_data(var x: ary; { independant variable }
- var y: ary; { dependant variable }
- var nrow: integer); { length of vectors }
- { get values for n and arrays x,y }
-
- var i : integer;
-
- begin
- { clausing factors }
- nrow:=10;
- x[1]:=0.1; y[1]:=0.9524;
- x[2]:=0.2; y[2]:=0.9092;
- x[3]:=0.5; y[3]:=0.8013;
- x[4]:=1.0; y[4]:=0.6720;
- x[5]:=1.2; y[5]:=0.6322;
- x[6]:=1.5; y[6]:=0.5815;
- x[7]:=2.0; y[7]:=0.5142;
- x[8]:=3.0; y[8]:=0.4201;
- x[9]:=4.0; y[9]:=0.3566;
- x[10]:=6.0; y[10]:=0.2755;
- end; { procedure get data }
-
- procedure write_data;
- { print out the answers }
- var i : integer;
- begin
- writeln;
- writeln;
- writeln(' I X Y YCALC RESID');
- for i:=1 to nrow do
- writeln(i:3,x[i]:8:1,y[i]:9:4,y_calc[i]:9:4,resid[i]:9:4);
- writeln; writeln(' Coefficients errors ');
- writeln(coef[1]:8:5,' ',sig[1],' constant term');
- for i:=2 to ncol do
- writeln(coef[i]:8:5,' ',sig[i]); { other terms }
- writeln;
- writeln('Correlation coefficient is ',correl_coef:8:5)
- end; { write_data }
-
- {procedure square(x: ary2;
- y: ary;
- var a: ary2s;
- var g: arys;
- nrow,ncol: integer);}
- { matrix multiplication routine }
- { a= transpose x times x }
- { g= y times x }
- {$I C:SQUARE.LIB }
-
- {external procedure gaussj(var b: ary2s;
- y: arys;
- var coef: arys;
- ncol: integer;
- var error: boolean);
- }
- {$I GAUSSJ.LIB }
-
- procedure linfit(x, { independant variable }
- y: ary; { dependent variable }
- var y_calc: ary; { calculated dep. variable }
- var resid: ary; { array of residuals }
- var coef: arys; { coefficients }
- var sig: arys; { error on coefficients }
- nrow: integer; { length of array }
- var ncol: integer); { number of terms }
-
- { least squares fit to nrow sets of x and y pairs of points }
- { Seperate procedures needed:
- SQUARE -> form square coefficient matrix
- GAUSSJ -> Gauss-Jordan elimination }
-
- var xmatr : ary2; { data matrix }
- a : ary2s; { coefficient matrix }
- g : arys; { constant vector }
- error : boolean;
- i,j,nm : integer;
- xi,yi,yc,srs,see,
- sum_y,sum_y2 : real;
-
- begin { procedure linfit }
- ncol:=4; { number of terms }
- for i:=1 to nrow do
- begin { setup matrix }
- xi:=x[i];
- yi:=y[i];
- xmatr[i,1]:=1.0; { first column }
- xmatr[i,2]:=-xi*yi; { second column }
- xmatr[i,3]:=xi; { third column }
- xmatr[i,4]:=-sqr(xi)*yi
- end;
- square(xmatr,y,a,g,nrow,ncol);
- gaussj(a,g,coef,ncol,error);
- sum_y:=0.0;
- sum_y2:=0.0;
- srs:=0.0;
- for i:=1 to nrow do
- begin
- xi:=x[i];
- yi:=y[i];
- yc:=coef[1]+(-coef[2]*yi+coef[3]-coef[4]*xi*yi)*xi;
- y_calc[i]:=yc;
- resid[i]:=yc-yi;
- srs:=srs+sqr(resid[i]);
- sum_y:=sum_y+yi;
- sum_y2:=sum_y2+yi*yi
- end;
- correl_coef:=sqrt(1.0-srs/(sum_y2-sqr(sum_y)/nrow));
- if nrow=ncol then nm:=1
- else nm:=nrow-ncol;
- see:=sqrt(srs/nm);
- for i:=1 to ncol do { errors on solution }
- sig[i]:=see*sqrt(a[i,i])
- end; { linfit }
-
-
- begin { main program }
- cls;
- get_data(x,y,nrow);
- linfit(x,y,y_calc,resid,coef,sig,nrow,ncol);
- write_data
- end.