home *** CD-ROM | disk | FTP | other *** search
- 356
- àï2.3ïAdding Fractions.
- äïPlease Add the following Fractions that have the same
- êêdenominators.
- âSê2è3êï2 + 3êï5
- #êè 1)ï─ + ─è =è ─────è =è ─
- êê 7è7êè 7êè 7
-
- êêï5è 7ë1êï5 + 7 + 1êï13êï1
- #êè 2)ï── + ──ï+ ──è =è ─────────è =è ──ïorï1 ──
- êê 12è12è 12êë 12êë12ê 12
- éS To Add the fractions 5/12, 7/12, and 1/12, you should write
- the common denominator down once and then Add the numerators.
- êêê 5è 7è 1êï5 + 7 + 1
- #êêê── + ── + ──è =è ─────────
- êêê12è12è12êë12
-
- At this point, Adding the Whole Numbers on top is the same as in
- Chapter 1.êêï5 + 7 + 1êï13
- #êêêë─────────è =è ──
- êêêê 12êë 12
-
- The answer can be left in this form or changed to the mixed number,
- êêêêê 1
- #êêêêë1 ──.
- êêêêê12
- 1êêêè2ë1
- #êêêè Addë─ï+ï─
- êêêêë5ë5
-
- êè 3êêï3
- #ë A)ï──êëB)ï─êë C)ï5êë D)ïå
- êè10êêï5
- ü
-
- êêê2ë1êï2 + 1êï3
- #êêê─ï+ï─è =è ─────è =è ─
- êêê5ë5êè 5êè 5
- Ç B
- 2êêêè7ë11
- #êêêè Addë─ï+ï──
- êêêêë3ë 3
-
- êè13êêï17
- #ë A)ï──êëB)ï──êëC)ï6êë D)ïå
- êè 3êêè3
- ü
-
- êê 7ë11êï7 + 11êï18
- #êê ─ï+ï──è =è ──────è =è ──è =è 6
- êê 3ë 3êë3êë3
- Ç C
- 3êêê 5ë3ë1
- #êêêïAddë─ï+ï─ï+ï─ .
- êêêêè8ë8ë8
-
- êè9ê1êï7êêè11ë 3
- #ë A)ï─ïor 1 ─ëB)ï─êë C)ï── or 1 ─ëD)ïå
- êè8ê8êï8êêè 8ë 8
- ü
-
- êë5ë3ë1êï5 + 3 + 1êï9ê 1
- #êë─ï+ï─ï+ï─è =è ─────────è =è ─ïorï1 ─
- êë8ë8ë8êë 8êë 8ê 8
- Ç A
- 4êêê 3ë 9ë11
- #êêê Addë──ï+ï──ï+ï── .
- êêêêï16ë16ë16
-
- êè17êêï23
- #ë A)ï──êëB)ï──êëC)ï2êë D)ïå
- êè16êêï16
- ü
-
- êè3ë 9ë11êï3 + 9 + 11êï23êï7
- #êï──ï+ï──ï+ï──è =è ──────────è =è ──ïorï1 ──
- êï16ë16ë16êë 16êë 16ê 16
- Ç B
- 5êêêè4ë5ë9
- #êêêè Addë─ï+ï─ï+ï─ .
- êêêêë7ë7ë7
-
- ê 9ë 1êè23ë 2êè18ë 4
- #è A)ï─ or 1 ─ë B)ï── or 3 ─ë C)ï── or 2 ─ë D)ïå
- ê 7ë 7êè 7ë 7êè 7ë 7
- ü
-
- êè4ë5ë9êï4 + 5 + 9êï18ê 4
- #êè─ï+ï─ï+ï─è =è ─────────è =è ──ïorï2 ─
- êè7ë7ë7êë 7êê7ê 7
- Ç C
- äïPlease Add the following Fractions that have unlike
- êêdenominators.
- âèAddè 1ë5êè1ë 5êè1ë 5è2
- #êêï──ï+ï─è =è ───ï+ï─è =è ───ï+ï─ ∙ ─è=
- êêï14ë7êï2∙7ë7êï2∙7ë7è2
-
- êêê 1ë10êï1 + 10êï11
- #êêê──ï+ï──è =è ──────è =è ──
- êêê14ë14êè 14êè 14
- éS To Add the fractions,ï1/14ïandï5/7 , it is first necessary
- to express the denominators in prime factored form like we did in
- Section 1.7 of Chapter 1.
- êêêè1ë5êè1ë 5
- #êêêï──ï+ï─è =è ───ï+ï─
- êêêï14ë7êï2∙7ë7
-
- At this point you can see that the second fraction is missing a factor
- of "2" in its denominator.ïIt is necessary to multiply both the top
- and the bottom of this fraction by "2".
- êêê1ë 5êè1ë 5è2
- #êêë ───ï+ï─è =è ───ï+ï─ ∙ ─
- êêë 2∙7ë7êï2∙7ë7è2
-
- Now, both denominators have all the same factors and you can multiply
- them out.êë1ë 5è2êè1ë10
- #êêë ───ï+ï─ ∙ ─è =è ──ï+ï──
- êêë 2∙7ë7è2êï14ë14
-
- Since the two fractions have the same denominators, you can write the
- denominator down once and add the numerators like we did in the earlier
- problems.êë 1ë10êï1 + 10êï11
- #êêê──ï+ï──è =è ──────è =è ──
- êêê14ë14êè 14êè 14
-
- Thus, the sum ofï1/14ïandï5/7ïisï11/14.
- 6êêêë 2ë1
- #êêêêAddë─ï+ï─
- êêêêê 3ë6
-
- êè3êêè5êêè1
- #ë A)ï─êë B)ï─êë C)ï─êë D)ïå
- êè9êêè6êêè3
- üë 2ë1êï2ë 1êè2è2ë 1
- #êë─ï+ï─è =è ─ï+ï───è =è ─ ∙ ─ï+ï───è=
- êë3ë6êï3ë2∙3êï2è3ë2∙3
-
- êêê4ë1êï4 + 1êï5
- #êêê─ï+ï─è =è ─────è =è ─
- êêê6ë6êè 6êè 6
- Ç B
- 7êêêë4ë 2
- #êêêë Addë─ï+ï──
- êêêêê9ë15
-
- êè26êêè6êêï1
- #ë A)ï──êëB)ï──êëC)ï─êë D)ïå
- êè45êêï24êêï4
- üë 4ë 2êè4ê2êè5è 4ë 3è 2
- #êë─ï+ï──è =è ───ï+ï───è =è ─ ∙ ───ï+ï─ ∙ ───è=
- êë9ë15êï3∙3ë3∙5êï5è3∙3ë3è3∙5
-
- êêë 20ë 6êï20 + 6êï26
- #êêë ──ï+ï──è =è ──────è =è ──
- êêë 45ë45êè 45êè 45
- Ç A
- 8êêêë3ë 4
- #êêêëAddë──ï+ï──
- êêêêë 40ë25
-
- êè 7êêè7êêè47
- #ë A)ï──êëB)ï──êëC)ï───êè D)ïå
- êè60êêï65êêï200
- üêê 3ë 4êë3êï4
- #êêë ──ï+ï──è =è ───────ï+ï───ë=
- êêë 40ë25êï2∙2∙2∙5ë5∙5
-
- è3ë 5ë 4è 2∙2∙2êè15ë 32êï15 + 32ë 47
- #─────── ∙ ─ï+ï─── ∙ ─────è =è ───ï+ï───è =è ───────ï=ï───
- 2∙2∙2∙5è5ë5∙5è2∙2∙2êï200ë200êè 200ê200
- Ç C
- 9êêêè 1ë 5
- #êêêëAddë─ï+ï──
- êêêêë 3ë19
-
- êè 6êêï34êêï2
- #ë A)ï──êëB)ï──êëC)ï─êë D)ïå
- êè21êêï57êêï7
- üêê 1ë 5êï19è1ë 5è3
- #êêê─ï+ï──è =è ── ∙ ─ï+ï── ∙ ─è =
- êêê3ë19êï19è3ë19è3
-
- êêë 19ë15êï19 + 15êï34
- #êêë ──ï+ï──è =è ───────è =è ──
- êêë 57ë57êë57êè 57
- Ç B
- 10êêêè 1ë1
- #êêêë Addë─ï+ï─
- êêêêê3ë4
-
- êè 7êêï2êêè7
- #ë A)ï──êëB)ï─êë C)ï─êë D)ïå
- êè12êêï7êêè8
- üêê 1ë1êï4è1ë1è3
- #êêê─ï+ï─è =è ─ ∙ ─ï+ï─ ∙ ─è =
- êêê3ë4êï4è3ë4è3
-
- êêê 4ë 3êï4 + 3êè7
- #êêê──ï+ï──è =è ─────è =è ──
- êêê12ë12êè 12êè12
- Ç A
- 11êêêè 3ë5
- #êêêë Addë─ï+ï─
- êêêêê7ë8
-
- êè 8êêï9êêè59ê3
- #ë A)ï──êëB)ï─êë C)ï── or 1 ──è D)ïå
- êè15êêï8êêè56ë 56
- üêê 3ë5êï3ê5
- #êêê─ï+ï─è =è ─ï+ï─────è =
- êêê7ë8êï7ë2∙2∙2
-
- ï2∙2∙2è3ê5ë7êï24ë35è 24 + 35ê59ê3
- #ï───── ∙ ─ï+ï───── ∙ -è =è ──ï+ï──è ───────è=è── or 1 ──
- ï2∙2∙2è7ë2∙2∙2è7êï56ë56ê56êï56ë 56
- Ç C
- 12êêê 1ë5ë 5
- #êêêèAddë─ï+ï─ï+ï──
- êêêêè 3ë6ë12
-
- êè19ê7ê 11êêï1
- #ë A)ï── or 1 ──è B)ï──êëC)ï─êë D)ïå
- êè12ë 12ê 21êêï2
- üêï1ë5ë 5êï1ê5ê5
- #êê ─ï+ï─ï+ï──è =è ─ï+ï───ï+ï─────è=
- êê 3ë6ë12êï3ë2∙3ë2∙2∙3
-
- 2∙2è1ë2è 5ê 5êë4ë10ë 5ê19ê7
- #─── ∙ ─ï+ï─ ∙ ───ï+ï─────è =è ──ï+ï──ï+ï──è=è── or 1 ──
- 2∙2è3ë2è2∙3ë2∙2∙3êï12ë12ë12ê12ë 12
- Ç A
- 13ë 2êêêï13êêë3
- #êê ───êêèA)ï────êë B)ï───
- êêï3êêêï15êêë8
- ëAddê 1
- #êë+ï───êêê 3
- #êêï5êêè C)ï───êêD)ïå
- #êë ───────êêë 5
- üïIt is possible to Add fractions in a column by first finding the
- least common multiple of the two denominators like we did in Section 2.1
- of this chapter.ïThe least common multiple of 3 and 5 is "15".ïWe can
- begin to change the original problem by finding the missing numerators
- like we did is Section 2.2 of this chapter.
- #êêë╪╩╪êè ╪╪╪╪êè ╪╔╚╪
- #êêë 3ë╫ê15ë ╫ë 15
-
- #êêë╪╔╪êè ╪╪╪╪êè ╪╪╦╪
- #êê ╙ ╪╪╪═╪╪╪ï╫è╙ ╪╪╔═╪╪è ╫è╙╪╪╔═╪╪
-
- #êêêêêêë ╪╔╦╪
- êêêêêêê15
- Once the missing numerators are found, the two fractions are added to
- give a sum ofï13/15.
- Ç A
- 14ë 2êêêè5êêë1
- #êê ───êêèA)ï────êë B)ï───
- êêï7êêêï14êêë2
- ëAddê 3
- #êë+ï───êêêï9
- #êê 14êêè C)ï────êë D)ïå
- #êë────────êêë 14
- #üêë ╪╩╪êè ╪╪╪╪êè ╪╪╠╪
- #êêë 7ë╫ê14ë ╫ë 14
- #êêë╪╦╪êè ╪╪╪╪êè ╪╪╦╪
- #êê ╙ ╪╪╔╠╪╪╪ï╫è╙ ╪╪╔╠╪╪è ╫è╙╪╪╔╠╪╪
-
- #êêêêêêë ╪╪╧╪êï╪╔╪
- #êêêêêêê14ë╫ë2
- Ç B
- 15ë 5êêêï17êêë15
- #êê ───êêèA)ï────êë B)ï────
- êêï6êêêï18êêë18
- ëAddê 2
- #êë+ï───êêê 19ê 1
- #êêï9êêè C)ï──── or 1 ──ëD)ïå
- #êë────────êêë 18ê18
- #üêêè ╪═╪êè ╪╔═╪
- #êêêè 6ë╫ê18
- #êêêè╪╩╪êè ╪╪╠╪
- #êêë ╙ ╪╪╪╤╪╪╪ï╫è╙ ╪╪╔╨╪╪
- êêêêêêêï1
- #êêêêêè╪╔╤╪ë 1 ──
- êêêêêè 18èorè 18
- Ç C
- 16ë 4êêêï41êêë11
- #êê ───êêèA)ï────êë B)ï────
- êêï9êêêï45êêë24
- ëAddê 7
- #êë+ ────êêê 12
- #êê 15êêè C)ï────êë D)ïå
- #êë────────êêë 32
- #üêêê ╪╠╪êè ╪╩╚╪
- #êêêê 9ë╫ê45
- #êêêê╪╧╪êè ╪╩╔╪
- #êêêè╙ ╪╪╔═╪╪╪ï╫è╙ ╪╪╠═╪╪
-
- #êêêêêê╪╠╔╪
- êêêêêê 45
- Ç A
- äïPlease add the following Mixed Numbers.
- â
- êAdd
- êêï1ê1êë4ê 3êë7
- #êê2 ─ï+ï5 ─è =è 2 ──ï+ï5 ──è =è 7 ──
- êêï3ê4êè 12ê12êè 12
- éS To Add the Mixed Numbers,ï2 1/3ïandï5 1/4 , it is first
- necessary to changeï1/3ïandï1/4ïtoï4/12ïandï3/12ïby finding the
- least common denominator, 12, and finding the missing numerators.ïThen
- it is possible to add the Whole Number parts and the fractional parts.
- êêêê 1êê4
- #êêêë 2 ─ë=ë2 ──
- êêêê 3êë 12
- êêêê 1êê3
- #êêêë 5 ─ë=ë5 ──
- #êêêï╙ë4êë 12
- #êêêè──────────è ───────────
- êêêêêêï7
- #êêêêêë 7 ──
- êêêêêê 12
- 17ê 1êêêê2êê 12
- #êê 4ï─êêë A)ï12 ──ê B)ï10 ──
- ë Addêï3êêêë 15êêï5
- êêè 4
- #êê 7 ──êêêë 3
- #êêè15êêë C)ï11 ─êïD)ïå
- #êë ─────────êêêè5
- ü
- êAdd
- ê 1ê 4êë5ê 4êë 9êè3
- #ë 4 ─ï+ï7 ──è =è 4 ──ï+ï7 ──è =è 11 ──è=è11 ─
- ê 3ê15êè 15ê15êë15êè5
- Ç C
- 18ê 3êêêë 12êê 33
- #êê 7ï─êêë A)ï12 ──ê B)ï12 ──
- ë Addêï8êêêë 28êê 40
- êêè 9
- #êê 5 ──êêêë 3
- #êêè20êêë C)ï12 ─êïD)ïå
- #êë ─────────êêêè7
- ü
- èAddê3ê 9êè 15ê18êë33
- #êè 7 ─ï+ï5 ──è =è 7 ──ï+ï5 ──è =è 12 ──
- êë 8ê20êè 40ê40êë40
- Ç B
- 19ê 2êêêë 13êêï9
- #êê 6ï─êêë A)ï21 ──ê B)ï22 ──
- ë Addêï7êêêë 35êê 35
- êêè 3
- #êê15 ──êêêë 21
- #êêè35êêë C)ï23 ──ê D)ïå
- #êë ─────────êêêè35
- ü
- è Addë 2êï3êè 10êï3êë13
- #êè 6 ─ï+ï15 ──è =è 6 ──ï+ï15 ──è =è 21 ──
- êë 7ê 35êè 35ê 35êë35
- Ç A
-
-