home *** CD-ROM | disk | FTP | other *** search
-
- <opts>
- <odest>screen</odest>
- <oname>home</oname>
- <onewl>lf</onewl>
- <cfmt>%x</cfmt>
- <ctype>iterate</ctype>
- <citer>10</citer>
- <call>no</call>
- <cdisp>fmtlist</cdisp>
- <cext>yes</cext>
- <rfmt>\n\N:=\F</rfmt>
- <rall>yes</rall>
- <starg></starg>
- <srpl></srpl>
- <scount>1</scount>
- <sout>yes</sout>
- <nfmt>fixed</nfmt>
- <ndec>3</ndec>
- <nang>degrees</nang></opts>
- <cell>
- <cname>home</cname>
- <text>The emergence of chaotic dynamics from simpler behavior may be observed in this example called the logistic map.
-
- The iterative equation:
- x:=r*x*(1-x)
- exhibits a variety of behaviors, depending upon its initial value, and the value of the parameter r.
-
- To explore the behavior of this equation, set values for r and x, go to cell x, and select Evaluate from the Special menu.
-
- For a value of the parameter r of 0.4, and an initial x value of 0.7, successive values of x approach zero and stay there.
-
- For an r value of 2.4, and initial x value 0f 0.7, successive values of x approach a constant 0.583.
-
- For r=3.0, and an initial x, of 0.5; an extended damped oscillation takes place between between two numbers.
-
- For r=3.5, initial x=0.7; an extended oscillation among four numbers takes place.
-
- For r=3.8, initial x=0.7; a chaotic sequence of numbers is the result.
-
- For more information on the period doubling approach to chaos, see the book:
- Creating Artificial Life, by Edward Rietman; from which this example was taken.
- </text>
- <val>0.525</val></cell>
- <cell>
- <cname>r</cname>
- <val>3.8</val></cell>
- <cell>
- <cname>x</cname>
- <val>0.571</val>
- <form>r*x*(1-x)</form></cell></eof>