home *** CD-ROM | disk | FTP | other *** search
- /*
- floating point Bessel's function
- of the first and second kinds
- of order zero
-
- j0(x) returns the value of J0(x)
- for all real values of x.
-
- There are no error returns.
- Calls sin, cos, sqrt.
-
- There is a niggling bug in J0 which
- causes errors up to 2e-16 for x in the
- interval [-8,8].
- The bug is caused by an inappropriate order
- of summation of the series. rhm will fix it
- someday.
-
- Coefficients are from Hart & Cheney.
- #5849 (19.22D)
- #6549 (19.25D)
- #6949 (19.41D)
-
- y0(x) returns the value of Y0(x)
- for positive real values of x.
- For x<=0, error number EDOM is set and a
- large negative value is returned.
-
- Calls sin, cos, sqrt, log, j0.
-
- The values of Y0 have not been checked
- to more than ten places.
-
- Coefficients are from Hart & Cheney.
- #6245 (18.78D)
- #6549 (19.25D)
- #6949 (19.41D)
- */
-
- #include <math.h>
- #include <errno.h>
-
- int errno;
- static double pzero, qzero;
- static double tpi = .6366197723675813430755350535e0;
- static double pio4 = .7853981633974483096156608458e0;
- static double p1[] = {
- 0.4933787251794133561816813446e21,
- -.1179157629107610536038440800e21,
- 0.6382059341072356562289432465e19,
- -.1367620353088171386865416609e18,
- 0.1434354939140344111664316553e16,
- -.8085222034853793871199468171e13,
- 0.2507158285536881945555156435e11,
- -.4050412371833132706360663322e8,
- 0.2685786856980014981415848441e5,
- };
- static double q1[] = {
- 0.4933787251794133562113278438e21,
- 0.5428918384092285160200195092e19,
- 0.3024635616709462698627330784e17,
- 0.1127756739679798507056031594e15,
- 0.3123043114941213172572469442e12,
- 0.6699987672982239671814028660e9,
- 0.1114636098462985378182402543e7,
- 0.1363063652328970604442810507e4,
- 1.0
- };
- static double p2[] = {
- 0.5393485083869438325262122897e7,
- 0.1233238476817638145232406055e8,
- 0.8413041456550439208464315611e7,
- 0.2016135283049983642487182349e7,
- 0.1539826532623911470917825993e6,
- 0.2485271928957404011288128951e4,
- 0.0,
- };
- static double q2[] = {
- 0.5393485083869438325560444960e7,
- 0.1233831022786324960844856182e8,
- 0.8426449050629797331554404810e7,
- 0.2025066801570134013891035236e7,
- 0.1560017276940030940592769933e6,
- 0.2615700736920839685159081813e4,
- 1.0,
- };
- static double p3[] = {
- -.3984617357595222463506790588e4,
- -.1038141698748464093880530341e5,
- -.8239066313485606568803548860e4,
- -.2365956170779108192723612816e4,
- -.2262630641933704113967255053e3,
- -.4887199395841261531199129300e1,
- 0.0,
- };
- static double q3[] = {
- 0.2550155108860942382983170882e6,
- 0.6667454239319826986004038103e6,
- 0.5332913634216897168722255057e6,
- 0.1560213206679291652539287109e6,
- 0.1570489191515395519392882766e5,
- 0.4087714673983499223402830260e3,
- 1.0,
- };
- static double p4[] = {
- -.2750286678629109583701933175e20,
- 0.6587473275719554925999402049e20,
- -.5247065581112764941297350814e19,
- 0.1375624316399344078571335453e18,
- -.1648605817185729473122082537e16,
- 0.1025520859686394284509167421e14,
- -.3436371222979040378171030138e11,
- 0.5915213465686889654273830069e8,
- -.4137035497933148554125235152e5,
- };
- static double q4[] = {
- 0.3726458838986165881989980e21,
- 0.4192417043410839973904769661e19,
- 0.2392883043499781857439356652e17,
- 0.9162038034075185262489147968e14,
- 0.2613065755041081249568482092e12,
- 0.5795122640700729537480087915e9,
- 0.1001702641288906265666651753e7,
- 0.1282452772478993804176329391e4,
- 1.0,
- };
-
- double
- j0(arg) double arg;{
- double argsq, n, d;
- double sin(), cos(), sqrt();
- int i;
-
- if(arg < 0.) arg = -arg;
- if(arg > 8.){
- asympt(arg);
- n = arg - pio4;
- return(sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n)));
- }
- argsq = arg*arg;
- for(n=0,d=0,i=8;i>=0;i--){
- n = n*argsq + p1[i];
- d = d*argsq + q1[i];
- }
- return(n/d);
- }
-
- double
- y0(arg) double arg;{
- double argsq, n, d;
- double sin(), cos(), sqrt(), log(), j0();
- int i;
-
- errno = 0;
- if(arg <= 0.){
- errno = EDOM;
- return(-HUGE);
- }
- if(arg > 8.){
- asympt(arg);
- n = arg - pio4;
- return(sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n)));
- }
- argsq = arg*arg;
- for(n=0,d=0,i=8;i>=0;i--){
- n = n*argsq + p4[i];
- d = d*argsq + q4[i];
- }
- return(n/d + tpi*j0(arg)*log(arg));
- }
-
- static
- asympt(arg) double arg;{
- double zsq, n, d;
- int i;
- zsq = 64./(arg*arg);
- for(n=0,d=0,i=6;i>=0;i--){
- n = n*zsq + p2[i];
- d = d*zsq + q2[i];
- }
- pzero = n/d;
- for(n=0,d=0,i=6;i>=0;i--){
- n = n*zsq + p3[i];
- d = d*zsq + q3[i];
- }
- qzero = (8./arg)*(n/d);
- }