home *** CD-ROM | disk | FTP | other *** search
- SUBROUTINE SGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z)
- INTEGER LDA,N,ML,MU,IPVT(1)
- REAL ABD(LDA,1),Z(1)
- REAL RCOND
- C
- C SGBCO FACTORS A REAL BAND MATRIX BY GAUSSIAN
- C ELIMINATION AND ESTIMATES THE CONDITION OF THE MATRIX.
- C
- C IF RCOND IS NOT NEEDED, SGBFA IS SLIGHTLY FASTER.
- C TO SOLVE A*X = B , FOLLOW SGBCO BY SGBSL.
- C TO COMPUTE INVERSE(A)*C , FOLLOW SGBCO BY SGBSL.
- C TO COMPUTE DETERMINANT(A) , FOLLOW SGBCO BY SGBDI.
- C
- C ON ENTRY
- C
- C ABD REAL(LDA, N)
- C CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS
- C OF THE MATRIX ARE STORED IN THE COLUMNS OF ABD AND
- C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS
- C ML+1 THROUGH 2*ML+MU+1 OF ABD .
- C SEE THE COMMENTS BELOW FOR DETAILS.
- C
- C LDA INTEGER
- C THE LEADING DIMENSION OF THE ARRAY ABD .
- C LDA MUST BE .GE. 2*ML + MU + 1 .
- C
- C N INTEGER
- C THE ORDER OF THE ORIGINAL MATRIX.
- C
- C ML INTEGER
- C NUMBER OF DIAGONALS BELOW THE MAIN DIAGONAL.
- C 0 .LE. ML .LT. N .
- C
- C MU INTEGER
- C NUMBER OF DIAGONALS ABOVE THE MAIN DIAGONAL.
- C 0 .LE. MU .LT. N .
- C MORE EFFICIENT IF ML .LE. MU .
- C
- C ON RETURN
- C
- C ABD AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND
- C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT.
- C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
- C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
- C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
- C
- C IPVT INTEGER(N)
- C AN INTEGER VECTOR OF PIVOT INDICES.
- C
- C RCOND REAL
- C AN ESTIMATE OF THE RECIPROCAL CONDITION OF A .
- C FOR THE SYSTEM A*X = B , RELATIVE PERTURBATIONS
- C IN A AND B OF SIZE EPSILON MAY CAUSE
- C RELATIVE PERTURBATIONS IN X OF SIZE EPSILON/RCOND .
- C IF RCOND IS SO SMALL THAT THE LOGICAL EXPRESSION
- C 1.0 + RCOND .EQ. 1.0
- C IS TRUE, THEN A MAY BE SINGULAR TO WORKING
- C PRECISION. IN PARTICULAR, RCOND IS ZERO IF
- C EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
- C UNDERFLOWS.
- C
- C Z REAL(N)
- C A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
- C IF A IS CLOSE TO A SINGULAR MATRIX, THEN Z IS
- C AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C BAND STORAGE
- C
- C IF A IS A BAND MATRIX, THE FOLLOWING PROGRAM SEGMENT
- C WILL SET UP THE INPUT.
- C
- C ML = (BAND WIDTH BELOW THE DIAGONAL)
- C MU = (BAND WIDTH ABOVE THE DIAGONAL)
- C M = ML + MU + 1
- C DO 20 J = 1, N
- C I1 = MAX0(1, J-MU)
- C I2 = MIN0(N, J+ML)
- C DO 10 I = I1, I2
- C K = I - J + M
- C ABD(K,J) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C THIS USES ROWS ML+1 THROUGH 2*ML+MU+1 OF ABD .
- C IN ADDITION, THE FIRST ML ROWS IN ABD ARE USED FOR
- C ELEMENTS GENERATED DURING THE TRIANGULARIZATION.
- C THE TOTAL NUMBER OF ROWS NEEDED IN ABD IS 2*ML+MU+1 .
- C THE ML+MU BY ML+MU UPPER LEFT TRIANGLE AND THE
- C ML BY ML LOWER RIGHT TRIANGLE ARE NOT REFERENCED.
- C
- C EXAMPLE.. IF THE ORIGINAL MATRIX IS
- C
- C 11 12 13 0 0 0
- C 21 22 23 24 0 0
- C 0 32 33 34 35 0
- C 0 0 43 44 45 46
- C 0 0 0 54 55 56
- C 0 0 0 0 65 66
- C
- C THEN N = 6, ML = 1, MU = 2, LDA .GE. 5 AND ABD SHOULD CONTAIN
- C
- C * * * + + + , * = NOT USED
- C * * 13 24 35 46 , + = USED FOR PIVOTING
- C * 12 23 34 45 56
- C 11 22 33 44 55 66
- C 21 32 43 54 65 *
- C
- C LINPACK. THIS VERSION DATED 08/14/78 .
- C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
- C
- C SUBROUTINES AND FUNCTIONS
- C
- C LINPACK SGBFA
- C BLAS SAXPY,SDOT,SSCAL,SASUM
- C FORTRAN ABS,AMAX1,MAX0,MIN0,SIGN
- C
- C INTERNAL VARIABLES
- C
- REAL SDOT,EK,T,WK,WKM
- REAL ANORM,S,SASUM,SM,YNORM
- INTEGER IS,INFO,J,JU,K,KB,KP1,L,LA,LM,LZ,M,MM
- C
- C
- C COMPUTE 1-NORM OF A
- C
- ANORM = 0.0E0
- L = ML + 1
- IS = L + MU
- DO 10 J = 1, N
- ANORM = AMAX1(ANORM,SASUM(L,ABD(IS,J),1))
- IF (IS .GT. ML + 1) IS = IS - 1
- IF (J .LE. MU) L = L + 1
- IF (J .GE. N - ML) L = L - 1
- 10 CONTINUE
- C
- C FACTOR
- C
- CALL SGBFA(ABD,LDA,N,ML,MU,IPVT,INFO)
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND TRANS(A)*Y = E .
- C TRANS(A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
- C CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
- C TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
- C OVERFLOW.
- C
- C SOLVE TRANS(U)*W = E
- C
- EK = 1.0E0
- DO 20 J = 1, N
- Z(J) = 0.0E0
- 20 CONTINUE
- M = ML + MU + 1
- JU = 0
- DO 100 K = 1, N
- IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,-Z(K))
- IF (ABS(EK-Z(K)) .LE. ABS(ABD(M,K))) GO TO 30
- S = ABS(ABD(M,K))/ABS(EK-Z(K))
- CALL SSCAL(N,S,Z,1)
- EK = S*EK
- 30 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = ABS(WK)
- SM = ABS(WKM)
- IF (ABD(M,K) .EQ. 0.0E0) GO TO 40
- WK = WK/ABD(M,K)
- WKM = WKM/ABD(M,K)
- GO TO 50
- 40 CONTINUE
- WK = 1.0E0
- WKM = 1.0E0
- 50 CONTINUE
- KP1 = K + 1
- JU = MIN0(MAX0(JU,MU+IPVT(K)),N)
- MM = M
- IF (KP1 .GT. JU) GO TO 90
- DO 60 J = KP1, JU
- MM = MM - 1
- SM = SM + ABS(Z(J)+WKM*ABD(MM,J))
- Z(J) = Z(J) + WK*ABD(MM,J)
- S = S + ABS(Z(J))
- 60 CONTINUE
- IF (S .GE. SM) GO TO 80
- T = WKM - WK
- WK = WKM
- MM = M
- DO 70 J = KP1, JU
- MM = MM - 1
- Z(J) = Z(J) + T*ABD(MM,J)
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- Z(K) = WK
- 100 CONTINUE
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- C
- C SOLVE TRANS(L)*Y = W
- C
- DO 120 KB = 1, N
- K = N + 1 - KB
- LM = MIN0(ML,N-K)
- IF (K .LT. N) Z(K) = Z(K) + SDOT(LM,ABD(M+1,K),1,Z(K+1),1)
- IF (ABS(Z(K)) .LE. 1.0E0) GO TO 110
- S = 1.0E0/ABS(Z(K))
- CALL SSCAL(N,S,Z,1)
- 110 CONTINUE
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- 120 CONTINUE
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- C
- YNORM = 1.0E0
- C
- C SOLVE L*V = Y
- C
- DO 140 K = 1, N
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- LM = MIN0(ML,N-K)
- IF (K .LT. N) CALL SAXPY(LM,T,ABD(M+1,K),1,Z(K+1),1)
- IF (ABS(Z(K)) .LE. 1.0E0) GO TO 130
- S = 1.0E0/ABS(Z(K))
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 130 CONTINUE
- 140 CONTINUE
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE U*Z = W
- C
- DO 160 KB = 1, N
- K = N + 1 - KB
- IF (ABS(Z(K)) .LE. ABS(ABD(M,K))) GO TO 150
- S = ABS(ABD(M,K))/ABS(Z(K))
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 150 CONTINUE
- IF (ABD(M,K) .NE. 0.0E0) Z(K) = Z(K)/ABD(M,K)
- IF (ABD(M,K) .EQ. 0.0E0) Z(K) = 1.0E0
- LM = MIN0(K,M) - 1
- LA = M - LM
- LZ = K - LM
- T = -Z(K)
- CALL SAXPY(LM,T,ABD(LA,K),1,Z(LZ),1)
- 160 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0E0/SASUM(N,Z,1)
- CALL SSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
- RETURN
- END