home *** CD-ROM | disk | FTP | other *** search
- 346
- àï1.6ïExponents and Order of Operations.
- äïPlease write the following products of Whole Numbers
- êêusing exponents.
- âS
-
- #êêï1)è 2 ∙ 2 ∙ 2è=è2Ä
-
-
- #êêï2)è 3 ∙ 3 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4è=è3ì ∙ 4É
- éS In order to write the product, 3 ∙ 3 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4,
- using exponents, it is necessary to count the number of times 3 repeats
- as a factor and the number of times 4 repeats as a factor.ïSince the 3
- occurs twice and the 4 occurs five times, the product can be written
- #asï3ì ∙ 4É.ïIn this expression "3" is called a "base" and "2" is
- called an exponent.ïSimilarly 4 is a base and 5 an exponent.
- #êêï3 ∙ 3 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4è=è3ì ∙ 4É
- 1
- êëWrite the product, 5 ∙ 5 ∙ 5, using an exponent.
-
-
- #ë A)ï15Äêè B)ï3ÉêëC)ï5ÄêëD)ïå
- ü
-
-
- #êêêë5 ∙ 5 ∙ 5è=è5Ä
- Ç C
- 2
- êè Write the product, 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 , using an exponent.
-
-
- #ë A)ï4æêëB)ï6 ∙ 4êïC)ï16Åêè D)ïå
- ü
-
-
- #êêê4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4è=è4æ
- Ç A
- 3
- êWrite the product, 3 ∙ 3 ∙ 3 ∙ 5 ∙ 5 ∙ 5 ∙ 5, using exponents.
-
-
- #ë A)ï27 ∙ 4ÉêB)ï3Ä ∙ 5ÅêC)ï3Å ∙5Äê D)ïå
- ü
-
-
- #êê 3 ∙ 3 ∙ 3 ∙ 5 ∙ 5 ∙ 5 ∙ 5è=è3Ä ∙ 5Å
- Ç B
- 4
- êWrite the product, 2 ∙ 2 ∙ 5 ∙ 5 ∙ 5 ∙ 6 ∙ 6 ∙ 6 ∙ 6, using
- êexponents.
-
- #èA)ï10Ä ∙ 6ÅêB)ï2ì ∙ 5Ä ∙ 6Åë C)ï(2 ∙ 5 ∙ 6) öè D) å
- ü
-
-
- #êë2 ∙ 2 ∙ 5 ∙ 5 ∙ 5 ∙ 6 ∙ 6 ∙ 6 ∙ 6è=è2ì ∙ 5Ä ∙ 6Å
- Ç B
- 5
- ë Write the product, 6 ∙ 10 ∙ 10 ∙ 10 ∙ 10 ∙ 10 ∙ 10 ∙ 10, using
- ë exponents.
-
- #èA)ï6îò ∙ 7ê B)ï6 ∙ 7 ∙ 10ë C)ï6 ∙ 10ÆêïD) å
- ü
-
-
- #êè6 ∙ 10 ∙ 10 ∙ 10 ∙ 10 ∙ 10 ∙ 10 ∙ 10è=è6 ∙ 10Æ
- Ç C
- äïPlease simplify the following exponential expressions.
- âS
- #êêêï4Äè=è4 ∙ 4 ∙ 4è=è64
-
-
- #êêï2Ä ∙ 5ìè=è2 ∙ 2 ∙ 2 ∙ 5 ∙ 5è=è200
- éS
-
- #ë In order to simplify the expression, 2Ä ∙ 5ì, it is
- necessary to write the "2" as a factor three times and the "5" as a
- factor twice.
- #êêë2Ä ∙ 5ìè=è2 ∙ 2 ∙ 2 ∙ 5 ∙ 5
-
- Next, you should multiply the factors in the product, 2∙2∙2∙5∙5, and
- get the answer 200.
- #êêï2Ä ∙ 5ìè=è2 ∙ 2 ∙ 2 ∙ 5 ∙ 5è=è200
- 6
- #êêêêSimplifyè 3Å
-
-
- êA)ï81êëB)ï12êè C)ï24êëD)ïå
- ü
-
-
- #êêê3Åè=è3 ∙ 3 ∙ 3 ∙ 3è=è81
- Ç A
- 7
- #êêêëSimplifyè 2Ä ∙ 4ì.
-
-
- êA)ï120êè B)ï64êè C)ï128êè D)ïå
- ü
-
-
- #êêè2Ä ∙ 4ìè=è2 ∙ 2 ∙ 2 ∙ 4 ∙4è=è128
- Ç C
- 8
- #êêêëSimplifyè 3Å ∙ 5ì.
-
-
- êA)ï250êè B)ï2,025ê C)ï120êè D)ïå
- ü
-
-
- #êë 3Å ∙ 5ìè=è3 ∙ 3 ∙ 3 ∙ 3 ∙ 5 ∙ 5è=è2,025
- Ç B
- 9
- #êêêèSimplifyè 2Å ∙ 3ì ∙ 10.
-
-
- êA)ï480êè B)ï1,440ê C)ï236êè D)ïå
- ü
-
-
- #ê 2Å ∙ 3ì ∙ 10è=è2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 10è=è1,440
- Ç B
- 10
- #êêêèSimplifyè 7 ∙ 2Ä ∙ 10ì.
-
-
- êA)ï5,600êïB)ï4,200ê C)ï286êè D)ïå
- ü
-
-
- #êï7 ∙ 2Ä ∙ 10ìè=è7 ∙ 2 ∙ 2 ∙ 2 ∙ 10 ∙ 10è=è5,600
- Ç A
- 11
- #êêêïSimplifyè 5Ä ∙ 2ì ∙ 10Å.
-
-
- êA)ï62,426ê B)ï4,280ê C)ï5,000,000ëD)ïå
- ü
-
-
- #5Ä ∙ 2ì ∙ 10Åè=è5 ∙ 5 ∙ 5 ∙ 2 ∙ 2 ∙ 10 ∙ 10 ∙ 10 ∙ 10ï=ï5,000,000
- Ç C
- 12
- #êêêïSimplifyè 2Ä ∙ 3Å ∙ 4É.
-
-
- êA)ï663,552êB)ï4,622ê C)ï384êè D)ïå
- ü
-
-
- #2Ä ∙ 3Å ∙ 4Éï=ï2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 3 ∙ 3 ∙ 4 ∙ 4 ∙ 4 ∙4 ∙4ï=ï745,472
- Ç A
- ä Please simplify the following expressions using the
- êë correct Order of Operations.
- #âêê 4 ÷ 2 + (6 - 5) + 5 ∙ 3 - 2ì
- êêê 4 ÷ 2 + (6 - 5) + 5 ∙ 3 - 4
- êêê 4 ÷ 2 +è 1è + 5 ∙ 3 - 4
- êêêè2è+è 1è + 5 ∙ 3 - 4
- êêêè2è+è 1è +ï15è- 4
- êêêê3êï+ï15è- 4
- êêêêê 18ê - 4è=è14
- éS
- #è To simplify the expression, 4 ÷ 2 + (6 - 5) + 5 ∙ 3 - 2ì, it
- is necessary to perform operations inside of parençs first.
- #êêêè 4 ÷ 2 + 1 + 5 ∙ 3 - 2ì
-
- The next thing to do is simplify exponents.
- êêêè 4 ÷ 2 + 1 + 5 ∙ 3 - 4
-
- Next, you should perform all of the multiplication and division as they
- occur from left to right.
- êêêê2 + 1 + 5 ∙ 3 - 4
- êêêê2 + 1 + 15 - 4
-
- Finally, you should perform all of the addition and subtraction as they
- occur from left to right.
- êêêêï3 + 15 - 4
- êêêêï18 - 4
- êêêêï14
-
- Thus, the value of the expression is 14.ïIf you simplify this
- expression using the wrong Order of Operations, you will usually get a
- different answer.ïIt is necessary to do things in the following order:
- ê 1)ïSimplify operations in parençs.
- ê 2)ïSimplify exponents.
- ê 3)ïPerform multiplication and division operations first come
- êëfirst serve moving from left to right.
- ê 4)ïPerform addition and subtraction operations first come first
- êëserve moving from left to right.
- 13
- êêêèSimplifyë 4 ÷ 2 ∙ 3
-
- êï2
- #ëA)ï─êë B)ï6êëC)ï12êë D)ïå
- êï3
- ü
- êêêêè4 ÷ 2 ∙ 3
-
- êêêêë2 ∙ 3
-
- êêêêê6
- Ç B
- 14
- êêêèSimplifyë 2 ∙ 12 ÷ 3.
-
-
- ëA)ï8êë B)ï12êè C)ï18êë D)ïå
-
- ü
- êêêêè2 ∙ 12 ÷ 3
-
- êêêêë24 ÷ 3
-
- êêêêê 8
- Ç A
- 15
- êêêè Simplifyë 4 + 2 - 3
-
-
- ëA)ï9êë B)ï5êëC)ï3êêD)ïå
-
- ü
- êêêêè4 + 2 - 3
-
- êêêêë6 - 3
-
- êêêêê3
- Ç C
- 16
- êêêè Simplifyë 12 ÷ 4 + 2.
-
-
- ëA)ï5êë B)ï2êëC)ï14êë D)ïå
-
- ü
- êêêêï12 ÷ 4 + 2
-
- êêêêë3 + 2
-
- êêêêê5
- Ç A
- 17
- êêêèSimplifyë 4 ∙ 3 + 5
-
-
- ëA)ï14êëB)ï32êè C)ï17êë D)ïå
-
- ü
- êêêêè4 ∙ 3 + 5
-
- êêêêë12 + 5
-
- êêêêê17
- Ç C
- 18
- #êêêè Simplifyë 4ì - 8.
-
-
- ëA)ï0êë B)ï8êëC)ï12êë D)ïå
-
- ü
- #êêêêè 4ì - 8
-
- êêêêè 16 - 8
-
- êêêêê8
- Ç B
- 19
- êêêSimplifyë 3 + (4 + 2) ÷ 3.
-
-
- ëA)ï12êëB)ï5êëC)ï8êêD)ïå
-
- ü
- êêêê 3 + (4 + 2) ÷ 3
-
- êêêêè3 + 6 ÷ 3
- êêêêë3 + 2
- êêêêê5
- Ç B
- 20
- êêë Simplifyë 12 ∙ (4 - 2) ÷ 8
-
-
- ëA)ï12êëB)ï24êè C)ï3êêD)ïå
-
- ü
- êêêë 12 ∙ (4 - 2) ÷ 8
-
- êêêêï12 ∙ 2 ÷ 8
- êêêêè 24 ÷ 8
- êêêêê3
- Ç C
- 21
- #êêêSimplifyë 2Ä + 6 ∙ (9 - 7).
-
-
- ëA)ï6êë B)ï20êè C)ï12êë D)ïå
-
- ü
- #êêêê2Ä + 6 ∙ (9 - 7)
- êêêê 8 + 6 ∙ (9 - 7)
- êêêêè 8 + 6 ∙ 2
- êêêêë8 + 12
- êêêêê20
- Ç B
- 22
- êêë Simplifyë 8 + 4 - 2 ∙ 5 ÷ 2.
-
-
- ëA)ï7êë B)ï16êè C)ï24êë D)ïå
-
- ü
- êêêë8 + 4 - 2 ∙ 5 ÷ 2
- êêêê8 + 4 - 10 ÷ 2
- êêêêï8 + 4 - 5
- êêêêè 12 - 5
- êêêêê7
- Ç A
- 23
- êêêSimplifyë 10 - (8 - 4) ÷ 2.
-
-
- ëA)ï8êë B)ï6êëC)ï4êêD)ïå
-
- ü
- êêêê10 - (8 - 4) ÷ 2
- êêêêè10 - 4 ÷ 2
- êêêêë10 - 2
- êêêêê 8
- Ç A
- 24
- #êêëSimplifyë 5 ∙ (9 - 3) - 2ì.
-
-
- ëA)ï24êëB)ï18êè C)ï26êë D)ïå
-
- ü
- #êêêë 5 ∙ (9 - 3) - 2ì
- êêêê5 ∙ (9 - 3) - 4
- êêêêï5 ∙ 6 - 4
- êêêêè 30 - 4
- êêêêê26
- Ç C
-
-
-