home *** CD-ROM | disk | FTP | other *** search
- SUBROUTINE SSPDI(AP,N,KPVT,DET,INERT,WORK,JOB)
- INTEGER N,JOB
- REAL AP(1),WORK(1)
- REAL DET(2)
- INTEGER KPVT(1),INERT(3)
- C
- C SSPDI COMPUTES THE DETERMINANT, INERTIA AND INVERSE
- C OF A REAL SYMMETRIC MATRIX USING THE FACTORS FROM SSPFA,
- C WHERE THE MATRIX IS STORED IN PACKED FORM.
- C
- C ON ENTRY
- C
- C AP REAL (N*(N+1)/2)
- C THE OUTPUT FROM SSPFA.
- C
- C N INTEGER
- C THE ORDER OF THE MATRIX A.
- C
- C KPVT INTEGER(N)
- C THE PIVOT VECTOR FROM SSPFA.
- C
- C WORK REAL(N)
- C WORK VECTOR. CONTENTS IGNORED.
- C
- C JOB INTEGER
- C JOB HAS THE DECIMAL EXPANSION ABC WHERE
- C IF C .NE. 0, THE INVERSE IS COMPUTED,
- C IF B .NE. 0, THE DETERMINANT IS COMPUTED,
- C IF A .NE. 0, THE INERTIA IS COMPUTED.
- C
- C FOR EXAMPLE, JOB = 111 GIVES ALL THREE.
- C
- C ON RETURN
- C
- C VARIABLES NOT REQUESTED BY JOB ARE NOT USED.
- C
- C AP CONTAINS THE UPPER TRIANGLE OF THE INVERSE OF
- C THE ORIGINAL MATRIX, STORED IN PACKED FORM.
- C THE COLUMNS OF THE UPPER TRIANGLE ARE STORED
- C SEQUENTIALLY IN A ONE-DIMENSIONAL ARRAY.
- C
- C DET REAL(2)
- C DETERMINANT OF ORIGINAL MATRIX.
- C DETERMINANT = DET(1) * 10.0**DET(2)
- C WITH 1.0 .LE. ABS(DET(1)) .LT. 10.0
- C OR DET(1) = 0.0.
- C
- C INERT INTEGER(3)
- C THE INERTIA OF THE ORIGINAL MATRIX.
- C INERT(1) = NUMBER OF POSITIVE EIGENVALUES.
- C INERT(2) = NUMBER OF NEGATIVE EIGENVALUES.
- C INERT(3) = NUMBER OF ZERO EIGENVALUES.
- C
- C ERROR CONDITION
- C
- C A DIVISION BY ZERO WILL OCCUR IF THE INVERSE IS REQUESTED
- C AND SSPCO HAS SET RCOND .EQ. 0.0
- C OR SSPFA HAS SET INFO .NE. 0 .
- C
- C LINPACK. THIS VERSION DATED 08/14/78 .
- C JAMES BUNCH, UNIV. CALIF. SAN DIEGO, ARGONNE NAT. LAB.
- C
- C SUBROUTINES AND FUNCTIONS
- C
- C BLAS SAXPY,SCOPY,SDOT,SSWAP
- C FORTRAN ABS,IABS,MOD
- C
- C INTERNAL VARIABLES.
- C
- REAL AKKP1,SDOT,TEMP
- REAL TEN,D,T,AK,AKP1
- INTEGER IJ,IK,IKP1,IKS,J,JB,JK,JKP1
- INTEGER K,KK,KKP1,KM1,KS,KSJ,KSKP1,KSTEP
- LOGICAL NOINV,NODET,NOERT
- C
- NOINV = MOD(JOB,10) .EQ. 0
- NODET = MOD(JOB,100)/10 .EQ. 0
- NOERT = MOD(JOB,1000)/100 .EQ. 0
- C
- IF (NODET .AND. NOERT) GO TO 140
- IF (NOERT) GO TO 10
- INERT(1) = 0
- INERT(2) = 0
- INERT(3) = 0
- 10 CONTINUE
- IF (NODET) GO TO 20
- DET(1) = 1.0E0
- DET(2) = 0.0E0
- TEN = 10.0E0
- 20 CONTINUE
- T = 0.0E0
- IK = 0
- DO 130 K = 1, N
- KK = IK + K
- D = AP(KK)
- C
- C CHECK IF 1 BY 1
- C
- IF (KPVT(K) .GT. 0) GO TO 50
- C
- C 2 BY 2 BLOCK
- C USE DET (D S) = (D/T * C - T) * T , T = ABS(S)
- C (S C)
- C TO AVOID UNDERFLOW/OVERFLOW TROUBLES.
- C TAKE TWO PASSES THROUGH SCALING. USE T FOR FLAG.
- C
- IF (T .NE. 0.0E0) GO TO 30
- IKP1 = IK + K
- KKP1 = IKP1 + K
- T = ABS(AP(KKP1))
- D = (D/T)*AP(KKP1+1) - T
- GO TO 40
- 30 CONTINUE
- D = T
- T = 0.0E0
- 40 CONTINUE
- 50 CONTINUE
- C
- IF (NOERT) GO TO 60
- IF (D .GT. 0.0E0) INERT(1) = INERT(1) + 1
- IF (D .LT. 0.0E0) INERT(2) = INERT(2) + 1
- IF (D .EQ. 0.0E0) INERT(3) = INERT(3) + 1
- 60 CONTINUE
- C
- IF (NODET) GO TO 120
- DET(1) = D*DET(1)
- IF (DET(1) .EQ. 0.0E0) GO TO 110
- 70 IF (ABS(DET(1)) .GE. 1.0E0) GO TO 80
- DET(1) = TEN*DET(1)
- DET(2) = DET(2) - 1.0E0
- GO TO 70
- 80 CONTINUE
- 90 IF (ABS(DET(1)) .LT. TEN) GO TO 100
- DET(1) = DET(1)/TEN
- DET(2) = DET(2) + 1.0E0
- GO TO 90
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- IK = IK + K
- 130 CONTINUE
- 140 CONTINUE
- C
- C COMPUTE INVERSE(A)
- C
- IF (NOINV) GO TO 270
- K = 1
- IK = 0
- 150 IF (K .GT. N) GO TO 260
- KM1 = K - 1
- KK = IK + K
- IKP1 = IK + K
- KKP1 = IKP1 + K
- IF (KPVT(K) .LT. 0) GO TO 180
- C
- C 1 BY 1
- C
- AP(KK) = 1.0E0/AP(KK)
- IF (KM1 .LT. 1) GO TO 170
- CALL SCOPY(KM1,AP(IK+1),1,WORK,1)
- IJ = 0
- DO 160 J = 1, KM1
- JK = IK + J
- AP(JK) = SDOT(J,AP(IJ+1),1,WORK,1)
- CALL SAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
- IJ = IJ + J
- 160 CONTINUE
- AP(KK) = AP(KK) + SDOT(KM1,WORK,1,AP(IK+1),1)
- 170 CONTINUE
- KSTEP = 1
- GO TO 220
- 180 CONTINUE
- C
- C 2 BY 2
- C
- T = ABS(AP(KKP1))
- AK = AP(KK)/T
- AKP1 = AP(KKP1+1)/T
- AKKP1 = AP(KKP1)/T
- D = T*(AK*AKP1 - 1.0E0)
- AP(KK) = AKP1/D
- AP(KKP1+1) = AK/D
- AP(KKP1) = -AKKP1/D
- IF (KM1 .LT. 1) GO TO 210
- CALL SCOPY(KM1,AP(IKP1+1),1,WORK,1)
- IJ = 0
- DO 190 J = 1, KM1
- JKP1 = IKP1 + J
- AP(JKP1) = SDOT(J,AP(IJ+1),1,WORK,1)
- CALL SAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IKP1+1),1)
- IJ = IJ + J
- 190 CONTINUE
- AP(KKP1+1) = AP(KKP1+1)
- * + SDOT(KM1,WORK,1,AP(IKP1+1),1)
- AP(KKP1) = AP(KKP1)
- * + SDOT(KM1,AP(IK+1),1,AP(IKP1+1),1)
- CALL SCOPY(KM1,AP(IK+1),1,WORK,1)
- IJ = 0
- DO 200 J = 1, KM1
- JK = IK + J
- AP(JK) = SDOT(J,AP(IJ+1),1,WORK,1)
- CALL SAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
- IJ = IJ + J
- 200 CONTINUE
- AP(KK) = AP(KK) + SDOT(KM1,WORK,1,AP(IK+1),1)
- 210 CONTINUE
- KSTEP = 2
- 220 CONTINUE
- C
- C SWAP
- C
- KS = IABS(KPVT(K))
- IF (KS .EQ. K) GO TO 250
- IKS = (KS*(KS - 1))/2
- CALL SSWAP(KS,AP(IKS+1),1,AP(IK+1),1)
- KSJ = IK + KS
- DO 230 JB = KS, K
- J = K + KS - JB
- JK = IK + J
- TEMP = AP(JK)
- AP(JK) = AP(KSJ)
- AP(KSJ) = TEMP
- KSJ = KSJ - (J - 1)
- 230 CONTINUE
- IF (KSTEP .EQ. 1) GO TO 240
- KSKP1 = IKP1 + KS
- TEMP = AP(KSKP1)
- AP(KSKP1) = AP(KKP1)
- AP(KKP1) = TEMP
- 240 CONTINUE
- 250 CONTINUE
- IK = IK + K
- IF (KSTEP .EQ. 2) IK = IK + K + 1
- K = K + KSTEP
- GO TO 150
- 260 CONTINUE
- 270 CONTINUE
- RETURN
- END