home *** CD-ROM | disk | FTP | other *** search
- 250
- à 7.4ïUsing the Pythagorean Theorem.
- äïPlease find the square root of the following numbers.
- âS
-
- #êëí─êêèí──êêïí──
- #êëá9ï=ï3êè á25ï=ï5êèá12ï≈ï3.46
- êêêêêêê (rounded to the
- êêêêêêêïnearest hundredth)
- éS
- To find the square root of "9", you should ask the question,
- "What number times itself equals nine?"ïThe answer to this question
- #is "3".ïSo the square root of "9" is "3".ïThe radical symbol, (√),ïí─
- #is used to denote the square root of whatever number is inside. Thus, á9
- = 3.
-
- To find the square root of "25", you should ask what number times
- itself will equal "25".ïThus, the square root of "25" is "5".
-
- The only numbers that have exact square roots are numbers that are in
- the square number sequence.ïThis sequence is given in the following
- list.ê1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144,...
-
- Also, combinations of ç numbers like, 4/9, 9/64, and .04 have exact
- square roots.ïAll other numbers such as '12' do not have exact square
- roots.ïThe best you can do to find the square root of 12 is to use
- #your built-in calculator to find that,ïí──
- #êêêêêëá12 ≈ 3.46ëTo use the
- calculator, just press "L", then press "12", and finally press the "√"
- key.
-
- It should be noted that the square root of nine actually has two square
- roots.ïThey are 3 and -3; however, you should agree to only take the
- positive square root for this and all other square root problems.
- # 1êêêëí──
- #êêêêïFind á49
-
-
- èA)ï8êê B)ï7êë C)ï12êë D) å
- ü
- #êêêêèí──
- #êêêêèá49 = 7
- Ç B
- # 2êêêëí───
- #êêêêïFind á144
-
-
- èA)ï9êê B)ï11êëC)ï12êë D) å
- ü
- #êêêêïí───
- #êêêêïá144 = 12
- Ç C
- # 3êêêëí──
- #êêêêïFind á81
-
-
- èA)ï11êêB)ï9êë C)ï6êêD) å
- ü
- #êêêêèí──
- #êêêêèá81 = 9
- Ç B
- # 4êêêëí──
- #êêêêïFind á64
-
-
- èA)ï8êêB)ï22êëC)ï9êêD) å
- ü
- #êêêêèí──
- #êêêêèá64 = 8
- Ç A
- # 5êêêè ┌───
- #êêêê Find │ ╪╤
- #êêêêë á 16
-
- #èA)ï╦êê B)ï╩êë C)ï╔êêD) å
- ê4êêë3êêè2
- #üêêêë í──
- #êêêêë│╪╤è╦
- #êêêêëá16 ╫ 4
- Ç A
- # 6êêêëí───
- #êêêêïFind á.09
-
-
- èA)ï3.0êë B)ï.03êè C)ï.3êë D) å
- ü
- #êêêêïí───
- #êêêêïá.09 = .3
- Ç C
- # 7êêêëí───
- #êêêêïFind á400
-
-
- èA)ï36êêB)ï20êëC)ï40êë D) å
- ü
- #êêêêïí───
- #êêêêïá400 = 20
- Ç B
- # 8êêêè í───
- #êêêê Find á169
-
-
- èA)ï13êêB)ï14êëC)ï15êë D) å
- ü
- #êêêêïí───
- #êêêêïá169 = 13
- Ç A
- # 9ëUse yourêëí──
- #êêcalculator to findïá18.èRound to the nearest hundredth.
-
-
- èA)ï4.16êëB)ï3.98êèC)ï4.24êè D) å
- ü
- #êêêêïí──
- #êêêêïá18 ≈ 4.24
- Ç C
- # 10è Use yourêëí──
- #êêcalculator to findïá45.èRound to the nearest hundredth.
-
-
- èA)ï6.71êëB)ï9.23êèC)ï6.45êè D) å
- ü
- #êêêêïí──
- #êêêêïá45 ≈ï6.71
- Ç A
- äïPlease use your calculator and the Pythagorean Theorem
- êêto find the unknown side of the following triangles.
- âêê (Hypotenuse)² = 6² + 8²
- #êêêêêèí───────ëí───
- #êêêêê = á36 + 64è= á100
- êêêêê = 10 ft.
-
- êêêThus the hypotenuse is 10 ft.
- @fig401.bmp,25,118
- éSThe Pythagorean Theorem states that the square
- of the hypotenuse (the long side) of a Right Triangle
- is equal to the sum of the squares of the legs
- (short sides).ï(hypotenuse)² = (leg1)² + (leg2)²
-
- êIn order to find the length of the unknown
- side of the given right triangle, you should
- substitute the given numbers into the Pythagorean
- Theorem formula.ï(hypotenuse)² = (6ft.)² + (8ft.)²
- êêè (hypotenuse)² = 36ft.² + 64ft.²
- #èí─────────────èí──────────────êêêí───────
- #èá(hyponenuse)² = á36ft.² + 64ft.²êhypotenuse = á100ft.²
- êêêThe hypotenuse equals 10 feet.
- @fig402.bmp,400,12
- @fig403.bmp,400,100
- 11è Find the length of the unknown side of the following
- êêêê Right Triangle.
-
- êêêêè A)ï5êêè B) 6.2
-
- êêêêè C)ï4.5êêïD) å
- @fig404.bmp,25,229
- üêêè(Hypotenuse)² = 3² + 4²
-
- #êêêè í──────êêê í──
- #êëhypotenuse = á9 + 16êïhypotenuse = á25
-
- êêêêhypotenuse = 5
- Ç A
- 12è Find the length of the unknown side of the following
- êêêê Right Triangle.
-
- êêêêè A)ï16êêèB) 15
-
- êêêêè C)ï12êêèD) å
- @fig405.bmp,25,229
- üêêè(Hypotenuse)² = 9² + 12²
-
- #êêêè í────────êêë í───
- #êëhypotenuse = á81 + 144êhypotenuse = á225
-
- êêêêhypotenuse = 15
- Ç B
- 13è Find the length of the unknown side of the following
- êêêê Right Triangle.
-
- êêêêè A)ï6êêè B) 9
-
- êêêêè C)ï5êêè D) å
- @fig406.bmp,25,229
- üêêê13² = leg² + 12²
- êêêë 169 = leg² + 144
- êêêë 169 - 144 = leg²
- êêêë 25ï= leg²
- #êêêë í──
- #êêêë á25 = leg
- êêêê 5 = leg
- Ç C
- 14è Find the unknown side rounded to the nearest hundredth.
-
-
- êêêêè A)ï8.12êê B) 7.65
-
- êêêêè C)ï5.66êê D) å
- @fig407.bmp,25,229
- üêêè(Hypotenuse)² = 4² + 4²
-
- #êêêè í───────êêê í──
- #êëhypotenuse = á16 + 16êïhypotenuse = á32
-
- êêêë hypotenuse ≈ 5.66
- Ç C
- 15è Find the unknown side rounded to the nearest hundredth.
-
-
- êêêêè A)ï8.49êê B) 8.96
-
- êêêêè C)ï9.02êê D) å
- @fig408.bmp,25,229
- üêêè(Hypotenuse)² = 6² + 6²
-
- #êêêè í───────êêê í──
- #êëhypotenuse = á36 + 36êïhypotenuse = á72
-
- êêêë hypotenuse ≈ 8.49
- Ç A
- 16êFind the length of the unknown side of the given
- êêêtriangle and round to the nearest hundredth.
-
- êêêêè A)ï15.31 m.êëB)ï17.56 m.
-
- êêêêè C)ï14.83 m.êëD)ïå
- @fig409.bmp,25,229
- üêêê16² = x² + 6²
- êêêë 256 = x² + 36
- êêêë 256 - 36 = x²
- êêêë 220 = x²
- #êêêêí──è í──
- #êêêêá220 = áx²
- êêêë 14.83 ≈ x
- Ç C
- 17êFind the length of the unknown side of the given
- êêêtriangle and round to the nearest hundredth.
-
- êêêêè A)ï13.27 yds.êèB)ï12.58 yds.
-
- êêêêè C)ï14.26 yds.êèD)ïå
- @fig410.bmp,25,229
- üêêêï24² = x² + 20²
- êêêê 576 = x² + 400
- êêêê 576 - 400 = x²
- êêêê 176 = x²
- #êêêêïí──è í──
- #êêêêïá176 = áx²
- êêêê 13.27 ≈ x
- Ç A
-
-