home *** CD-ROM | disk | FTP | other *** search
- /* Extended regular expression matching and search library,
- version 0.4.
- (Implements POSIX draft P10003.2/D11.2, except for multibyte characters.)
-
- Copyright (C) 1985, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- #if defined (_AIX) && !defined (REGEX_MALLOC)
- #pragma alloca
- #endif
-
- #define _GNU_SOURCE
-
- /* For interactive testing, compile with -Dtest. Then this becomes
- a self-contained program which reads a pattern, describes how it
- compiles, then reads a string and searches for it. If a command-line
- argument is present, it is taken to be the value for obscure_syntax (in
- decimal). The default is 0 (Emacs-style syntax).
-
- If DEBUG is defined, this prints many voluminous messages about what
- it is doing (if the variable `debug' is nonzero). */
-
-
- /* The `emacs' switch turns on certain matching commands
- that make sense only in Emacs. */
- #ifdef emacs
- #include "config.h"
- #include "lisp.h"
- #include "buffer.h"
- #include "syntax.h"
-
- /* Emacs uses `NULL' as a predicate. */
- #undef NULL
-
- #else /* not emacs */
-
- /* POSIX.1 says that <unistd.h> might need <sys/types.h>. We also need
- it for regex.h. */
- #include <sys/types.h>
-
- #ifdef HAVE_UNISTD_H
- #include <unistd.h>
- #endif
-
- #if defined (USG) || defined (POSIX) || defined (STDC_HEADERS)
- #ifndef BSTRING
- #include <string.h>
- #define bcopy(s,d,n) memcpy ((d), (s), (n))
- #define bcmp(s1,s2,n) memcmp ((s1), (s2), (n))
- #define bzero(s,n) memset ((s), 0, (n))
- #endif /* not BSTRING */
- #endif /* USG or POSIX or STDC_HEADERS */
-
- #ifdef STDC_HEADERS
- #include <stdlib.h>
- #else /* not STDC_HEADERS */
- char *malloc ();
- char *realloc ();
- #endif /* not STDC_HEADERS */
-
- /* If debugging, we use standard I/O. */
- #ifdef DEBUG
- #include <stdio.h>
- #endif
-
- /* Define the syntax stuff for \<, \>, etc. */
-
- /* This must be nonzero for the wordchar and notwordchar pattern
- commands in re_match_2. */
- #ifndef Sword
- #define Sword 1
- #endif
-
- #ifdef SYNTAX_TABLE
-
- extern char *re_syntax_table;
-
- #else /* not SYNTAX_TABLE */
-
- /* How many characters in the character set. */
- #define CHAR_SET_SIZE 256
-
- static char re_syntax_table[CHAR_SET_SIZE];
-
- static void
- init_syntax_once ()
- {
- register int c;
- static int done = 0;
-
- if (done)
- return;
-
- bzero (re_syntax_table, sizeof re_syntax_table);
-
- for (c = 'a'; c <= 'z'; c++)
- re_syntax_table[c] = Sword;
-
- for (c = 'A'; c <= 'Z'; c++)
- re_syntax_table[c] = Sword;
-
- for (c = '0'; c <= '9'; c++)
- re_syntax_table[c] = Sword;
-
- re_syntax_table['_'] = Sword;
-
- done = 1;
- }
-
- #endif /* not SYNTAX_TABLE */
-
- #define SYNTAX(c) re_syntax_table[c]
-
- #endif /* not emacs */
-
-
- /* Get the interface, including the syntax bits. */
- #include "regex.h"
-
-
- /* isalpha(3) etc. are used for the character classes. */
- #include <ctype.h>
- #ifndef isgraph
- #define isgraph(c) (isprint (c) && !isspace (c))
- #endif
- #ifndef isblank
- #define isblank(c) ((c) == ' ' || (c) == '\t')
- #endif
-
- #ifndef NULL
- #define NULL 0
- #endif
-
- #ifndef SIGN_EXTEND_CHAR
- #ifdef __CHAR_UNSIGNED__ /* for, e.g., IBM RT */
- #define SIGN_EXTEND_CHAR(c) (((c)^128) - 128) /* As in Harbison and Steele. */
- #else
- #define SIGN_EXTEND_CHAR /* As nothing. */
- #endif /* not CHAR_UNSIGNED */
- #endif /* not SIGN_EXTEND_CHAR */
-
- /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
- use `alloca' instead of `malloc'. This is because using malloc in
- re_search* or re_match* could cause memory leaks when C-g is used in
- Emacs; also, malloc is slower and causes storage fragmentation. On
- the other hand, malloc is more portable, and easier to debug.
-
- Because we sometimes use alloca, some routines have to be macros,
- not functions---alloca-allocated space disappears at the end of the
- function it is called in. */
- #ifdef REGEX_MALLOC
-
- #define REGEX_ALLOCATE malloc
- #define REGEX_REALLOCATE(source, size) (realloc (source, size))
-
- #else /* not REGEX_MALLOC */
-
- /* Emacs already defines alloca, sometimes. */
- #ifndef alloca
-
- /* Make alloca work the best possible way. */
- #ifdef __GNUC__
- #define alloca __builtin_alloca
- #else /* not __GNUC__ */
- #ifdef sparc
- #include <alloca.h>
- #else /* not __GNUC__ or sparc */
- char *alloca ();
- #endif /* not sparc */
- #endif /* not __GNUC__ */
-
- #endif /* not alloca */
-
- /* Still not REGEX_MALLOC. */
-
- #define REGEX_ALLOCATE alloca
-
- /* Requires a `char *destination' declared. */
- #define REGEX_REALLOCATE(source, size) \
- (destination = (char *) alloca (size), \
- bcopy (source, destination, size), \
- destination)
-
- #endif /* not REGEX_MALLOC */
-
- /* (Re)Allocate N items of type T using malloc, or fail. */
- #define TALLOC(n, t) (t *) malloc ((n) * sizeof (t))
- #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
-
-
- #define BYTEWIDTH 8 /* In bits. */
-
- #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
-
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
-
- /* These are the command codes that appear in compiled regular
- expressions. Some opcodes are followed by argument bytes. A
- command code can specify any interpretation whatsoever for its
- arguments. Zero bytes may appear in the compiled regular expression.
-
- The value of `exactn' is needed in search.c (search_buffer) in Emacs.
- So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
- `exactn' we use here must also be 1. */
-
- typedef enum
- {
- no_op = 0,
-
- /* Followed by one byte giving n, then by n literal bytes. */
- exactn = 1,
-
- /* Matches any (more or less) character. */
- anychar,
-
- /* Matches any one char belonging to specified set. First
- following byte is number of bitmap bytes. Then come bytes
- for a bitmap saying which chars are in. Bits in each byte
- are ordered low-bit-first. A character is in the set if its
- bit is 1. A character too large to have a bit in the map is
- automatically not in the set. */
- charset,
-
- /* Same parameters as charset, but match any character that is
- not one of those specified. */
- charset_not,
-
- /* Start remembering the text that is matched, for storing in a
- register. Followed by one byte with the register number, in
- the range 0 to one less than the pattern buffer's re_nsub
- field. Then followed by one byte with the number of groups
- inner to this one. (This last has to be part of the
- start_memory only because we need it in the on_failure_jump
- of re_match_2.) */
- start_memory,
-
- /* Stop remembering the text that is matched and store it in a
- memory register. Followed by one byte with the register
- number, in the range 0 to one less than `re_nsub' in the
- pattern buffer, and one byte with the number of inner groups,
- just like `start_memory'. (We need the number of inner
- groups here because we don't have any easy way of finding the
- corresponding start_memory when we're at a stop_memory.) */
- stop_memory,
-
- /* Match a duplicate of something remembered. Followed by one
- byte containing the register number. */
- duplicate,
-
- /* Fail unless at beginning of line. */
- begline,
-
- /* Fail unless at end of line. */
- endline,
-
- /* Succeeds if at beginning of buffer (if emacs) or at beginning
- of string to be matched (if not). */
- begbuf,
-
- /* Analogously, for end of buffer/string. */
- endbuf,
-
- /* Followed by two byte relative address to which to jump. */
- no_pop_jump,
-
- /* Same as no_pop_jump, but marks the end of an alternative. */
- jump_past_next_alt,
-
- /* Followed by two-byte relative address of place to resume at
- in case of failure. */
- on_failure_jump,
-
- /* Like on_failure_jump, but pushes a placeholder instead of the
- current string position. */
- on_failure_keep_string_jump,
-
- /* Throw away latest failure point and then jump to following
- two-byte relative address. */
- pop_failure_jump,
-
- /* Change to pop_failure_jump if know won't have to backtrack to
- match; otherwise change to no_pop_jump. This is used to jump
- back to the beginning of a repeat. If what follows this jump
- clearly won't match what the repeat does, such that we can be
- sure that there is no use backtracking out of repetitions
- already matched, then we change it to a pop_failure_jump.
- Followed by two-byte address. */
- maybe_pop_jump,
-
- /* Jump to following two-byte address, and push a dummy failure
- point. This failure point will be thrown away if an attempt
- is made to use it for a failure. A `+' construct makes this
- before the first repeat. Also used as an intermediary kind
- of jump when compiling an alternative. */
- dummy_failure_jump,
-
- /* Used like on_failure_jump except has to succeed n times; The
- two-byte relative address following it is useless until then.
- The address is followed by two more bytes containing n. */
- succeed_n,
-
- /* Similar to no_pop_jump, but jump n times only; also the
- relative address following is in turn followed by yet two
- more bytes containing n. */
- no_pop_jump_n,
-
- /* Set the following relative location (two bytes) to the
- subsequent (two-byte) number. */
- set_number_at,
-
- wordchar, /* Matches any word-constituent character. */
- notwordchar, /* Matches any char that is not a word-constituent. */
-
- wordbeg, /* Succeeds if at word beginning. */
- wordend, /* Succeeds if at word end. */
-
- wordbound, /* Succeeds if at a word boundary. */
- notwordbound /* Succeeds if not at a word boundary. */
-
- #ifdef emacs
- ,before_dot, /* Succeeds if before point. */
- at_dot, /* Succeeds if at point. */
- after_dot, /* Succeeds if after point. */
-
- /* Matches any character whose syntax is specified. Followed by
- a byte which contains a syntax code, e.g., Sword. */
- syntaxspec,
-
- /* Matches any character whose syntax is not that specified. */
- notsyntaxspec
- #endif /* emacs */
- } re_opcode_t;
-
- /* Common operations on the compiled pattern. */
-
- /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
-
- #define STORE_NUMBER(destination, number) \
- do { \
- (destination)[0] = (number) & 0377; \
- (destination)[1] = (number) >> 8; \
- } while (0)
-
-
- /* Same as STORE_NUMBER, except increment DESTINATION to
- the byte after where the number is stored. Therefore, DESTINATION
- must be an lvalue. */
-
- #define STORE_NUMBER_AND_INCR(destination, number) \
- do { \
- STORE_NUMBER (destination, number); \
- (destination) += 2; \
- } while (0)
-
-
- /* Put into DESTINATION a number stored in two contingous bytes starting
- at SOURCE. */
-
- #define EXTRACT_NUMBER(destination, source) \
- do { \
- (destination) = *(source) & 0377; \
- (destination) += SIGN_EXTEND_CHAR (*(const char *)((source) + 1)) << 8;\
- } while (0)
-
- #ifdef DEBUG
- static int
- extract_number (source)
- unsigned char *source;
- {
- int answer = *source & 0377;
- answer += (SIGN_EXTEND_CHAR (*(char *)((source) + 1))) << 8;
-
- return answer;
- }
- #endif
-
-
- /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
- SOURCE must be an lvalue. */
-
- #define EXTRACT_NUMBER_AND_INCR(destination, source) \
- do { \
- EXTRACT_NUMBER (destination, source); \
- (source) += 2; \
- } while (0)
-
- #ifdef DEBUG
- static void
- extract_number_and_incr (destination, source)
- int *destination;
- unsigned char **source;
- {
- *destination = extract_number (*source);
- *source += 2;
- }
- #endif
-
-
- /* Is true if there is a first string and if PTR is pointing anywhere
- inside it or just past the end. */
-
- #define IS_IN_FIRST_STRING(ptr) \
- (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
- #ifdef DEBUG
-
- extern void printchar ();
-
- /* Print a compiled pattern buffer in human-readable form, starting at
- the START pointer into it and ending just before the pointer END. */
-
- static void
- partial_compiled_pattern_printer (pbufp, start, end)
- struct re_pattern_buffer *pbufp;
- unsigned char *start;
- unsigned char *end;
- {
-
- int mcnt, mcnt2;
- unsigned char *p = start;
- unsigned char *pend = end;
-
- if (start == NULL)
- {
- printf ("(null)\n");
- return;
- }
-
- /* This loop loops over pattern commands. */
- while (p < pend)
- {
- switch ((re_opcode_t) *p++)
- {
- case no_op:
- printf ("/no_op");
- break;
-
- case exactn:
- mcnt = *p++;
- printf ("/exactn/%d", mcnt);
- do
- {
- putchar ('/');
- printchar (*p++);
- }
- while (--mcnt);
- break;
-
- case start_memory:
- mcnt = *p++;
- printf ("/start_memory/%d/%d", mcnt, *p++);
- break;
-
- case stop_memory:
- mcnt = *p++;
- printf ("/stop_memory/%d/%d", mcnt, *p++);
- break;
-
- case duplicate:
- printf ("/duplicate/%d", *p++);
- break;
-
- case anychar:
- printf ("/anychar");
- break;
-
- case charset:
- case charset_not:
- {
- register int c;
-
- printf ("/charset%s/", *(p - 1) == charset_not ? "_not" : "");
-
- for (c = 0; p < pend && c < *p * BYTEWIDTH; c++)
- {
- if (p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- printchar (c);
- }
- p += 1 + *p;
- break;
- }
-
- case begline:
- printf ("/begline");
- break;
-
- case endline:
- printf ("/endline");
- break;
-
- case on_failure_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/on_failure_jump/0/%d", mcnt);
- break;
-
- case on_failure_keep_string_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/on_failure_keep_string_jump/0/%d", mcnt);
- break;
-
- case dummy_failure_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/dummy_failure_jump/0/%d", mcnt);
- break;
-
- case maybe_pop_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/maybe_pop_jump/0/%d", mcnt);
- break;
-
- case pop_failure_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/pop_failure_jump/0/%d", mcnt);
- break;
-
- case jump_past_next_alt:
- extract_number_and_incr (&mcnt, &p);
- printf ("/jump_past_next_alt/0/%d", mcnt);
- break;
-
- case no_pop_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/no_pop_jump/0/%d", mcnt);
- break;
-
- case succeed_n:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
- printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
- break;
-
- case no_pop_jump_n:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
- printf ("/no_pop_jump_n/0/%d/0/%d", mcnt, mcnt2);
- break;
-
- case set_number_at:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
- printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
- break;
-
- case wordbound:
- printf ("/wordbound");
- break;
-
- case notwordbound:
- printf ("/notwordbound");
- break;
-
- case wordbeg:
- printf ("/wordbeg");
- break;
-
- case wordend:
- printf ("/wordend");
-
- #ifdef emacs
- case before_dot:
- printf ("/before_dot");
- break;
-
- case at_dot:
- printf ("/at_dot");
- break;
-
- case after_dot:
- printf ("/after_dot");
- break;
-
- case wordchar:
- printf ("/wordchar-emacs");
- mcnt = (int) Sword;
- break;
-
- case syntaxspec:
- printf ("/syntaxspec");
- mcnt = *p++;
- printf ("/%d", mcnt);
- break;
-
- case notwordchar:
- printf ("/notwordchar-emacs");
- mcnt = (int) Sword;
- break;
-
- case notsyntaxspec:
- printf ("/notsyntaxspec");
- mcnt = *p++;
- printf ("/%d", mcnt);
- break;
- #else /* not emacs */
- case wordchar:
- printf ("/wordchar-notemacs");
- break;
-
- case notwordchar:
- printf ("/notwordchar-notemacs");
- break;
- #endif /* not emacs */
-
- case begbuf:
- printf ("/begbuf");
- break;
-
- case endbuf:
- printf ("/endbuf");
- break;
-
- default:
- printf ("?%d", *(p-1));
- }
- }
- printf ("/\n");
- }
-
- static void
- compiled_pattern_printer (pbufp)
- struct re_pattern_buffer *pbufp;
- {
- partial_compiled_pattern_printer (pbufp, pbufp->buffer,
- pbufp->buffer + pbufp->used);
- }
-
-
- static void
- double_string_printer (where, string1, size1, string2, size2)
- unsigned char *where;
- unsigned char *string1;
- unsigned char *string2;
- int size1;
- int size2;
- {
- unsigned this_char;
-
- if (where == NULL)
- printf ("(null)");
- else
- {
- if (IS_IN_FIRST_STRING (where))
- {
- for (this_char = where - string1; this_char < size1; this_char++)
- printchar (string1[this_char]);
-
- where = string2;
- }
-
- for (this_char = where - string2; this_char < size2; this_char++)
- printchar (string2[this_char]);
- }
- }
-
- #endif /* DEBUG */
-
- #ifdef DEBUG
-
- /* It is useful to test things that must to be true when debugging. */
- #include <assert.h>
-
- static int debug = 0;
-
- #define DEBUG_STATEMENT(e) e
- #define DEBUG_PRINT1(x) if (debug) printf (x)
- #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
- #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
- #define DEBUG_COMPILED_PATTERN_PRINTER(p, s, e) \
- if (debug) partial_compiled_pattern_printer (p, s, e)
- #define DEBUG_DOUBLE_STRING_PRINTER(w, s1, sz1, s2, sz2) \
- if (debug) double_string_printer (w, s1, sz1, s2, sz2)
-
- #else /* not DEBUG */
-
- #undef assert
- #define assert(e)
-
- #define DEBUG_STATEMENT(e)
- #define DEBUG_PRINT1(x)
- #define DEBUG_PRINT2(x1, x2)
- #define DEBUG_PRINT3(x1, x2, x3)
- #define DEBUG_COMPILED_PATTERN_PRINTER(p, s, e)
- #define DEBUG_DOUBLE_STRING_PRINTER(w, s1, sz1, s2, sz2)
-
- #endif /* not DEBUG */
-
- typedef char boolean;
- #define false 0
- #define true 1
-
- /* Set by re_set_syntax to the current regexp syntax to recognize. Can
- also be assigned to more or less arbitrarily. Since we use this as a
- collection of bits, declaring it unsigned maximizes portability. */
- reg_syntax_t obscure_syntax = 0;
-
-
- /* Specify the precise syntax of regexps for compilation. This provides
- for compatibility for various utilities which historically have
- different, incompatible syntaxes.
-
- The argument SYNTAX is a bit mask comprised of the various bits
- defined in regex.h. We return the old syntax. */
-
- reg_syntax_t
- re_set_syntax (syntax)
- reg_syntax_t syntax;
- {
- reg_syntax_t ret = obscure_syntax;
-
- obscure_syntax = syntax;
- return ret;
- }
-
- /* This table gives an error message for each of the error codes listed
- in regex.h. Obviously the order here has to be same as there. */
-
- static const char *re_error_msg[] =
- { NULL, /* REG_NOERROR */
- "No match", /* REG_NOMATCH */
- "Invalid regular expression", /* REG_BADPAT */
- "Invalid collation character", /* REG_ECOLLATE */
- "Invalid character class name", /* REG_ECTYPE */
- "Trailing backslash", /* REG_EESCAPE */
- "Invalid back reference", /* REG_ESUBREG */
- "Unmatched [ or [^", /* REG_EBRACK */
- "Unmatched ( or \\(", /* REG_EPAREN */
- "Unmatched \\{", /* REG_EBRACE */
- "Invalid content of \\{\\}", /* REG_BADBR */
- "Invalid range end", /* REG_ERANGE */
- "Memory exhausted", /* REG_ESPACE */
- "Invalid preceding regular expression", /* REG_BADRPT */
- "Premature end of regular expression", /* REG_EEND */
- "Regular expression too big", /* REG_ESIZE */
- "Unmatched ) or \\)", /* REG_ERPAREN */
- };
-
- /* Other subroutine declarations and macros for regex_compile. */
-
- static void store_jump (), insert_jump (), store_jump_n (),
- insert_jump_n (), insert_op_2 ();
-
- static boolean at_endline_op_p (), group_in_compile_stack ();
-
- /* Fetch the next character in the uncompiled pattern---translating it
- if necessary. Also cast from a signed character in the constant
- string passed to us by the user to an unsigned char that we can use
- as an array index (in, e.g., `translate'). */
- #define PATFETCH(c) \
- do {if (p == pend) return REG_EEND; \
- c = (unsigned char) *p++; \
- if (translate) c = translate[c]; \
- } while (0)
-
- /* Fetch the next character in the uncompiled pattern, with no
- translation. */
- #define PATFETCH_RAW(c) \
- do {if (p == pend) return REG_EEND; \
- c = (unsigned char) *p++; \
- } while (0)
-
- /* Go backwards one character in the pattern. */
- #define PATUNFETCH p--
-
-
- /* If `translate' is non-null, return translate[D], else just D. We
- cast the subscript to translate because some data is declared as
- `char *', to avoid warnings when a string constant is passed. But
- when we use a character as a subscript we must make it unsigned. */
- #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
-
-
- /* Macros for outputting the compiled pattern into `buffer'. */
-
- /* If the buffer isn't allocated when it comes in, use this. */
- #define INIT_BUF_SIZE 32
-
- /* Make sure we have at least N more bytes of space in buffer. */
- #define GET_BUFFER_SPACE(n) \
- { \
- while (b - bufp->buffer + (n) > bufp->allocated) \
- EXTEND_BUFFER (); \
- }
-
- /* Make sure we have one more byte of buffer space and then add C to it. */
- #define PAT_PUSH(c) \
- do { \
- GET_BUFFER_SPACE (1); \
- *b++ = (unsigned char) (c); \
- } while (0)
-
-
- /* Make sure we have two more bytes of buffer space and then add C1 and
- C2 to it. */
- #define PAT_PUSH_2(c1, c2) \
- do { \
- GET_BUFFER_SPACE (2); \
- *b++ = (unsigned char) (c1); \
- *b++ = (unsigned char) (c2); \
- } while (0)
-
-
- /* Make sure we have two more bytes of buffer space and then add C1, C2
- and C3 to it. */
- #define PAT_PUSH_3(c1, c2, c3) \
- do { \
- GET_BUFFER_SPACE (3); \
- *b++ = (unsigned char) (c1); \
- *b++ = (unsigned char) (c2); \
- *b++ = (unsigned char) (c3); \
- } while (0)
-
- /* This is not an arbitrary limit: the arguments to the opcodes which
- represent offsets into the pattern are two bytes long. So if 2^16
- bytes turns out to be too small, many things would have to change. */
- #define MAX_BUF_SIZE (1L << 16)
-
- /* Extend the buffer by twice its current size via realloc and
- reset the pointers that pointed into the old block to point to the
- correct places in the new one. If extending the buffer results in it
- being larger than MAX_BUF_SIZE, then flag memory exhausted. */
- #define EXTEND_BUFFER() \
- do { \
- unsigned char *old_buffer = bufp->buffer; \
- if (bufp->allocated == MAX_BUF_SIZE) \
- return REG_ESIZE; \
- bufp->allocated <<= 1; \
- if (bufp->allocated > MAX_BUF_SIZE) \
- bufp->allocated = MAX_BUF_SIZE; \
- bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
- if (bufp->buffer == NULL) \
- return REG_ESPACE; \
- /* If the buffer moved, move all the pointers into it. */ \
- if (old_buffer != bufp->buffer) \
- { \
- b = (b - old_buffer) + bufp->buffer; \
- begalt = (begalt - old_buffer) + bufp->buffer; \
- if (fixup_alt_jump) \
- fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
- if (laststart) \
- laststart = (laststart - old_buffer) + bufp->buffer; \
- if (pending_exact) \
- pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
- } \
- } while (0)
-
-
- /* Since we have one byte reserved for the register number argument to
- {start,stop}_memory, the maximum number of groups we can report
- things about is what fits in that byte. */
- typedef unsigned char regnum_t;
- #define MAX_REGNUM ((regnum_t) ((1 << BYTEWIDTH) - 1))
-
-
- /* Macros for the compile stack. */
-
- /* This type needs to be able to hold values from 0 to MAX_BUF_SIZE - 1. */
- typedef short pattern_offset_t;
-
- typedef struct
- {
- pattern_offset_t begalt_offset;
- pattern_offset_t fixup_alt_jump;
- pattern_offset_t inner_group_offset;
- pattern_offset_t laststart_offset;
- regnum_t regnum;
- } compile_stack_elt_t;
-
-
- typedef struct
- {
- compile_stack_elt_t *stack;
- unsigned size;
- unsigned avail; /* Offset of next open position. */
- } compile_stack_type;
-
-
- #define INIT_COMPILE_STACK_SIZE 32
-
- #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
- #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
-
- /* The next available element. */
- #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
-
-
- /* Set the bit for character C in a list. */
- #define SET_LIST_BIT(c) (b[(c) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
-
-
- /* Get the next unsigned number in the uncompiled pattern. */
- #define GET_UNSIGNED_NUMBER(num) \
- { if (p != pend) \
- { \
- PATFETCH (c); \
- while (isdigit (c)) \
- { \
- if (num < 0) \
- num = 0; \
- num = num * 10 + c - '0'; \
- if (p == pend) \
- break; \
- PATFETCH (c); \
- } \
- } \
- }
-
-
- /* Read the endpoint of a range from the uncompiled pattern and set the
- corresponding bits in the compiled pattern. */
-
- #define DO_RANGE \
- { \
- char end; \
- char this_char = p[-2]; \
- \
- if (p == pend) \
- return REG_ERANGE; \
- PATFETCH (end); \
- if (syntax & RE_NO_EMPTY_RANGES && this_char > end) \
- return REG_ERANGE; \
- while (this_char <= end) \
- { \
- SET_LIST_BIT (TRANSLATE (this_char)); \
- this_char++; \
- } \
- }
-
-
- #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
-
- #define IS_CHAR_CLASS(string) \
- (STREQ (string, "alpha") || STREQ (string, "upper") \
- || STREQ (string, "lower") || STREQ (string, "digit") \
- || STREQ (string, "alnum") || STREQ (string, "xdigit") \
- || STREQ (string, "space") || STREQ (string, "print") \
- || STREQ (string, "punct") || STREQ (string, "graph") \
- || STREQ (string, "cntrl") || STREQ (string, "blank"))
-
-
- /* regex_compile compiles PATTERN (of length SIZE) according to SYNTAX.
- Returns one of error codes defined in regex.h, or zero for success.
-
- Assumes the `allocated' (and perhaps `buffer') and `translate'
- fields are set in BUFP on entry.
-
- If it succeeds, results are put in BUFP (if it returns an error, the
- contents of BUFP are undefined):
- `buffer' is the compiled pattern;
- `syntax' is set to SYNTAX;
- `used' is set to the length of the compiled pattern;
- `fastmap_accurate' is set to zero;
- `re_nsub' is set to the number of groups in PATTERN;
- `not_bol' and `not_eol' are set to zero.
-
- The `fastmap' and `newline_anchor' fields are neither
- examined nor set. */
-
- static reg_errcode_t
- regex_compile (pattern, size, syntax, bufp)
- const char *pattern;
- int size;
- reg_syntax_t syntax;
- struct re_pattern_buffer *bufp;
- {
- register unsigned char c, c1;
- const char *p1;
-
- /* Points to the end of the buffer, where we should append. */
- register unsigned char *b;
-
- /* Points to the current (ending) position in the pattern. */
- const char *p = pattern;
- const char *pend = pattern + size;
-
- /* How to translate the characters in the pattern. */
- char *translate = bufp->translate;
-
- /* Address of the count-byte of the most recently inserted `exactn'
- command. This makes it possible to tell if a new exact-match
- character can be added to that command or if the character requires
- a new `exactn' command. */
- unsigned char *pending_exact = 0;
-
- /* Address of start of the most recently finished expression.
- This tells, e.g., postfix * where to find the start of its
- operand. Reset at the beginning of groups and alternatives. */
- unsigned char *laststart = 0;
-
- /* Place in the uncompiled pattern (i.e., the {) to
- which to go back if the interval is invalid. */
- const char *beg_interval; /* The `{'. */
- const char *following_left_brace;
-
- /* Address of beginning of regexp, or inside of last group. */
- unsigned char *begalt;
-
- /* Address of the place where a forward jump should go to the end of
- the containing expression. Each alternative of an `or'---except the
- last---ends with a forward jump of this sort. */
- unsigned char *fixup_alt_jump = 0;
-
- /* Counts open-groups as they are encountered. Remembered for the
- matching close-group on the compile stack, so the same register
- number is put in the stop_memory as the start_memory. The type
- here is determined by MAX_REGNUM. */
- regnum_t regnum = 0;
-
- /* Keeps track of unclosed groups. */
- compile_stack_type compile_stack;
-
- #ifdef DEBUG
- DEBUG_PRINT1 ("\nCompiling pattern: ");
- if (debug)
- {
- unsigned debug_count;
-
- for (debug_count = 0; debug_count < size; debug_count++)
- printchar (pattern[debug_count]);
-
- DEBUG_PRINT1 ("\n");
- }
- #endif /* DEBUG */
-
- /* Initialize the compile stack. */
- compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
- if (compile_stack.stack == NULL)
- return REG_ESPACE;
-
- compile_stack.size = INIT_COMPILE_STACK_SIZE;
- compile_stack.avail = 0;
-
- /* Initialize the pattern buffer. */
- bufp->syntax = syntax;
- bufp->fastmap_accurate = 0;
- bufp->not_bol = bufp->not_eol = 0;
-
- /* Set `used' to zero, so that if we return an error, the pattern
- printer (for debugging) will think there's no pattern. We reset it
- at the end. */
- bufp->used = 0;
-
- /* Always count groups, whether or not bufp->no_sub is set. */
- bufp->re_nsub = 0;
-
- #if !defined (emacs) && !defined (SYNTAX_TABLE)
- /* Initialize the syntax table. */
- init_syntax_once ();
- #endif
-
- if (bufp->allocated == 0)
- {
- if (bufp->buffer)
- { /* EXTEND_BUFFER loses when bufp->allocated is 0. This loses if
- buffer's address is bogus, but that is the user's
- responsibility. */
- RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
- }
- else
- { /* Caller did not allocate a buffer. Do it for them. */
- bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
- }
- if (!bufp->buffer) return REG_ESPACE;
-
- bufp->allocated = INIT_BUF_SIZE;
- }
-
- begalt = b = bufp->buffer;
-
- /* Loop through the uncompiled pattern until we're at the end. */
- while (p != pend)
- {
- PATFETCH (c);
-
- switch (c)
- {
- /* ^ matches the empty string at the beginning of a string (or
- possibly a line). If RE_CONTEXT_INDEP_ANCHORS is set, ^ is
- always an operator (and foo^bar is unmatchable). If that bit
- isn't set, it's an operator only at the beginning of the
- pattern or after an alternation or open-group operator, or,
- if RE_NEWLINE_ORDINARY is not set, after a newline (except it
- can be preceded by other operators that match the empty
- string); otherwise, it's a normal character. */
- case '^':
- {
- if ( /* If at start of (sub)pattern, it's an operator. */
- laststart == 0
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* If after a newline, might be an operator. (Since
- laststart is nonzero here, we know we have at
- least one byte before the ^.) */
- || (!(syntax & RE_NEWLINE_ORDINARY) && p[-2] == '\n'))
- PAT_PUSH (begline);
- else
- goto normal_char;
- }
- break;
-
-
- /* $ matches the empty string following the end of the string (or
- possibly a line). It follows rules dual to those for ^. */
- case '$':
- {
- if ( /* If at end of pattern, it's an operator. */
- p == pend
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's next. */
- || at_endline_op_p (p, pend, syntax))
- PAT_PUSH (endline);
- else
- goto normal_char;
- }
- break;
-
-
- case '+':
- case '?':
- if ((syntax & RE_BK_PLUS_QM)
- || (syntax & RE_LIMITED_OPS))
- goto normal_char;
- handle_plus:
- case '*':
- /* If there is no previous pattern... */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- return REG_BADRPT;
- else if (!(syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
- }
-
- {
- /* Are we optimizing this jump? */
- boolean keep_string_p = false;
-
- /* 1 means zero (many) matches is allowed. */
- char zero_times_ok = 0, many_times_ok = 0;
-
- /* If there is a sequence of repetition chars, collapse it
- down to just one (the right one). We can't combine
- interval operators with these because of, e.g., `a{2}*',
- which should only match an even number of `a's. */
-
- for (;;)
- {
- zero_times_ok |= c != '+';
- many_times_ok |= c != '?';
-
- if (p == pend)
- break;
-
- PATFETCH (c);
-
- if (c == '*'
- || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
- ;
-
- else if (syntax & RE_BK_PLUS_QM && c == '\\')
- {
- if (p == pend) return REG_EESCAPE;
-
- PATFETCH (c1);
- if (!(c1 == '+' || c1 == '?'))
- {
- PATUNFETCH;
- PATUNFETCH;
- break;
- }
-
- c = c1;
- }
- else
- {
- PATUNFETCH;
- break;
- }
-
- /* If we get here, we found another repeat character. */
- }
-
- /* Star, etc. applied to an empty pattern is equivalent
- to an empty pattern. */
- if (!laststart)
- break;
-
- /* Now we know whether or not zero matches is allowed
- and also whether or not two or more matches is allowed. */
- if (many_times_ok)
- { /* More than one repetition is allowed, so put in at the
- end a backward relative jump from `b' to before the next
- jump we're going to put in below (which jumps from
- laststart to after this jump).
-
- But if we are at the `*' in the exact sequence `.*\n',
- insert an unconditional jump backwards to the .,
- instead of the beginning of the loop. This way we only
- push a failure point once, instead of every time
- through the loop. */
- assert (p - 1 > pattern);
-
- /* Get the space for the jump. */
- GET_BUFFER_SPACE (3);
-
- /* We know we are not at the first character of the pattern,
- because laststart was nonzero. And we've already
- incremented `p', by the way, to be the character after
- the `*'. Do we have to do something analogous here
- for null bytes, because of RE_DOT_NOT_NULL? */
- if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
- && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
- && !(syntax & RE_DOT_NEWLINE))
- { /* We have .*\n. */
- store_jump (b, no_pop_jump, laststart);
- keep_string_p = true;
- }
- else
- /* Anything else. */
- store_jump (b, maybe_pop_jump, laststart - 3);
-
- /* We've added more stuff to the buffer. */
- b += 3;
- }
-
- /* On failure, jump from laststart to b + 3, which will be the
- end of the buffer after this jump is inserted. */
- GET_BUFFER_SPACE (3);
- insert_jump (keep_string_p ? on_failure_keep_string_jump
- : on_failure_jump,
- laststart, b + 3, b);
- pending_exact = 0;
- b += 3;
-
- if (!zero_times_ok)
- {
- /* At least one repetition is required, so insert a
- dummy_failure before the initial on_failure_jump
- instruction of the loop. This effects a skip over that
- instruction the first time we hit that loop. */
- GET_BUFFER_SPACE (3);
- insert_jump (dummy_failure_jump, laststart, laststart + 6, b);
- b += 3;
- }
- }
- break;
-
-
- case '.':
- laststart = b;
- PAT_PUSH (anychar);
- break;
-
-
- case '[':
- {
- boolean just_had_a_char_class = false;
-
- if (p == pend) return REG_EBRACK;
-
- /* Ensure that we have enough space to push an entire
- charset: the opcode, the byte count, and the bitmap. */
- while (b - bufp->buffer + 2 + (1 << BYTEWIDTH) / BYTEWIDTH
- > bufp->allocated)
- EXTEND_BUFFER ();
-
- laststart = b;
-
- PAT_PUSH (*p == '^' ? charset_not : charset);
- if (*p == '^')
- p++;
-
- /* Remember the first position in the bracket expression. */
- p1 = p;
-
- /* Push the number of bytes in the bitmap. */
- PAT_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* Clear the whole map. */
- bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* charset_not matches newline according to a syntax bit. */
- if ((re_opcode_t) b[-2] == charset_not
- && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
- SET_LIST_BIT ('\n');
-
- /* Read in characters and ranges, setting map bits. */
- for (;;)
- {
- if (p == pend) return REG_EBRACK;
-
- PATFETCH (c);
-
- /* \ might escape characters inside [...] and [^...]. */
- if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
- {
- if (p == pend) return REG_EESCAPE;
-
- PATFETCH (c1);
- SET_LIST_BIT (c1);
- continue;
- }
-
- /* Could be the end of the bracket expression. If it's
- not (i.e., when the bracket expression is `[]' so
- far), the ']' character bit gets set way below. */
- if (c == ']' && p != p1 + 1)
- break;
-
- /* Look ahead to see if it's a range when the last thing
- was a character class. */
- if (just_had_a_char_class && c == '-' && *p != ']')
- return REG_ERANGE;
-
- /* Look ahead to see if it's a range when the last thing
- was a character: if this is a hyphen not at the
- beginning or the end of a list, then it's the range
- operator. */
- if (c == '-'
- && !(p - 2 >= pattern && p[-2] == '[')
- && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
- && *p != ']')
- {
- DO_RANGE;
- }
-
- else if (p[0] == '-' && p[1] != ']')
- { /* This handles ranges made up of characters only. */
- PATFETCH (c1); /* The `-'. */
- DO_RANGE;
- }
-
- /* See if we're at the beginning of a possible character
- class. */
-
- else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
- { /* Leave room for the null. */
- char str[CHAR_CLASS_MAX_LENGTH + 1];
-
- PATFETCH (c);
- c1 = 0;
-
- /* If pattern is `[[:'. */
- if (p == pend) return REG_EBRACK;
-
- for (;;)
- {
- PATFETCH (c);
- if (c == ':' || c == ']' || p == pend
- || c1 == CHAR_CLASS_MAX_LENGTH)
- break;
- str[c1++] = c;
- }
- str[c1] = '\0';
-
- /* If isn't a word bracketed by `[:' and:`]':
- undo the ending character, the letters, and leave
- the leading `:' and `[' (but set bits for them). */
- if (c == ':' && *p == ']')
- {
- int ch;
- boolean is_alnum = STREQ (str, "alnum");
- boolean is_alpha = STREQ (str, "alpha");
- boolean is_blank = STREQ (str, "blank");
- boolean is_cntrl = STREQ (str, "cntrl");
- boolean is_digit = STREQ (str, "digit");
- boolean is_graph = STREQ (str, "graph");
- boolean is_lower = STREQ (str, "lower");
- boolean is_print = STREQ (str, "print");
- boolean is_punct = STREQ (str, "punct");
- boolean is_space = STREQ (str, "space");
- boolean is_upper = STREQ (str, "upper");
- boolean is_xdigit = STREQ (str, "xdigit");
-
- if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
-
- /* Throw away the ] at the end of the character
- class. */
- PATFETCH (c);
-
- if (p == pend) return REG_EBRACK;
-
- for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
- {
- if ( (is_alnum && isalnum (ch))
- || (is_alpha && isalpha (ch))
- || (is_blank && isblank (ch))
- || (is_cntrl && iscntrl (ch))
- || (is_digit && isdigit (ch))
- || (is_graph && isgraph (ch))
- || (is_lower && islower (ch))
- || (is_print && isprint (ch))
- || (is_punct && ispunct (ch))
- || (is_space && isspace (ch))
- || (is_upper && isupper (ch))
- || (is_xdigit && isxdigit (ch)))
- SET_LIST_BIT (ch);
- }
- just_had_a_char_class = true;
- }
- else
- {
- c1++;
- while (c1--)
- PATUNFETCH;
- SET_LIST_BIT ('[');
- SET_LIST_BIT (':');
- just_had_a_char_class = false;
- }
- }
- else
- {
- just_had_a_char_class = false;
- SET_LIST_BIT (c);
- }
- }
-
- /* Discard any (non)matching list bytes that are all 0 at the
- end of the map. Decrease the map-length byte too. */
- while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
- b[-1]--;
- b += b[-1];
- }
- break;
-
-
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_open;
- else
- goto normal_char;
-
-
- case ')':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_close;
- else
- goto normal_char;
-
-
- case '\n':
- if (syntax & RE_NEWLINE_ALT)
- goto handle_bar;
- else
- goto normal_char;
-
-
- case '|':
- if (syntax & RE_NO_BK_VBAR)
- goto handle_bar;
- else
- goto normal_char;
-
-
- case '{':
- if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
- goto handle_interval;
- else
- goto normal_char;
-
-
- case '\\':
- if (p == pend) return REG_EESCAPE;
-
- /* Do not translate the character after the \, so that we can
- distinguish, e.g., \B from \b, even if we normally would
- translate, e.g., B to b. */
- PATFETCH_RAW (c);
-
- switch (c)
- {
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto normal_backslash;
- handle_open:
- if (syntax & RE_NO_EMPTY_GROUPS)
- {
- p1 = p;
- if (!(syntax & RE_NO_BK_PARENS) && *p1 == '\\') p1++;
-
- /* If found an empty group... */
- if (*p1 == ')') return REG_BADPAT;
- }
-
- bufp->re_nsub++;
- regnum++;
-
- if (COMPILE_STACK_FULL)
- {
- RETALLOC (compile_stack.stack, compile_stack.size << 1,
- compile_stack_elt_t);
- if (compile_stack.stack == NULL) return REG_ESPACE;
-
- compile_stack.size <<= 1;
- }
-
- /* These are the values to restore when we hit end of this
- group. They are all relative offsets, so that if the
- whole pattern moves because of realloc, they will still
- be valid. */
- COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
- COMPILE_STACK_TOP.fixup_alt_jump
- = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
- COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
- COMPILE_STACK_TOP.regnum = regnum;
-
- /* We will eventually replace the 0 with the number of
- groups inner to this one. */
- if (regnum <= MAX_REGNUM)
- {
- COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
- PAT_PUSH_3 (start_memory, regnum, 0);
- }
-
- compile_stack.avail++;
-
- fixup_alt_jump = 0;
- laststart = 0;
- begalt = b;
- break;
-
-
- case ')':
- if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
-
- if (COMPILE_STACK_EMPTY)
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_backslash;
- else
- return REG_ERPAREN;
-
- handle_close:
- if (fixup_alt_jump)
- store_jump (fixup_alt_jump, jump_past_next_alt, b);
-
- /* See similar code for backslashed left paren above. */
-
- if (COMPILE_STACK_EMPTY)
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_char;
- else
- return REG_ERPAREN;
-
- /* Since we just checked for an empty stack above, this
- ``can't happen''. */
- assert (compile_stack.avail != 0);
- {
- /* We don't just want to restore into `regnum', because
- later groups should continue to be numbered higher,
- as in `(ab)c(de)' -- the second group is #2. */
- regnum_t this_group_regnum;
-
- compile_stack.avail--;
- begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
- fixup_alt_jump
- = COMPILE_STACK_TOP.fixup_alt_jump
- ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
- : 0;
- laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
- this_group_regnum = COMPILE_STACK_TOP.regnum;
-
- /* We're at the end of the group, so now we know how many
- groups were inside this one. */
- if (this_group_regnum <= MAX_REGNUM)
- {
- unsigned char *inner_group_loc
- = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
-
- *inner_group_loc = regnum - this_group_regnum;
- PAT_PUSH_3 (stop_memory, this_group_regnum,
- regnum - this_group_regnum);
- }
- }
- break;
-
-
- case '|': /* `\|'. */
- if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
- goto normal_backslash;
- handle_bar:
- if (syntax & RE_LIMITED_OPS)
- goto normal_char;
-
- /* Disallow empty alternatives if RE_NO_EMPTY_ALTS is set.
- Caveat: can't detect if the vbar is followed by a
- trailing '$' yet, unless it's the last thing in a
- pattern; the routine for verifying endlines has to do
- the rest. */
- if ((syntax & RE_NO_EMPTY_ALTS)
- && (!laststart || p == pend
- || (*p == '$' && p + 1 == pend)
- || ((syntax & RE_NO_BK_PARENS)
- ? (p < pend && *p == ')')
- : (p + 1 < pend && p[0] == '\\' && p[1] == ')'))))
- return REG_BADPAT;
-
- /* Insert before the previous alternative a jump which
- jumps to this alternative if the former fails. */
- GET_BUFFER_SPACE (3);
- insert_jump (on_failure_jump, begalt, b + 6, b);
- pending_exact = 0;
- b += 3;
-
- /* The alternative before this one has a jump after it
- which gets executed if it gets matched. Adjust that
- jump so it will jump to this alternative's analogous
- jump (put in below, which in turn will jump to the next
- (if any) alternative's such jump, etc.). The last such
- jump jumps to the correct final destination. A picture:
- _____ _____
- | | | |
- | v | v
- a | b | c
-
- If we are at `b,' then fixup_alt_jump right now points to a
- three-byte space after `a.' We'll put in the jump, set
- fixup_alt_jump to right after `b,' and leave behind three
- bytes which we'll fill in when we get to after `c.' */
-
- if (fixup_alt_jump)
- store_jump (fixup_alt_jump, jump_past_next_alt, b);
-
- /* Mark and leave space for a jump after this alternative,
- to be filled in later either by next alternative or
- when know we're at the end of a series of alternatives. */
- fixup_alt_jump = b;
- GET_BUFFER_SPACE (3);
- b += 3;
-
- laststart = 0;
- begalt = b;
- break;
-
-
- case '{':
- /* If \{ is a literal. */
- if (!(syntax & RE_INTERVALS)
- /* If we're at `\{' and it's not the open-interval
- operator. */
- || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
- || (p - 2 == pattern && p == pend))
- goto normal_backslash;
-
- handle_interval:
- {
- /* If got here, then intervals must be allowed. */
-
- /* For intervals, at least (most) this many matches must
- be made. */
- int lower_bound = -1, upper_bound = -1;
-
- beg_interval = p - 1; /* The `{'. */
- following_left_brace = NULL;
-
- if (p == pend)
- {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- return REG_EBRACE;
- }
-
- GET_UNSIGNED_NUMBER (lower_bound);
-
- if (c == ',')
- {
- GET_UNSIGNED_NUMBER (upper_bound);
- if (upper_bound < 0) upper_bound = RE_DUP_MAX;
- }
-
- if (upper_bound < 0)
- upper_bound = lower_bound;
-
- if (lower_bound < 0 || upper_bound > RE_DUP_MAX
- || lower_bound > upper_bound)
- {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- return REG_BADBR;
- }
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- if (c != '\\') return REG_EBRACE;
-
- PATFETCH (c);
- }
-
- if (c != '}')
- {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- return REG_BADBR;
- }
-
- /* We just parsed a valid interval. */
-
- /* If it's invalid to have no preceding re. */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- return REG_BADRPT;
- else if (syntax & RE_CONTEXT_INDEP_OPS)
- laststart = b;
- else
- goto unfetch_interval;
- }
-
- /* If upper_bound is zero, don't want to succeed at all;
- jump from laststart to b + 3, which will be the end of
- the buffer after this jump is inserted. */
- if (upper_bound == 0)
- {
- GET_BUFFER_SPACE (3);
- insert_jump (no_pop_jump, laststart, b + 3, b);
- b += 3;
- }
-
- /* Otherwise, after lower_bound number of succeeds, jump
- to after the no_pop_jump_n which will be inserted at
- the end of the buffer, and insert that
- no_pop_jump_n. */
- else
- { /* Set to 5 if only one repetition is allowed and
- hence no no_pop_jump_n is inserted at the current
- end of the buffer. Otherwise, need 10 bytes total
- for the succeed_n and the no_pop_jump_n. */
- unsigned slots_needed = upper_bound == 1 ? 5 : 10;
-
- GET_BUFFER_SPACE (slots_needed);
- /* Initialize the succeed_n to n, even though it will
- be set by its attendant set_number_at, because
- re_compile_fastmap will need to know it. Jump to
- what the end of buffer will be after inserting
- this succeed_n and possibly appending a
- no_pop_jump_n. */
- insert_jump_n (succeed_n, laststart, b + slots_needed,
- b, lower_bound);
- b += 5; /* Just increment for the succeed_n here. */
-
-
- /* More than one repetition is allowed, so put in at
- the end of the buffer a backward jump from b to the
- succeed_n we put in above. By the time we've gotten
- to this jump when matching, we'll have matched once
- already, so jump back only upper_bound - 1 times. */
- if (upper_bound > 1)
- {
- store_jump_n (b, no_pop_jump_n, laststart,
- upper_bound - 1);
- b += 5;
-
- /* When hit this when matching, reset the
- preceding no_pop_jump_n's n to upper_bound - 1. */
- PAT_PUSH (set_number_at);
-
- /* Only need to get space for the numbers. */
- GET_BUFFER_SPACE (4);
- STORE_NUMBER_AND_INCR (b, -5);
- STORE_NUMBER_AND_INCR (b, upper_bound - 1);
- }
-
- /* When hit this when matching, set the succeed_n's n. */
- GET_BUFFER_SPACE (5);
- insert_op_2 (set_number_at, laststart, b, 5, lower_bound);
- b += 5;
- }
- pending_exact = 0;
- beg_interval = NULL;
-
- if (following_left_brace)
- goto normal_char;
- }
- break;
-
- unfetch_interval:
- /* If an invalid interval, match the characters as literals. */
- assert (beg_interval);
- p = beg_interval;
- beg_interval = NULL;
-
- /* normal_char and normal_backslash need `c'. */
- PATFETCH (c);
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- if (p > pattern && p[-1] == '\\')
- goto normal_backslash;
- }
- goto normal_char;
-
- #ifdef emacs
- /* There is no way to specify the before_dot and after_dot
- operators. rms says this is ok. --karl */
- case '=':
- PAT_PUSH (at_dot);
- break;
-
- case 's':
- laststart = b;
- PATFETCH (c);
- PAT_PUSH_2 (syntaxspec, syntax_spec_code[c]);
- break;
-
- case 'S':
- laststart = b;
- PATFETCH (c);
- PAT_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
- break;
- #endif /* emacs */
-
-
- case 'w':
- laststart = b;
- PAT_PUSH (wordchar);
- break;
-
-
- case 'W':
- laststart = b;
- PAT_PUSH (notwordchar);
- break;
-
-
- case '<':
- PAT_PUSH (wordbeg);
- break;
-
- case '>':
- PAT_PUSH (wordend);
- break;
-
- case 'b':
- PAT_PUSH (wordbound);
- break;
-
- case 'B':
- PAT_PUSH (notwordbound);
- break;
-
- case '`':
- PAT_PUSH (begbuf);
- break;
-
- case '\'':
- PAT_PUSH (endbuf);
- break;
-
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- if (syntax & RE_NO_BK_REFS)
- goto normal_char;
-
- c1 = c - '0';
-
- if (c1 > regnum)
- {
- if (syntax & RE_NO_MISSING_BK_REF)
- return REG_ESUBREG;
- else
- goto normal_char;
- }
-
- /* Can't back reference to a subexpression if inside of it. */
- if (group_in_compile_stack (compile_stack, c1))
- goto normal_char;
-
- laststart = b;
- PAT_PUSH_2 (duplicate, c1);
- break;
-
-
- case '+':
- case '?':
- if (syntax & RE_BK_PLUS_QM)
- goto handle_plus;
- else
- goto normal_backslash;
-
- default:
- normal_backslash:
- /* You might think it would be useful for \ to mean
- not to translate; but if we don't translate it
- it will never match anything. */
- c = TRANSLATE (c);
- goto normal_char;
- }
- break;
-
-
- default:
- /* Expects the character in `c'. */
- normal_char:
- /* If no exactn currently being built. */
- if (!pending_exact
-
- /* If last exactn not at current position. */
- || pending_exact + *pending_exact + 1 != b
-
- /* We have only one byte following the exactn for the count. */
- || *pending_exact == (1 << BYTEWIDTH) - 1
-
- /* If followed by a repetition operator. */
- || *p == '*' || *p == '^'
- || ((syntax & RE_BK_PLUS_QM)
- ? *p == '\\' && (p[1] == '+' || p[1] == '?')
- : (*p == '+' || *p == '?'))
- || ((syntax & RE_INTERVALS)
- && ((syntax & RE_NO_BK_BRACES)
- ? *p == '{'
- : (p[0] == '\\' && p[1] == '{'))))
- {
- /* Start building a new exactn. */
-
- laststart = b;
-
- PAT_PUSH_2 (exactn, 0);
- pending_exact = b - 1;
- }
-
- PAT_PUSH (c);
- (*pending_exact)++;
- break;
- } /* switch (c) */
- } /* while p != pend */
-
-
- /* Through the pattern now. */
-
- if (fixup_alt_jump)
- store_jump (fixup_alt_jump, jump_past_next_alt, b);
-
- if (!COMPILE_STACK_EMPTY)
- return REG_EPAREN;
-
- free (compile_stack.stack);
-
- /* We have succeeded; set the length of the buffer. */
- bufp->used = b - bufp->buffer;
- return REG_NOERROR;
- } /* regex_compile */
-
- /* Subroutines for regex_compile. */
-
- /* Store a jump of the form <OPCODE> <relative address>.
- Store in the location FROM a jump operation to jump to relative
- address FROM - TO. OPCODE is the opcode to store. */
-
- static void
- store_jump (from, op, to)
- unsigned char *from, *to;
- re_opcode_t op;
- {
- from[0] = (unsigned char) op;
- STORE_NUMBER (from + 1, to - (from + 3));
- }
-
-
- /* Open up space before char FROM, and insert there a jump to TO.
- CURRENT_END gives the end of the storage not in use, so we know
- how much data to copy up. OP is the opcode of the jump to insert.
-
- If you call this function, you must zero out pending_exact. */
-
- static void
- insert_jump (op, from, to, current_end)
- re_opcode_t op;
- unsigned char *from, *to, *current_end;
- {
- register unsigned char *pfrom = current_end; /* Copy from here... */
- register unsigned char *pto = current_end + 3; /* ...to here. */
-
- while (pfrom != from)
- *--pto = *--pfrom;
-
- store_jump (from, op, to);
- }
-
-
- /* Store a jump of the form <opcode> <relative address> <n>.
-
- Store in the location FROM a jump operation to jump to relative
- address FROM - TO. OPCODE is the opcode to store, N is a number the
- jump uses, say, to decide how many times to jump.
-
- If you call this function, you must zero out pending_exact. */
-
- static void
- store_jump_n (from, op, to, n)
- unsigned char *from, *to;
- re_opcode_t op;
- unsigned n;
- {
- from[0] = (unsigned char) op;
- STORE_NUMBER (from + 1, to - (from + 3));
- STORE_NUMBER (from + 3, n);
- }
-
-
- /* Similar to insert_jump, but handles a jump which needs an extra
- number to handle minimum and maximum cases. Open up space at
- location FROM, and insert there a jump to TO. CURRENT_END gives the
- end of the storage in use, so we know how much data to copy up. OP is
- the opcode of the jump to insert.
-
- If you call this function, you must zero out pending_exact. */
-
- static void
- insert_jump_n (op, from, to, current_end, n)
- re_opcode_t op;
- unsigned char *from, *to, *current_end;
- unsigned n;
- {
- register unsigned char *pfrom = current_end;
- register unsigned char *pto = current_end + 5;
-
- while (pfrom != from)
- *--pto = *--pfrom;
-
- store_jump_n (from, op, to, n);
- }
-
-
- /* Open up space at location THERE, and insert operation OP followed by
- NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so
- we know how much data to copy up.
-
- If you call this function, you must zero out pending_exact. */
-
- static void
- insert_op_2 (op, there, current_end, num_1, num_2)
- re_opcode_t op;
- unsigned char *there, *current_end;
- int num_1, num_2;
- {
- register unsigned char *pfrom = current_end;
- register unsigned char *pto = current_end + 5;
-
- while (pfrom != there)
- *--pto = *--pfrom;
-
- there[0] = (unsigned char) op;
- STORE_NUMBER (there + 1, num_1);
- STORE_NUMBER (there + 3, num_2);
- }
-
-
- /* Return true if the pattern position P is at a close-group or
- alternation operator, or if it is a newline and RE_NEWLINE_ORDINARY
- is not set in SYNTAX. Before checking, though, we skip past all
- operators that match the empty string.
-
- This is not quite the dual of what happens with ^. There, we can
- easily check if the (sub)pattern so far can match only the empty
- string, because we have seen the pattern, and `laststart' is set to
- exactly that. But we cannot easily look at the pattern yet to come
- to see if it matches the empty string; that would require us to compile
- the pattern, then go back and analyze the pattern after every
- endline. POSIX required this at one point (that $ be in a
- ``trailing'' position to be considered an anchor), so we implemented
- it, but it was slow and took lots of code, and we were never really
- convinced it worked in all cases. So now it's gone, and we live with
- the slight inconsistency between ^ and $. */
-
- static boolean
- at_endline_op_p (p, pend, syntax)
- const char *p, *pend;
- int syntax;
- {
- boolean context_indep = !!(syntax & RE_CONTEXT_INDEP_ANCHORS);
-
- /* Skip past operators that match the empty string. (Except we don't
- handle empty groups.) */
- while (p < pend)
- {
- if (context_indep && (*p == '^' || *p == '$'))
- p++;
-
- /* All others start with \. */
- else if (*p == '\\' && p + 1 < pend
- && (p[1] == 'b' || p[1] == 'B'
- || p[1] == '<' || p[1] == '>'
- || p[1] == '`' || p[1] == '\''
- #ifdef emacs
- || p[1] == '='
- #endif
- ))
- p += 2;
-
- else /* Not an empty string operator. */
- break;
- }
-
- /* See what we're at now. */
- return p < pend
- && ((!(syntax & RE_NEWLINE_ORDINARY) && *p == '\n')
- || (syntax & RE_NO_BK_PARENS
- ? *p == ')'
- : *p == '\\' && p + 1 < pend && p[1] == ')')
- || (syntax & RE_NO_BK_VBAR
- ? *p == '|'
- : (*p == '\\' && p + 1 < pend && p[1] == '|')));
- }
-
-
- /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
- false if it's not. */
-
- static boolean
- group_in_compile_stack (compile_stack, regnum)
- compile_stack_type compile_stack;
- regnum_t regnum;
- {
- int this_element;
-
- for (this_element = compile_stack.avail - 1;
- this_element >= 0;
- this_element--)
- if (compile_stack.stack[this_element].regnum == regnum)
- return true;
-
- return false;
- }
-
- /* Failure stack declarations and macros; both re_compile_fastmap and
- re_match_2 use a failure stack. These have to be macros because of
- REGEX_ALLOCATE. */
-
-
- /* Number of failure points for which to initially allocate space
- when matching. If this number is exceeded, we allocate more
- space---so it is not a hard limit. */
- #ifndef INIT_FAILURE_ALLOC
- #define INIT_FAILURE_ALLOC 5
- #endif
-
- /* Roughly the maximum number of failure points on the stack. Would be
- exactly that if always used MAX_FAILURE_SPACE each time we failed.
- This is a variable only so users of regex can assign to it; we never
- change it ourselves. */
- int re_max_failures = 2000;
-
- typedef const unsigned char *failure_stack_elt_t;
-
- typedef struct
- {
- failure_stack_elt_t *stack;
- unsigned size;
- unsigned avail; /* Offset of next open position. */
- } failure_stack_type;
-
- #define FAILURE_STACK_EMPTY() (failure_stack.avail == 0)
- #define FAILURE_STACK_PTR_EMPTY() (failure_stack_ptr->avail == 0)
- #define FAILURE_STACK_FULL() (failure_stack.avail == failure_stack.size)
- #define FAILURE_STACK_TOP() (failure_stack.stack[failure_stack.avail])
-
-
- /* Initialize FAILURE_STACK. Return 1 if success, 0 if not. */
-
- #define INIT_FAILURE_STACK(failure_stack) \
- ((failure_stack).stack = (failure_stack_elt_t *) \
- REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (failure_stack_elt_t)), \
- (failure_stack).stack == NULL \
- ? 0 \
- : ((failure_stack).size = INIT_FAILURE_ALLOC, \
- (failure_stack).avail = 0, \
- 1))
-
-
- /* Double the size of FAILURE_STACK, up to approximately
- `re_max_failures' items.
-
- Return 1 if succeeds, and 0 if either ran out of memory
- allocating space for it or it was already too large.
-
- REGEX_REALLOCATE requires `destination' be declared. */
-
- #define DOUBLE_FAILURE_STACK(failure_stack) \
- ((failure_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
- ? 0 \
- : ((failure_stack).stack = (failure_stack_elt_t *) \
- REGEX_REALLOCATE ((failure_stack).stack, \
- ((failure_stack).size << 1) * sizeof (failure_stack_elt_t)), \
- \
- (failure_stack).stack == NULL \
- ? 0 \
- : ((failure_stack).size <<= 1, \
- 1)))
-
-
- /* Push PATTERN_OP on FAILURE_STACK.
-
- Return 1 if was able to do so and 0 if ran out of memory allocating
- space to do so. */
- #define PUSH_PATTERN_OP(pattern_op, failure_stack) \
- ((FAILURE_STACK_FULL () \
- && !DOUBLE_FAILURE_STACK (failure_stack)) \
- ? 0 \
- : ((failure_stack).stack[(failure_stack).avail++] = pattern_op, \
- 1))
-
- /* This pushes an item onto the failure stack. Must be a four-byte
- value. Assumes the variable `failure_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
- #define PUSH_FAILURE_ITEM(item) \
- failure_stack.stack[failure_stack.avail++] = (failure_stack_elt_t) item
-
- /* The complement operation. Assumes stack is nonempty, and pointed to
- `failure_stack_ptr'. */
- #define POP_FAILURE_ITEM() \
- failure_stack_ptr->stack[--failure_stack_ptr->avail]
-
- /* Used to omit pushing failure point id's when we're not debugging. */
- #ifdef DEBUG
- #define DEBUG_PUSH PUSH_FAILURE_ITEM
- #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
- #else
- #define DEBUG_PUSH(item)
- #define DEBUG_POP(item_addr)
- #endif
-
-
- /* Push the information about the state we will need
- if we ever fail back to it.
-
- Requires variables failure_stack, regstart, regend, reg_info, and
- num_regs be declared. DOUBLE_FAILURE_STACK requires `destination' be
- declared.
-
- Does `return FAILURE_CODE' if runs out of memory. */
-
- #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
- do { \
- char *destination; \
- /* Must be int, so when we don't save any registers, the arithmetic \
- of 0 + -1 isn't done as unsigned. */ \
- int this_reg; \
- \
- DEBUG_STATEMENT (failure_id++); \
- DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
- DEBUG_PRINT2 (" Before push, next avail: %d\n", (failure_stack).avail);\
- DEBUG_PRINT2 (" size: %d\n", (failure_stack).size);\
- \
- DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
- DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
- \
- /* Ensure we have enough space allocated for what we will push. */ \
- while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
- { \
- if (!DOUBLE_FAILURE_STACK (failure_stack)) \
- return failure_code; \
- \
- DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
- (failure_stack).size); \
- DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
- } \
- \
- /* Push the info, starting with the registers. */ \
- DEBUG_PRINT1 ("\n"); \
- \
- for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
- this_reg++) \
- { \
- DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
- DEBUG_STATEMENT (num_regs_pushed++); \
- \
- DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
- PUSH_FAILURE_ITEM (regstart[this_reg]); \
- \
- DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
- PUSH_FAILURE_ITEM (regend[this_reg]); \
- \
- DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
- DEBUG_PRINT2 (" match_nothing=%d", \
- REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
- DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
- DEBUG_PRINT2 (" matched_something=%d", \
- MATCHED_SOMETHING (reg_info[this_reg])); \
- DEBUG_PRINT2 (" ever_matched=%d", \
- EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
- DEBUG_PRINT1 ("\n"); \
- PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
- } \
- \
- DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg); \
- PUSH_FAILURE_ITEM (lowest_active_reg); \
- \
- DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
- PUSH_FAILURE_ITEM (highest_active_reg); \
- \
- DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
- DEBUG_COMPILED_PATTERN_PRINTER (bufp, pattern_place, pend); \
- PUSH_FAILURE_ITEM (pattern_place); \
- \
- DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
- DEBUG_DOUBLE_STRING_PRINTER (string_place, string1, size1, string2, \
- size2); \
- DEBUG_PRINT1 ("'\n"); \
- PUSH_FAILURE_ITEM (string_place); \
- \
- DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
- DEBUG_PUSH (failure_id); \
- } while (0)
-
- /* This is the number of items that are pushed and popped on the stack
- for each register. */
- #define NUM_REG_ITEMS 3
-
- /* Individual items aside from the registers. */
- #ifdef DEBUG
- #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
- #else
- #define NUM_NONREG_ITEMS 4
- #endif
-
- /* We push at most this many items on the stack. */
- #define MAX_FAILURE_ITEMS \
- ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
-
- /* We actually push this many items. */
- #define NUM_FAILURE_ITEMS \
- ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
- + NUM_NONREG_ITEMS)
-
- /* How many items can still be added to the stack without overflowing it. */
- #define REMAINING_AVAIL_SLOTS \
- ((failure_stack).size - (failure_stack).avail)
-
- /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
- BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
- characters can start a string that matches the pattern. This fastmap
- is used by re_search to skip quickly over impossible starting points.
-
- The caller must supply the address of a (1 << BYTEWIDTH)-byte data
- area as BUFP->fastmap. The other components of BUFP describe the
- pattern to be used.
-
- We set the `can_be_null' and `fastmap_accurate' fields in the pattern
-
- Returns 0 if it can compile a fastmap. Returns -2 if there is an
- internal error. */
-
- int
- re_compile_fastmap (bufp)
- struct re_pattern_buffer *bufp;
- {
- int j, k;
- failure_stack_type failure_stack;
- #ifndef REGEX_MALLOC
- char *destination;
- #endif
- /* We don't push any register information onto the failure stack. */
- unsigned num_regs = 0;
-
- register char *fastmap = bufp->fastmap;
- unsigned char *pattern = bufp->buffer;
- unsigned long size = bufp->used;
- const unsigned char *p = pattern;
- register unsigned char *pend = pattern + size;
-
- INIT_FAILURE_STACK (failure_stack);
-
- bzero (fastmap, 1 << BYTEWIDTH);
- bufp->fastmap_accurate = 1; /* It will be when we're done. */
- bufp->can_be_null = 0;
-
- while (p)
- {
- boolean is_a_succeed_n = false;
-
- if (p == pend)
- if (FAILURE_STACK_EMPTY ())
- {
- bufp->can_be_null = 1;
- break;
- }
- else
- p = failure_stack.stack[--failure_stack.avail];
-
- #ifdef SWITCH_ENUM_BUG
- switch ((int) ((re_opcode_t) *p++))
- #else
- switch ((re_opcode_t) *p++)
- #endif
- {
- case exactn:
- fastmap[p[1]] = 1;
- break;
-
-
- case charset:
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
- fastmap[j] = 1;
- break;
-
-
- case charset_not:
- /* Chars beyond end of map must be allowed. */
- for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
-
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
- fastmap[j] = 1;
- break;
-
-
- case no_op:
- case begline:
- case begbuf:
- case endbuf:
- case wordbound:
- case notwordbound:
- case wordbeg:
- case wordend:
- continue;
-
-
- case endline:
- if (!bufp->can_be_null)
- bufp->can_be_null = 2;
- break;
-
-
- case no_pop_jump_n:
- case pop_failure_jump:
- case maybe_pop_jump:
- case no_pop_jump:
- case jump_past_next_alt:
- case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR (j, p);
- p += j;
- if (j > 0)
- continue;
-
- /* Jump backward reached implies we just went through
- the body of a loop and matched nothing. Opcode jumped to
- should be an on_failure_jump or succeed_n. Just treat it
- like an ordinary jump. For a * loop, it has pushed its
- failure point already; if so, discard that as redundant. */
-
- if ((re_opcode_t) *p != on_failure_jump
- && (re_opcode_t) *p != succeed_n)
- continue;
-
- p++;
- EXTRACT_NUMBER_AND_INCR (j, p);
- p += j;
-
- /* If what's on the stack is where we are now, pop it. */
- if (!FAILURE_STACK_EMPTY ()
- && failure_stack.stack[failure_stack.avail - 1] == p)
- failure_stack.avail--;
-
- continue;
-
-
- case on_failure_jump:
- handle_on_failure_jump:
- EXTRACT_NUMBER_AND_INCR (j, p);
-
- /* For some patterns, e.g., `(a?)?', `p+j' here points to the
- end of the pattern. We don't want to push such a point,
- since when we restore it above, entering the switch will
- increment `p' past the end of the pattern. We don't need
- to push such a point since there can't be any more
- possibilities for the fastmap beyond pend. */
- if (p + j < pend)
- {
- if (!PUSH_PATTERN_OP (p + j, failure_stack))
- return -2;
- }
-
- if (is_a_succeed_n)
- EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
-
- continue;
-
-
- case succeed_n:
- is_a_succeed_n = true;
-
- /* Get to the number of times to succeed. */
- p += 2;
-
- /* Increment p past the n for when k != 0. */
- EXTRACT_NUMBER_AND_INCR (k, p);
- if (k == 0)
- {
- p -= 4;
- goto handle_on_failure_jump;
- }
- continue;
-
-
- case set_number_at:
- p += 4;
- continue;
-
-
- case start_memory:
- case stop_memory:
- p += 2;
- continue;
-
-
- /* I don't understand this case (any of it). --karl */
- case duplicate:
- bufp->can_be_null = 1;
- fastmap['\n'] = 1;
-
-
- case anychar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (j != '\n')
- fastmap[j] = 1;
- if (bufp->can_be_null)
- return 0;
-
- /* Don't return; check the alternative paths
- so we can set can_be_null if appropriate. */
- break;
-
-
- case wordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) == Sword)
- fastmap[j] = 1;
- break;
-
-
- case notwordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) != Sword)
- fastmap[j] = 1;
- break;
-
-
- #ifdef emacs
- case before_dot:
- case at_dot:
- case after_dot:
- continue;
-
-
- case syntaxspec:
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) == (enum syntaxcode) k)
- fastmap[j] = 1;
- break;
-
-
- case notsyntaxspec:
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) != (enum syntaxcode) k)
- fastmap[j] = 1;
- break;
- #endif /* not emacs */
-
- default:
- abort ();
- } /* switch *p++ */
-
- /* Getting here means we have successfully found the possible starting
- characters of one path of the pattern. We need not follow this
- path any farther. Instead, look at the next alternative
- remembered in the stack, or quit. The test at the top of the
- loop does these things. */
- p = pend;
- } /* while p */
-
- return 0;
- } /* re_compile_fastmap */
-
- /* Searching routines. */
-
- /* Like re_search_2, below, but only one string is specified, and
- doesn't let you say where to stop matching. */
-
- int
- re_search (bufp, string, size, startpos, range, regs)
- struct re_pattern_buffer *bufp;
- const char *string;
- int size, startpos, range;
- struct re_registers *regs;
- {
- return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
- regs, size);
- }
-
-
- /* Using the compiled pattern in BUFP->buffer, first tries to match the
- virtual concatenation of STRING1 and STRING2, starting first at index
- STARTPOS, then at STARTPOS + 1, and so on.
-
- STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
-
- RANGE is how far to scan while trying to match. RANGE = 0 means try
- only at STARTPOS; in general, the last start tried is STARTPOS +
- RANGE.
-
- In REGS, return the indices of the virtual concatenation of STRING1
- and STRING2 that matched the entire BUFP->buffer and its contained
- subexpressions.
-
- Do not consider matching one past the index STOP in the virtual
- concatenation of STRING1 and STRING2.
-
- We return either the position in the strings at which the match was
- found, -1 if no match, or -2 if error (such as failure
- stack overflow). */
-
- int
- re_search_2 (bufp, string1, size1, string2, size2, startpos, range,
- regs, stop)
- struct re_pattern_buffer *bufp;
- const char *string1, *string2;
- int size1, size2;
- int startpos;
- int range;
- struct re_registers *regs;
- int stop;
- {
- int val;
- register char *fastmap = bufp->fastmap;
- register char *translate = bufp->translate;
- int total_size = size1 + size2;
- int endpos = startpos + range;
-
- /* Check for out-of-range STARTPOS. */
- if (startpos < 0 || startpos > total_size)
- return -1;
-
- /* Fix up RANGE if it might eventually take us outside
- the virtual concatenation of STRING1 and STRING2. */
- if (endpos < -1)
- range = -1 - startpos;
- else if (endpos > total_size)
- range = total_size - startpos;
-
- /* Update the fastmap now if not correct already. */
- if (fastmap && !bufp->fastmap_accurate)
- if (re_compile_fastmap (bufp) == -2)
- return -2;
-
- /* If the search isn't to be a backwards one, don't waste time in a
- long search for a pattern that says it is anchored. */
- if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf
- && range > 0)
- {
- if (startpos > 0)
- return -1;
- else
- range = 1;
- }
-
- for (;;)
- {
- /* If a fastmap is supplied, skip quickly over characters that
- cannot be the start of a match. If the pattern can match the
- null string, however, we don't want to skip over characters; we
- want the first null string. */
- if (fastmap && startpos < total_size && !bufp->can_be_null)
- {
- if (range > 0) /* Searching forwards. */
- {
- register const char *d;
- register int lim = 0;
- int irange = range;
-
- if (startpos < size1 && startpos + range >= size1)
- lim = range - (size1 - startpos);
-
- d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
-
- /* Written out as an if-else to avoid testing `translate'
- inside the loop. */
- if (translate)
- {
- while (range > lim
- && !fastmap[(unsigned char) translate[*d++]])
- range--;
- }
- else
- {
- while (range > lim && !fastmap[(unsigned char) *d++])
- range--;
- }
-
- startpos += irange - range;
- }
- else /* Searching backwards. */
- {
- register char c
- = (size1 == 0 || startpos >= size1
- ? string2[startpos - size1]
- : string1[startpos]);
-
- if (translate
- ? !fastmap[(unsigned char) translate[(unsigned char) c]]
- : !fastmap[(unsigned char) c])
- goto advance;
- }
- }
-
- /* If can't match the null string, and that's all we have left, fail. */
- if (range >= 0 && startpos == total_size
- && fastmap && bufp->can_be_null == 0)
- return -1;
-
- val = re_match_2 (bufp, string1, size1, string2, size2,
- startpos, regs, stop);
- if (val >= 0)
- return startpos;
-
- if (val == -2)
- return -2;
-
- advance:
- if (!range)
- break;
- else if (range > 0)
- {
- range--;
- startpos++;
- }
- else
- {
- range++;
- startpos--;
- }
- }
- return -1;
- } /* re_search_2 */
-
- /* Declarations and macros for re_match_2. */
-
- static int bcmp_translate ();
- static boolean alt_match_null_string_p (),
- common_op_match_null_string_p (),
- group_match_null_string_p ();
- static void pop_failure_point ();
-
-
- /* Structure for per-register (a.k.a. per-group) information.
- This must not be longer than one word, because we push this value
- onto the failure stack. Other register information, such as the
- starting and ending positions (which are addresses), and the list of
- inner groups (which is a bits list) are maintained in separate
- variables.
-
- We are making a (strictly speaking) nonportable assumption here: that
- the compiler will pack our bit fields into something that fits into
- the type of `word', i.e., is something that fits into one item on the
- failure stack. */
- typedef union
- {
- failure_stack_elt_t word;
- struct
- {
- /* This field is one if this group can match the empty string,
- zero if not. If not yet determined, `MATCH_NOTHING_UNSET_VALUE'. */
- #define MATCH_NOTHING_UNSET_VALUE 3
- unsigned match_null_string_p : 2;
- unsigned is_active : 1;
- unsigned matched_something : 1;
- unsigned ever_matched_something : 1;
- } bits;
- } register_info_type;
-
- #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
- #define IS_ACTIVE(R) ((R).bits.is_active)
- #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
- #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
-
-
- /* Call this when have matched something; it sets `matched' flags for the
- registers corresponding to the group of which we currently are inside.
- Also records whether this group ever matched something. We only care
- about this information at `stop_memory', and then only about the
- previous time through the loop (if the group is starred or whatever).
- So it is ok to clear all the nonactive registers here. */
- #define SET_REGS_MATCHED() \
- do \
- { \
- unsigned r; \
- for (r = lowest_active_reg; r <= highest_active_reg; r++) \
- { \
- MATCHED_SOMETHING (reg_info[r]) \
- = EVER_MATCHED_SOMETHING (reg_info[r]) \
- = 1; \
- } \
- } \
- while (0)
-
-
- /* This converts a pointer into one or the other of the strings into an
- offset from the beginning of that string. */
- #define POINTER_TO_OFFSET(pointer) IS_IN_FIRST_STRING (pointer) \
- ? (pointer) - string1 \
- : (pointer) - string2 + size1
-
- /* Registers are set to a sentinel value when they haven't yet matched
- anything. */
- #define REG_UNSET_VALUE ((char *) -1)
- #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
-
-
- /* Macros for dealing with the split strings in re_match_2. */
-
- #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
-
- /* Call before fetching a character with *d. This switches over to
- string2 if necessary. */
- #define PREFETCH \
- while (d == dend) \
- { \
- /* End of string2 => fail. */ \
- if (dend == end_match_2) \
- goto fail; \
- /* End of string1 => advance to string2. */ \
- d = string2; \
- dend = end_match_2; \
- }
-
-
- /* Test if at very beginning or at very end of the virtual concatenation
- of string1 and string2. If there is only one string, we've put it in
- string2. */
- #define AT_STRINGS_BEG (d == (size1 ? string1 : string2) || !size2)
- #define AT_STRINGS_END (d == end2)
-
-
- /* Test if D points to a character which is word-constituent. We have
- two special cases to check for: if past the end of string1, look at
- the first character in string2; and if before the beginning of
- string2, look at the last character in string1.
-
- We assume there is a string1, so use this in conjunction with
- AT_STRINGS_BEG. */
- #define LETTER_P(d) \
- (SYNTAX ((d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d))\
- == Sword)
-
- /* Test if the character before D and the one at D differ with respect
- to being word-constituent. */
- #define AT_WORD_BOUNDARY(d) \
- (AT_STRINGS_BEG || AT_STRINGS_END || LETTER_P (d - 1) != LETTER_P (d))
-
-
- /* Free everything we malloc. */
- #ifdef REGEX_MALLOC
- #define FREE_VARIABLES() \
- do { \
- free (failure_stack.stack); \
- free (regstart); \
- free (regend); \
- free (old_regstart); \
- free (old_regend); \
- free (reg_info); \
- free (best_regstart); \
- free (best_regend); \
- reg_info = NULL; \
- failure_stack.stack = NULL; \
- regstart = regend = old_regstart = old_regend \
- = best_regstart = best_regend = NULL; \
- } while (0)
- #else /* not REGEX_MALLOC */
- #define FREE_VARIABLES() /* As nothing, since we use alloca. */
- #endif /* not REGEX_MALLOC */
-
-
- /* These values must meet several constraints. They must not be valid
- register values; since we have a limit of 255 registers (because
- we use only one byte in the pattern for the register number), we can
- use numbers larger than 255. They must differ by 1, because of
- NUM_FAILURE_ITEMS above. And the value for the lowest register must
- be larger than the value for the highest register, so we do not try
- to actually save any registers when none are active. */
- #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
- #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
-
- /* Matching routines. */
-
- #ifndef emacs /* Emacs never uses this. */
-
- /* re_match is like re_match_2 except it takes only a single string. */
-
- int
- re_match (bufp, string, size, pos, regs)
- const struct re_pattern_buffer *bufp;
- const char *string;
- int size, pos;
- struct re_registers *regs;
- {
- return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
- }
- #endif /* not emacs */
-
-
- /* re_match_2 matches the compiled pattern in BUFP against the
- the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
- and SIZE2, respectively). We start matching at POS, and stop
- matching at STOP.
-
- If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
- store offsets for the substring each group matched in REGS. (If
- BUFP->caller_allocated_regs is nonzero, we fill REGS->num_regs
- registers; if zero, we set REGS->num_regs to max (RE_NREGS,
- re_nsub+1) and allocate the space with malloc before filling.)
-
- We return -1 if no match, -2 if an internal error (such as the
- failure stack overflowing). Otherwise, we return the length of the
- matched substring. */
-
- int
- re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
- const struct re_pattern_buffer *bufp;
- const char *string1, *string2;
- int size1, size2;
- int pos;
- struct re_registers *regs;
- int stop;
- {
- /* General temporaries. */
- int mcnt;
- unsigned char *p1;
-
- /* Just past the end of the corresponding string. */
- const char *end1, *end2;
-
- /* Pointers into string1 and string2, just past the last characters in
- each to consider matching. */
- const char *end_match_1, *end_match_2;
-
- /* Where we are in the data, and the end of the current string. */
- const char *d, *dend;
-
- /* Where we are in the pattern, and the end of the pattern. */
- unsigned char *p = bufp->buffer;
- register unsigned char *pend = p + bufp->used;
-
- /* We use this to map every character in the string. */
- char *translate = bufp->translate;
-
- /* Failure point stack. Each place that can handle a failure further
- down the line pushes a failure point on this stack. It consists of
- restart, regend, and reg_info for all registers corresponding to the
- subexpressions we're currently inside, plus the number of such
- registers, and, finally, two char *'s. The first char * is where to
- resume scanning the pattern; the second one is where to resume
- scanning the strings. If the latter is zero, the failure point is a
- ``dummy''; if a failure happens and the failure point is a dummy, it
- gets discarded and the next next one is tried. */
- failure_stack_type failure_stack;
- #ifdef DEBUG
- static unsigned failure_id = 0;
- #endif
-
- /* We fill all the registers internally, independent of what we
- return, for use in backreferences. The number here includes
- register zero. */
- unsigned num_regs = bufp->re_nsub + 1;
-
- /* The currently active registers. */
- unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-
- /* Information on the contents of registers. These are pointers into
- the input strings; they record just what was matched (on this
- attempt) by a subexpression part of the pattern, that is, the
- regnum-th regstart pointer points to where in the pattern we began
- matching and the regnum-th regend points to right after where we
- stopped matching the regnum-th subexpression. (The zeroth register
- keeps track of what the whole pattern matches.) */
- const char **regstart
- = (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
- const char **regend
- = (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
-
- /* If a group that's operated upon by a repetition operator fails to
- match anything, then the register for its start will need to be
- restored because it will have been set to wherever in the string we
- are when we last see its open-group operator. Similarly for a
- register's end. */
- const char **old_regstart
- = (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
- const char **old_regend
- = (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
-
- /* The is_active field of reg_info helps us keep track of which (possibly
- nested) subexpressions we are currently in. The matched_something
- field of reg_info[reg_num] helps us tell whether or not we have
- matched any of the pattern so far this time through the reg_num-th
- subexpression. These two fields get reset each time through any
- loop their register is in. */
- register_info_type *reg_info = (register_info_type *)
- REGEX_ALLOCATE (num_regs * sizeof (register_info_type));
-
- /* The following record the register info as found in the above
- variables when we find a match better than any we've seen before.
- This happens as we backtrack through the failure points, which in
- turn happens only if we have not yet matched the entire string. */
- unsigned best_regs_set = 0;
- const char **best_regstart
- = (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
- const char **best_regend
- = (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
-
- /* Used when we pop values we don't care about. */
- const char **reg_dummy
- = (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
- register_info_type *reg_info_dummy = (register_info_type *)
- REGEX_ALLOCATE (num_regs * sizeof (register_info_type));
-
- #ifdef DEBUG
- /* Counts the total number of registers pushed. */
- unsigned num_regs_pushed = 0;
- #endif
-
- DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
-
- if (!INIT_FAILURE_STACK (failure_stack))
- return -2;
-
- if (!(regstart && regend && old_regstart && old_regend && reg_info
- && best_regstart && best_regend))
- {
- FREE_VARIABLES ();
- return -2;
- }
-
- /* The starting position is bogus. */
- if (pos < 0 || pos > size1 + size2)
- {
- FREE_VARIABLES ();
- return -1;
- }
-
-
- /* Initialize subexpression text positions to -1 to mark ones that no
- \( or ( and \) or ) has been seen for. Also set all registers to
- inactive and mark them as not having any inner groups, able to
- match the empty string, matched anything so far, or ever failed. */
- for (mcnt = 0; mcnt < num_regs; mcnt++)
- {
- regstart[mcnt] = regend[mcnt]
- = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
-
- REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NOTHING_UNSET_VALUE;
- IS_ACTIVE (reg_info[mcnt]) = 0;
- MATCHED_SOMETHING (reg_info[mcnt]) = 0;
- EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
- }
-
- IS_ACTIVE (reg_info[0]) = 1;
-
- /* We move string1 into string2 if the latter's empty---but not if
- string1 is null. */
- if (size2 == 0 && string1 != NULL)
- {
- string2 = string1;
- size2 = size1;
- string1 = 0;
- size1 = 0;
- }
- end1 = string1 + size1;
- end2 = string2 + size2;
-
- /* Compute where to stop matching, within the two strings. */
- if (stop <= size1)
- {
- end_match_1 = string1 + stop;
- end_match_2 = string2;
- }
- else
- {
- end_match_1 = end1;
- end_match_2 = string2 + stop - size1;
- }
-
- /* `p' scans through the pattern as `d' scans through the data. `dend'
- is the end of the input string that `d' points within. `d' is
- advanced into the following input string whenever necessary, but
- this happens before fetching; therefore, at the beginning of the
- loop, `d' can be pointing at the end of a string, but it cannot
- equal `string2'. */
- if (size1 > 0 && pos <= size1)
- {
- d = string1 + pos;
- dend = end_match_1;
- }
- else
- {
- d = string2 + pos - size1;
- dend = end_match_2;
- }
-
- DEBUG_PRINT1 ("The compiled pattern is: ");
- DEBUG_COMPILED_PATTERN_PRINTER (bufp, p, pend);
- DEBUG_PRINT1 ("The string to match is: `");
- DEBUG_DOUBLE_STRING_PRINTER (d, string1, size1, string2, size2);
- DEBUG_PRINT1 ("'\n");
-
- /* This loops over pattern commands. It exits by returning from the
- function if the match is complete, or it drops through if the match
- fails at this starting point in the input data. */
- for (;;)
- {
- DEBUG_PRINT2 ("\n0x%x: ", p);
-
- if (p == pend)
- { /* End of pattern means we might have succeeded. */
- DEBUG_PRINT1 ("End of pattern: ");
- /* If not end of string, try backtracking. Otherwise done. */
- if (d != end_match_2)
- {
- DEBUG_PRINT1 ("backtracking.\n");
-
- if (!FAILURE_STACK_EMPTY ())
- { /* More failure points to try. */
-
- boolean in_same_string =
- IS_IN_FIRST_STRING (best_regend[0])
- == MATCHING_IN_FIRST_STRING;
-
- /* If exceeds best match so far, save it. */
- if (!best_regs_set
- || (in_same_string && d > best_regend[0])
- || (!in_same_string && !MATCHING_IN_FIRST_STRING))
- {
- best_regs_set = 1;
- best_regend[0] = d; /* Never use regstart[0]. */
-
- for (mcnt = 1; mcnt < num_regs; mcnt++)
- {
- best_regstart[mcnt] = regstart[mcnt];
- best_regend[mcnt] = regend[mcnt];
- }
- }
- goto fail;
- }
-
- /* If no failure points, don't restore garbage. */
- else if (best_regs_set)
- {
- restore_best_regs:
- /* Restore best match. */
- d = best_regend[0];
-
- if (d >= string1 && d <= end1)
- dend = end_match_1;
-
- for (mcnt = 0; mcnt < num_regs; mcnt++)
- {
- regstart[mcnt] = best_regstart[mcnt];
- regend[mcnt] = best_regend[mcnt];
- }
- }
- } /* d != end_match_2 */
-
- DEBUG_PRINT1 ("accepting match.\n");
-
- /* If caller wants register contents data back, do it. */
- if (regs && !bufp->no_sub)
- {
- /* If they haven't allocated it, we'll do it. */
- if (!bufp->caller_allocated_regs)
- {
- regs->num_regs = MAX (RE_NREGS, num_regs + 1);
- regs->start = TALLOC (regs->num_regs, regoff_t);
- regs->end = TALLOC (regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- return -2;
- }
-
- /* Convert the pointer data in `regstart' and `regend' to
- indices. Register zero has to be set differently,
- since we haven't kept track of any info for it. */
- if (regs->num_regs > 0)
- {
- regs->start[0] = pos;
- regs->end[0] = MATCHING_IN_FIRST_STRING
- ? d - string1
- : d - string2 + size1;
- }
-
- /* Go through the first min (num_regs, regs->num_regs)
- registers, since that is all we initialized at the
- beginning. */
- for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
- {
- if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
- regs->start[mcnt] = regs->end[mcnt] = -1;
- else
- {
- regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
- regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
- }
- }
-
- /* If the regs structure we return has more elements than
- it than were in the pattern, set the extra elements to
- -1. If we allocated the registers, this is the case,
- because we always allocate enough to have at least -1
- at the end. */
- for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
- regs->start[mcnt] = regs->end[mcnt] = -1;
- } /* regs && !bufp->no_sub */
-
- FREE_VARIABLES ();
- DEBUG_PRINT2 ("%d registers pushed.\n", num_regs_pushed);
-
- mcnt = d - pos - (MATCHING_IN_FIRST_STRING
- ? string1
- : string2 - size1);
-
- DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
-
- return mcnt;
- }
-
- /* Otherwise match next pattern command. */
- #ifdef SWITCH_ENUM_BUG
- switch ((int) ((re_opcode_t) *p++))
- #else
- switch ((re_opcode_t) *p++)
- #endif
- {
- /* Ignore these. Used to ignore the n of succeed_n's which
- currently have n == 0. */
- case no_op:
- DEBUG_PRINT1 ("EXECUTING no_op.\n");
- break;
-
-
- /* Match the next n pattern characters exactly. The following
- byte in the pattern defines n, and the n bytes after that
- are the characters to match. */
- case exactn:
- mcnt = *p++;
- DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
-
- /* This is written out as an if-else so we don't waste time
- testing `translate' inside the loop. */
- if (translate)
- {
- do
- {
- PREFETCH;
- if (translate[(unsigned char) *d++] != (char) *p++)
- goto fail;
- }
- while (--mcnt);
- }
- else
- {
- do
- {
- PREFETCH;
- if (*d++ != (char) *p++) goto fail;
- }
- while (--mcnt);
- }
- SET_REGS_MATCHED ();
- break;
-
-
- /* Match anything but possibly a newline or a null. */
- case anychar:
- DEBUG_PRINT1 ("EXECUTING anychar.\n");
-
- PREFETCH;
-
- if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
- || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
- goto fail;
-
- SET_REGS_MATCHED ();
- d++;
- break;
-
-
- case charset:
- case charset_not:
- {
- register unsigned char c;
- boolean not = (re_opcode_t) *(p - 1) == charset_not;
-
- DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
-
- PREFETCH;
- c = TRANSLATE (*d); /* The character to match. */
-
- if (c < (unsigned char) (*p * BYTEWIDTH)
- && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
-
- p += 1 + *p;
-
- if (!not) goto fail;
-
- SET_REGS_MATCHED ();
- d++;
- break;
- }
-
-
- /* The beginning of a group is represented by start_memory.
- The arguments are the register number in the next byte, and the
- number of groups inner to this one in the next. The text
- matched within the group is recorded (in the internal
- registers data structure) under the register number. */
- case start_memory:
- DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
-
- /* Find out if this group can match the empty string. */
- p1 = p; /* To send to group_match_null_string_p. */
-
- if (REG_MATCH_NULL_STRING_P (reg_info[*p])
- == MATCH_NOTHING_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P (reg_info[*p])
- = group_match_null_string_p (&p1, pend, reg_info);
-
- /* Save the position in the string where we were the last time
- we were at this open-group operator in case the group is
- operated upon by a repetition operator, e.g., with `(a*)*b'
- against `ab'; then we want to ignore where we are now in
- the string in case this attempt to match fails. */
- old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
- ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
- : regstart[*p];
- DEBUG_PRINT2 (" old_regstart: %d\n",
- POINTER_TO_OFFSET (old_regstart[*p]));
-
- regstart[*p] = d;
- DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
-
- IS_ACTIVE (reg_info[*p]) = 1;
- MATCHED_SOMETHING (reg_info[*p]) = 0;
-
- /* This is the new highest active register. */
- highest_active_reg = *p;
-
- /* If nothing was active before, this is the new lowest active
- register. */
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *p;
-
- /* Move past the register number and inner group count. */
- p += 2;
- break;
-
-
- /* The stop_memory opcode represents the end of a group. Its
- arguments are the same as start_memory's: the register
- number, and the number of inner groups. */
- case stop_memory:
- DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
-
- /* We need to save the string position the last time we were at
- this close-group operator in case the group is operated
- upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
- against `aba'; then we want to ignore where we are now in
- the string in case this attempt to match fails. */
- old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
- ? REG_UNSET (regend[*p]) ? d : regend[*p]
- : regend[*p];
- DEBUG_PRINT2 (" old_regend: %d\n",
- POINTER_TO_OFFSET (old_regend[*p]));
-
- regend[*p] = d;
- DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
-
- /* This register isn't active anymore. */
- IS_ACTIVE (reg_info[*p]) = 0;
-
- /* If this was the only register active, nothing is active
- anymore. */
- if (lowest_active_reg == highest_active_reg)
- {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- }
- else
- { /* We must scan for the new highest active register, since
- it isn't necessarily one less than now: consider
- (a(b)c(d(e)f)g). When group 3 ends, after the f), the
- new highest active register is 1. */
- unsigned char r = *p - 1;
-
- /* This loop will always terminate, because register 0 is
- always active. */
- assert (IS_ACTIVE (reg_info[0]));
- while (!IS_ACTIVE (reg_info[r]))
- r--;
-
- /* If we end up at register zero, that means that we saved
- the registers as the result of an on_failure_jump, not
- a start_memory, and we jumped to past the innermost
- stop_memory. For example, in ((.)*). We save
- registers 1 and 2 as a result of the *, but when we pop
- back to the second ), we are at the stop_memory 1.
- Thus, nothing is active. */
- if (r != 0)
- highest_active_reg = r;
- else
- {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- }
- }
-
- /* If just failed to match something this time around with a
- group that's operated on by a repetition operator, try to
- force exit from the ``loop,'' and restore the register
- information for this group that we had before trying this
- last match. */
- if ((!MATCHED_SOMETHING (reg_info[*p])
- || (re_opcode_t) p[-3] == start_memory)
- && (p + 2) < pend)
- {
- boolean is_a_jump_n = false;
-
- p1 = p + 2;
- mcnt = 0;
- switch ((re_opcode_t) *p1++)
- {
- case no_pop_jump_n:
- is_a_jump_n = true;
- case pop_failure_jump:
- case maybe_pop_jump:
- case no_pop_jump:
- case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- if (is_a_jump_n)
- p1 += 2;
- break;
-
- default:
- /* do nothing */ ;
- }
- p1 += mcnt;
-
- /* If the next operation is a jump backwards in the pattern
- to an on_failure_jump right before the start_memory
- corresponding to this stop_memory, exit from the loop
- by forcing a failure after pushing on the stack the
- on_failure_jump's jump in the pattern, and d. */
- if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
- && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
- {
- /* If this group ever matched anything, then restore
- what its registers were before trying this last
- failed match, e.g., with `(a*)*b' against `ab' for
- regstart[1], and, e.g., with `((a*)*(b*)*)*'
- against `aba' for regend[3].
-
- Also restore the registers for inner groups for,
- e.g., `((a*)(b*))*' against `aba' (register 3 would
- otherwise get trashed). */
-
- if (EVER_MATCHED_SOMETHING (reg_info[*p]))
- {
- unsigned r;
-
- EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
-
- /* Restore this and inner groups' (if any) registers. */
- for (r = *p; r < *p + *(p + 1); r++)
- {
- regstart[r] = old_regstart[r];
-
- /* xx why this test? */
- if ((int) old_regend[r] >= (int) regstart[r])
- regend[r] = old_regend[r];
- }
- }
- p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
-
- goto fail;
- }
- }
-
- /* Move past the register number and the inner group count. */
- p += 2;
- break;
-
-
- /* \<digit> has been turned into a `duplicate' command which is
- followed by the numeric value of <digit> as the register number. */
- case duplicate:
- {
- register const char *d2, *dend2;
- int regno = *p++; /* Get which register to match against. */
- DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
-
- /* Can't back reference a group which we've never matched. */
- if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
- goto fail;
-
- /* Where in input to try to start matching. */
- d2 = regstart[regno];
-
- /* Where to stop matching; if both the place to start and
- the place to stop matching are in the same string, then
- set to the place to stop, otherwise, for now have to use
- the end of the first string. */
-
- dend2 = ((IS_IN_FIRST_STRING (regstart[regno])
- == IS_IN_FIRST_STRING (regend[regno]))
- ? regend[regno] : end_match_1);
- for (;;)
- {
- /* If necessary, advance to next segment in register
- contents. */
- while (d2 == dend2)
- {
- if (dend2 == end_match_2) break;
- if (dend2 == regend[regno]) break;
-
- /* End of string1 => advance to string2. */
- d2 = string2;
- dend2 = regend[regno];
- }
- /* At end of register contents => success */
- if (d2 == dend2) break;
-
- /* If necessary, advance to next segment in data. */
- PREFETCH;
-
- /* How many characters left in this segment to match. */
- mcnt = dend - d;
-
- /* Want how many consecutive characters we can match in
- one shot, so, if necessary, adjust the count. */
- if (mcnt > dend2 - d2)
- mcnt = dend2 - d2;
-
- /* Compare that many; failure if mismatch, else move
- past them. */
- if (translate
- ? bcmp_translate (d, d2, mcnt, translate)
- : bcmp (d, d2, mcnt))
- goto fail;
- d += mcnt, d2 += mcnt;
- }
- }
- break;
-
-
- /* begline matches the empty string at the beginning of the string
- (unless `not_bol' is set in `bufp'), and, if
- `newline_anchor' is set, after newlines. */
- case begline:
- DEBUG_PRINT1 ("EXECUTING begline.\n");
-
- if (AT_STRINGS_BEG)
- {
- if (!bufp->not_bol) break;
- }
- else if (d[-1] == '\n' && bufp->newline_anchor)
- {
- break;
- }
- /* In all other cases, we fail. */
- goto fail;
-
-
- /* endline is the dual of begline. */
- case endline:
- DEBUG_PRINT1 ("EXECUTING endline.\n");
-
- if (AT_STRINGS_END)
- {
- if (!bufp->not_eol) break;
- }
-
- /* We have to ``prefetch'' the next character. */
- else if ((d == end1 ? *string2 : *d) == '\n'
- && bufp->newline_anchor)
- {
- break;
- }
- goto fail;
-
-
- /* Match at the very beginning of the data. */
- case begbuf:
- DEBUG_PRINT1 ("EXECUTING begbuf.\n");
- if (AT_STRINGS_BEG)
- break;
- goto fail;
-
-
- /* Match at the very end of the data. */
- case endbuf:
- DEBUG_PRINT1 ("EXECUTING endbuf.\n");
- if (AT_STRINGS_END)
- break;
- goto fail;
-
-
- /* on_failure_keep_string_jump is used to optimize `.*\n'. It
- pushes NULL as the value for the string on the stack. Then
- pop_failure_point will keep the current value for the string,
- instead of restoring it. To see why, consider matching
- `foo\nbar' against `.*\n'. The .* matches the foo; then the
- . fails against the \n. But the next thing we want to do is
- match the \n against the \n; if we restored the string value,
- we would be back at the foo.
-
- Because this is used only in specific cases, we don't need to
- go through the hassle of checking all the things that
- on_failure_jump does, to make sure the right things get saved
- on the stack. Hence we don't share its code. The only
- reason to push anything on the stack at all is that otherwise
- we would have to change anychar's code to do something
- besides goto fail in this case; that seems worse than this. */
- case on_failure_keep_string_jump:
- DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
-
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
-
- PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
- break;
-
-
- /* Uses of on_failure_jump:
-
- Each alternative starts with an on_failure_jump that points
- to the beginning of the next alternative. Each alternative
- except the last ends with a jump that in effect jumps past
- the rest of the alternatives. (They really jump to the
- ending jump of the following alternative, because tensioning
- these jumps is a hassle.)
-
- Repeats start with an on_failure_jump that points past both
- the repetition text and either the following jump or
- pop_failure_jump back to this on_failure_jump. */
- case on_failure_jump:
- on_failure:
- DEBUG_PRINT1 ("EXECUTING on_failure_jump");
-
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
-
- /* If this on_failure_jump comes right before a group (i.e.,
- the original * applied to a group), save the information
- for that group and all inner ones, so that if we fail back
- to this point, the group's information will be correct.
- For example, in \(a*\)*\1, we only need the preceding group,
- and in \(\(a*\)b*\)\2, we need the inner group. */
-
- /* We can't use `p' to check ahead because we push
- a failure point to `p + mcnt' after we do this. */
- p1 = p;
-
- /* We need to skip no_op's before we look for the
- start_memory in case this on_failure_jump is happening as
- the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
- against aba. */
- while (p1 < pend && (re_opcode_t) *p1 == no_op)
- p1++;
-
- if (p1 < pend && (re_opcode_t) *p1 == start_memory)
- {
- /* We have a new highest active register now. This will
- get reset at the start_memory we are about to get to,
- but we will have saved all the registers relevant to
- this repetition op, as described above. */
- highest_active_reg = *(p1 + 1) + *(p1 + 2);
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *(p1 + 1);
- }
-
- DEBUG_PRINT1 (":\n");
- PUSH_FAILURE_POINT (p + mcnt, d, -2);
- break;
-
-
- /* A smart repeat ends with a maybe_pop_jump.
- We change it either to a pop_failure_jump or a no_pop_jump. */
- case maybe_pop_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
- {
- register unsigned char *p2 = p;
-
- /* Compare the beginning of the repeat with what in the
- pattern follows its end. If we can establish that there
- is nothing that they would both match, i.e., that we
- would have to backtrack because of (as in, e.g., `a*a')
- then we can change to pop_failure_jump, because we'll
- never have to backtrack. */
-
- /* Skip over open/close-group commands. */
- while (p2 + 2 < pend
- && ((re_opcode_t) *p2 == stop_memory
- || (re_opcode_t) *p2 == start_memory))
- p2 += 3; /* Skip over args, too. */
-
- /* If we're at the end of the pattern, we can change. */
- if (p2 == pend)
- p[-3] = (unsigned char) pop_failure_jump;
-
- else if ((re_opcode_t) *p2 == exactn
- || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
- {
- register unsigned char c
- = *p2 == (unsigned char) endline ? '\n' : p2[2];
- p1 = p + mcnt;
-
- /* p1[0] ... p1[2] are the on_failure_jump corresponding
- to the maybe_finalize_jump of this case. Examine what
- follows it. */
- if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
- p[-3] = (unsigned char) pop_failure_jump;
- else if ((re_opcode_t) p1[3] == charset
- || (re_opcode_t) p1[3] == charset_not)
- {
- int not = (re_opcode_t) p1[3] == charset_not;
-
- if (c < (unsigned char) (p1[4] * BYTEWIDTH)
- && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
-
- /* `not' is equal to 1 if c would match, which means
- that we can't change to pop_failure_jump. */
- if (!not)
- p[-3] = (unsigned char) pop_failure_jump;
- }
- }
- }
- p -= 2; /* Point at relative address again. */
- if ((re_opcode_t) p[-1] != pop_failure_jump)
- {
- p[-1] = (unsigned char) no_pop_jump;
- goto no_pop;
- }
- /* Note fall through. */
-
-
- /* The end of a simple repeat has a pop_failure_jump back to
- its matching on_failure_jump, where the latter will push a
- failure point. The pop_failure_jump takes off failure
- points put on by this pop_failure_jump's matching
- on_failure_jump; we got through the pattern to here from the
- matching on_failure_jump, so didn't fail. */
- case pop_failure_jump:
- {
- /* We need to pass separate storage for the lowest and
- highest registers, even though we aren't interested.
- Otherwise, we will restore only one register from the
- stack, since lowest will equal highest in
- pop_failure_point (since they'll be the same memory
- location). */
- unsigned dummy_low, dummy_high;
- unsigned char *pdummy = NULL;
-
- DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
- pop_failure_point (bufp, pend,
- #ifdef DEBUG
- string1, size1, string2, size2,
- #endif
- &failure_stack, &pdummy, &pdummy,
- &dummy_low, &dummy_high,
- ®_dummy, ®_dummy, ®_info_dummy);
- }
- /* Note fall through. */
-
-
- /* Jump without taking off any failure points. */
- case no_pop_jump:
- no_pop:
- EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
- DEBUG_PRINT2 ("EXECUTING no_pop_jump %d ", mcnt);
- p += mcnt; /* Do the jump. */
- DEBUG_PRINT2 ("(to 0x%x).\n", p);
- break;
-
-
- /* We need this opcode so we can detect where alternatives end
- in `group_match_null_string_p' et al. */
- case jump_past_next_alt:
- DEBUG_PRINT1 ("EXECUTING jump_past_next_alt.\n");
- goto no_pop;
-
-
- /* Normally, the on_failure_jump pushes a failure point, which
- then gets popped at pop_failure_jump. We will end up at
- pop_failure_jump, also, and with a pattern of, say, `a+', we
- are skipping over the on_failure_jump, so we have to push
- something meaningless for pop_failure_jump to pop. */
- case dummy_failure_jump:
- DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
- /* It doesn't matter what we push for the string here. What
- the code at `fail' tests is the value for the pattern. */
- PUSH_FAILURE_POINT (0, 0, -2);
- goto no_pop;
-
-
- /* Have to succeed matching what follows at least n times. Then
- just handle like an on_failure_jump. */
- case succeed_n:
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
-
- /* Originally, this is how many times we HAVE to succeed. */
- if (mcnt)
- {
- mcnt--;
- p += 2;
- STORE_NUMBER_AND_INCR (p, mcnt);
- DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
- }
- else if (mcnt == 0)
- {
- DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
- p[2] = (unsigned char) no_op;
- p[3] = (unsigned char) no_op;
- goto on_failure;
- }
- #ifdef DEBUG
- else
- {
- fprintf (stderr, "regex: negative n at succeed_n.\n");
- abort ();
- }
- #endif /* DEBUG */
- break;
-
- case no_pop_jump_n:
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT2 ("EXECUTING no_pop_jump_n %d.\n", mcnt);
-
- /* Originally, this is how many times we CAN jump. */
- if (mcnt)
- {
- mcnt--;
- STORE_NUMBER(p + 2, mcnt);
- goto no_pop;
- }
- /* If don't have to jump any more, skip over the rest of command. */
- else
- p += 4;
- break;
-
- case set_number_at:
- {
- DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
-
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- p1 = p + mcnt;
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- STORE_NUMBER (p1, mcnt);
- break;
- }
-
- case wordbound:
- DEBUG_PRINT1 ("EXECUTING wordbound.\n");
- if (AT_WORD_BOUNDARY (d))
- break;
- goto fail;
-
- case notwordbound:
- DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
- if (AT_WORD_BOUNDARY (d))
- goto fail;
- break;
-
- case wordbeg:
- DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
- if (LETTER_P (d) && (AT_STRINGS_BEG || !LETTER_P (d - 1)))
- break;
- goto fail;
-
- case wordend:
- DEBUG_PRINT1 ("EXECUTING wordend.\n");
- if (!AT_STRINGS_BEG && LETTER_P (d - 1)
- && (!LETTER_P (d) || AT_STRINGS_END))
- break;
- goto fail;
-
- #ifdef emacs
- #ifdef emacs19
- case before_dot:
- DEBUG_PRINT1 ("EXECUTING before_dot.\n");
- if (PTR_CHAR_POS ((unsigned char *) d) >= point)
- goto fail;
- break;
-
- case at_dot:
- DEBUG_PRINT1 ("EXECUTING at_dot.\n");
- if (PTR_CHAR_POS ((unsigned char *) d) != point)
- goto fail;
- break;
-
- case after_dot:
- DEBUG_PRINT1 ("EXECUTING after_dot.\n");
- if (PTR_CHAR_POS ((unsigned char *) d) <= point)
- goto fail;
- break;
- #else /* not emacs19 */
- case at_dot:
- DEBUG_PRINT1 ("EXECUTING at_dot.\n");
- if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
- goto fail;
- break;
- #endif /* not emacs19 */
-
- case syntaxspec:
- DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
- mcnt = *p++;
- goto matchsyntax;
-
- case wordchar:
- DEBUG_PRINT1 ("EXECUTING wordchar.\n");
- mcnt = (int) Sword;
- matchsyntax:
- PREFETCH;
- if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
- SET_REGS_MATCHED ();
- break;
-
- case notsyntaxspec:
- DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
- mcnt = *p++;
- goto matchnotsyntax;
-
- case notwordchar:
- DEBUG_PRINT1 ("EXECUTING notwordchar.\n");
- mcnt = (int) Sword;
- matchnotsyntax: /* We goto here from notsyntaxspec. */
- PREFETCH;
- if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
- SET_REGS_MATCHED ();
- break;
-
- #else /* not emacs */
- case wordchar:
- DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
- PREFETCH;
- if (!LETTER_P (d))
- goto fail;
- SET_REGS_MATCHED ();
- break;
-
- case notwordchar:
- DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
- PREFETCH;
- if (LETTER_P (d))
- goto fail;
- SET_REGS_MATCHED ();
- break;
- #endif /* not emacs */
-
- default:
- abort ();
- }
- continue; /* Successfully executed one pattern command; keep going. */
-
-
- /* We goto here if a matching operation fails. */
- fail:
- if (!FAILURE_STACK_EMPTY ())
- { /* A restart point is known. Restore to that state. */
- DEBUG_PRINT1 ("\nFAIL:\n");
- pop_failure_point (bufp, pend,
- #ifdef DEBUG
- string1, size1, string2, size2,
- #endif
- &failure_stack, &p, &d, &lowest_active_reg,
- &highest_active_reg, ®start, ®end,
- ®_info);
-
- /* If this failure point is a dummy, try the next one. */
- if (!p)
- goto fail;
-
- /* If we failed to the end of the pattern, don't examine *p. */
- assert (p <= pend);
- if (p < pend)
- {
- boolean is_a_jump_n = false;
-
- /* If failed to a backwards jump that's part of a repetition
- loop, need to pop this failure point and use the next one. */
- switch ((re_opcode_t) *p)
- {
- case no_pop_jump_n:
- is_a_jump_n = true;
- case maybe_pop_jump:
- case pop_failure_jump:
- case no_pop_jump:
- p1 = p + 1;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- p1 += mcnt;
-
- if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
- || (!is_a_jump_n
- && (re_opcode_t) *p1 == on_failure_jump))
- goto fail;
- break;
- default:
- /* do nothing */ ;
- }
- }
-
- if (d >= string1 && d <= end1)
- dend = end_match_1;
- }
- else
- break; /* Matching at this starting point really fails. */
- } /* for (;;) */
-
- if (best_regs_set)
- goto restore_best_regs;
-
- FREE_VARIABLES ();
-
- return -1; /* Failure to match. */
- } /* re_match_2 */
-
- /* Subroutine definitions for re_match_2. */
-
-
- /* Pops what PUSH_FAILURE_STACK pushes. */
-
- static void
- pop_failure_point (bufp, pattern_end,
- #ifdef DEBUG
- string1, size1, string2, size2,
- #endif
- failure_stack_ptr, pattern_place, string_place,
- lowest_active_reg, highest_active_reg,
- regstart, regend, reg_info)
- const struct re_pattern_buffer *bufp; /* These not modified. */
- unsigned char *pattern_end;
- #ifdef DEBUG
- unsigned char *string1, *string2;
- int size1, size2;
- #endif
- failure_stack_type *failure_stack_ptr; /* These get modified. */
- const unsigned char **pattern_place;
- const unsigned char **string_place;
- unsigned *lowest_active_reg, *highest_active_reg;
- const unsigned char ***regstart;
- const unsigned char ***regend;
- register_info_type **reg_info;
- {
- #ifdef DEBUG
- /* Type is really unsigned; it's declared this way just to avoid a
- compiler warning. */
- failure_stack_elt_t failure_id;
- #endif
- int this_reg;
- const unsigned char *string_temp;
-
- assert (!FAILURE_STACK_PTR_EMPTY ());
-
- /* Remove failure points and point to how many regs pushed. */
- DEBUG_PRINT1 ("pop_failure_point:\n");
- DEBUG_PRINT2 (" Before pop, next avail: %d\n", failure_stack_ptr->avail);
- DEBUG_PRINT2 (" size: %d\n", failure_stack_ptr->size);
-
- assert (failure_stack_ptr->avail >= NUM_NONREG_ITEMS);
-
- DEBUG_POP (&failure_id);
- DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id);
-
- /* If the saved string location is NULL, it came from an
- on_failure_keep_string_jump opcode, and we want to throw away the
- saved NULL, thus retaining our current position in the string. */
- string_temp = POP_FAILURE_ITEM ();
- if (string_temp != NULL)
- *string_place = string_temp;
-
- DEBUG_PRINT2 (" Popping string 0x%x: `", *string_place);
- DEBUG_DOUBLE_STRING_PRINTER (*string_place, string1, size1, string2, size2);
- DEBUG_PRINT1 ("'\n");
-
- *pattern_place = POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" Popping pattern 0x%x: ", *pattern_place);
- DEBUG_COMPILED_PATTERN_PRINTER (bufp, *pattern_place, pattern_end);
-
- /* Restore register info. */
- *highest_active_reg = (unsigned) POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" Popping high active reg: %d\n", *highest_active_reg);
-
- *lowest_active_reg = (unsigned) POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" Popping low active reg: %d\n", *lowest_active_reg);
-
- for (this_reg = *highest_active_reg; this_reg >= *lowest_active_reg;
- this_reg--)
- {
- DEBUG_PRINT2 (" Popping reg: %d\n", this_reg);
-
- (*reg_info)[this_reg].word = POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" info: 0x%x\n", (*reg_info)[this_reg]);
-
- (*regend)[this_reg] = POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" end: 0x%x\n", (*regend)[this_reg]);
-
- (*regstart)[this_reg] = POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" start: 0x%x\n", (*regstart)[this_reg]);
- }
- } /* pop_failure_point */
-
-
- /* We are passed P pointing to a register number after a start_memory.
-
- Return true if the pattern up to the corresponding stop_memory can
- match the empty string, and false otherwise.
-
- If we find the matching stop_memory, sets P to point to one past its number.
- Otherwise, sets P to an undefined byte less than or equal to END.
-
- We don't handle duplicates properly (yet). */
-
- static boolean
- group_match_null_string_p (p, end, reg_info)
- unsigned char **p, *end;
- register_info_type *reg_info;
- {
- int mcnt;
- /* Point to after the args to the start_memory. */
- unsigned char *p1 = *p + 2;
-
- while (p1 < end)
- {
- /* Skip over opcodes that can match nothing, and return true or
- false, as appropriate, when we get to one that can't, or to the
- matching stop_memory. */
-
- switch ((re_opcode_t) *p1)
- {
- /* Could be either a loop or a series of alternatives. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-
- /* If the next operation is not a jump backwards in the
- pattern. */
-
- if (mcnt >= 0)
- {
- /* Go through the on_failure_jumps of the alternatives,
- seeing if any of the alternatives cannot match nothing.
- The last alternative starts with only a no_pop_jump,
- whereas the rest start with on_failure_jump and end
- with a no_pop_jump, e.g., here is the pattern for `a|b|c':
-
- /on_failure_jump/0/6/exactn/1/a/jump_past_next_alt/0/6
- /on_failure_jump/0/6/exactn/1/b/jump_past_next_alt/0/3
- /exactn/1/c
-
- So, we have to first go through the first (n-1)
- alternatives and then deal with the last one separately. */
-
-
- /* Deal with the first (n-1) alternatives, which start
- with an on_failure_jump (see above) that jumps to right
- past a jump_past_next_alt. */
-
- while ((re_opcode_t) p1[mcnt-3] == jump_past_next_alt)
- {
- /* `mcnt' holds how many bytes long the alternative
- is, including the ending `jump_past_next_alt' and
- its number. */
-
- if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
- reg_info))
- return false;
-
- /* Move to right after this alternative, including the
- jump_past_next_alt. */
- p1 += mcnt;
-
- /* Break if it's the beginning of an n-th alternative
- that doesn't begin with an on_failure_jump. */
- if ((re_opcode_t) *p1 != on_failure_jump)
- break;
-
- /* Still have to check that it's not an n-th
- alternative that starts with an on_failure_jump. */
- p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- if ((re_opcode_t) p1[mcnt-3] != jump_past_next_alt)
- {
- /* Get to the beginning of the n-th alternative. */
- p1 -= 3;
- break;
- }
- }
-
- /* Deal with the last alternative: go back and get number
- of the jump_past_next_alt just before it. `mcnt'
- contains how many bytes long the alternative is. */
- EXTRACT_NUMBER (mcnt, p1 - 2);
-
- if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
- return false;
-
- p1 += mcnt; /* Get past the n-th alternative. */
- } /* if mcnt > 0 */
- break;
-
-
- case stop_memory:
- assert (p1[1] == **p);
- *p = p1 + 2;
- return true;
-
-
- default:
- if (!common_op_match_null_string_p (&p1, end, reg_info))
- return false;
- }
- } /* while p1 < end */
-
- return false;
- } /* group_match_null_string_p */
-
-
- /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
- It expects P to be the first byte of a single alternative and END one
- byte past the last. The alternative can contain groups. */
-
- static boolean
- alt_match_null_string_p (p, end, reg_info)
- unsigned char *p, *end;
- register_info_type *reg_info;
- {
- int mcnt;
- unsigned char *p1 = p;
-
- while (p1 < end)
- {
- /* Skip over opcodes that can match nothing, and break when we get
- to one that can't. */
-
- switch ((re_opcode_t) *p1)
- {
- /* It's a loop. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- p1 += mcnt;
- break;
-
- default:
- if (!common_op_match_null_string_p (&p1, end, reg_info))
- return false;
- }
- } /* while p1 < end */
-
- return true;
- } /* alt_match_null_string_p */
-
-
- /* Deals with the ops common to group_match_null_string_p and
- alt_match_null_string_p.
-
- Sets P to one after the op and its arguments, if any. */
-
- static boolean
- common_op_match_null_string_p (p, end, reg_info)
- unsigned char **p, *end;
- register_info_type *reg_info;
- {
- int mcnt;
- boolean ret;
- int reg_no;
- unsigned char *p1 = *p;
-
- switch ((re_opcode_t) *p1++)
- {
- case no_op:
- case begline:
- case endline:
- case begbuf:
- case endbuf:
- case wordbeg:
- case wordend:
- case wordbound:
- case notwordbound:
- #ifdef emacs
- case before_dot:
- case at_dot:
- case after_dot:
- #endif
- break;
-
- case start_memory:
- reg_no = *p1;
- ret = group_match_null_string_p (&p1, end, reg_info);
-
- /* Have to set this here in case we're checking a group which
- contains a group and a back reference to it. */
-
- if (REG_MATCH_NULL_STRING_P (reg_info[reg_no])
- == MATCH_NOTHING_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
-
- if (!ret)
- return false;
- break;
-
- /* If this is an optimized succeed_n for zero times, make the jump. */
- case no_pop_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- if (mcnt >= 0)
- p1 += mcnt;
- else
- return false;
- break;
-
- case succeed_n:
- /* Get to the number of times to succeed. */
- p1 += 2;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-
- if (mcnt == 0)
- {
- p1 -= 4;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- p1 += mcnt;
- }
- else
- return false;
- break;
-
- case duplicate:
- if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
- return false;
- break;
-
- case set_number_at:
- p1 += 4;
-
- default:
- /* All other opcodes mean we cannot match the empty string. */
- return false;
- }
-
- *p = p1;
- return true;
- } /* common_op_match_null_string_p */
-
-
- /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
- bytes; nonzero otherwise. */
-
- static int
- bcmp_translate (s1, s2, len, translate)
- unsigned char *s1, *s2;
- register int len;
- char *translate;
- {
- register unsigned char *p1 = s1, *p2 = s2;
- while (len)
- {
- if (translate[*p1++] != translate[*p2++]) return 1;
- len--;
- }
- return 0;
- }
-
- /* Entry points for GNU code. */
-
- /* re_compile_pattern is the GNU regular expression compiler: it
- compiles PATTERN (of length SIZE) and puts the result in BUFP.
- Returns 0 if the pattern was valid, otherwise an error string.
-
- Assumes the `allocated' (and perhaps `buffer') and `translate' fields
- are set in BUFP on entry.
-
- We call regex_compile to do the actual compilation. */
-
- const char *
- re_compile_pattern (pattern, length, bufp)
- const char *pattern;
- int length;
- struct re_pattern_buffer *bufp;
- {
- reg_errcode_t ret;
-
- /* GNU code is written to assume RE_NREGS registers will be set
- (and extraneous ones will be filled with -1). */
- bufp->caller_allocated_regs = 0;
-
- /* And GNU code determines whether or not to get register information
- by passing null for the REGS argument to re_match, etc., not by
- setting no_sub. */
- bufp->no_sub = 0;
-
- /* Match anchors at newline. */
- bufp->newline_anchor = 1;
-
- ret = regex_compile (pattern, length, obscure_syntax, bufp);
-
- return re_error_msg[(int) ret];
- }
-
- /* Entry points compatible with 4.2 BSD regex library. We don't define
- them if this is an Emacs or POSIX compilation. */
-
- #if !defined (emacs) && !defined (_POSIX_SOURCE)
-
- static struct re_pattern_buffer re_comp_buf;
-
- const char *
- re_comp (s)
- const char *s;
- {
- reg_errcode_t ret;
-
- if (!s)
- {
- if (!re_comp_buf.buffer)
- return "No previous regular expression";
- return 0;
- }
-
- if (!re_comp_buf.buffer)
- {
- re_comp_buf.buffer = (unsigned char *) malloc (200);
- if (re_comp_buf.buffer == NULL)
- return "Memory exhausted";
- re_comp_buf.allocated = 200;
-
- re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
- if (re_comp_buf.fastmap == NULL)
- return "Memory exhausted";
- }
-
- /* Match anchors at newlines. */
- re_comp_buf.newline_anchor = 1;
-
- ret = regex_compile (s, strlen (s), obscure_syntax, &re_comp_buf);
-
- return re_error_msg[(int) ret];
- }
-
-
- int
- re_exec (s)
- const char *s;
- {
- const int len = strlen (s);
- return 0 <= re_search (&re_comp_buf, s, len, 0, len,
- (struct re_registers *) 0);
- }
- #endif /* not emacs and not _POSIX_SOURCE */
-
- /* Entry points compatible with POSIX regex library. Don't define these
- for Emacs. */
-
- #ifndef emacs
-
- /* regcomp takes a regular expression as a string and compiles it.
-
- PREG is a regex_t *. We do not expect any fields to be initialized,
- since POSIX says we shouldn't. Thus, we set
-
- `buffer' to the compiled pattern;
- `used' to the length of the compiled pattern;
- `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
- REG_EXTENDED bit in CFLAGS is set; otherwise, to
- RE_SYNTAX_POSIX_BASIC;
- `newline_anchor' to REG_NEWLINE being set in CFLAGS;
- `fastmap' and `fastmap_accurate' to zero;
- `re_nsub' to the number of subexpressions in PATTERN.
-
- PATTERN is the address of the pattern string.
-
- CFLAGS is a series of bits which affect compilation.
-
- If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
- use POSIX basic syntax.
-
- If REG_NEWLINE is set, then . and [^...] don't match newline.
- Also, regexec will try a match beginning after every newline.
-
- If REG_ICASE is set, then we considers upper- and lowercase
- versions of letters to be equivalent when matching.
-
- If REG_NOSUB is set, then when PREG is passed to regexec, that
- routine will report only success or failure, and nothing about the
- registers.
-
- It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
- the return codes and their meanings.) */
-
- int
- regcomp (preg, pattern, cflags)
- regex_t *preg;
- const char *pattern;
- int cflags;
- {
- reg_errcode_t ret;
- unsigned syntax
- = cflags & REG_EXTENDED ? RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
-
- /* regex_compile will allocate the space for the compiled pattern. */
- preg->buffer = 0;
-
- /* Don't bother to use a fastmap when searching. This simplifies the
- REG_NEWLINE case: if we used a fastmap, we'd have to put all the
- characters after newlines into the fastmap. This way, we just try
- every character. */
- preg->fastmap = 0;
-
- if (cflags & REG_ICASE)
- {
- unsigned i;
-
- preg->translate = (char *) malloc (CHAR_SET_SIZE);
- if (preg->translate == NULL)
- return (int) REG_ESPACE;
-
- /* Map uppercase characters to corresponding lowercase ones. */
- for (i = 0; i < CHAR_SET_SIZE; i++)
- preg->translate[i] = isupper (i) ? tolower (i) : i;
- }
- else
- preg->translate = NULL;
-
- /* If REG_NEWLINE is set, newlines are treated differently. */
- if (cflags & REG_NEWLINE)
- { /* REG_NEWLINE implies neither . nor [^...] match newline. */
- syntax &= ~RE_DOT_NEWLINE;
- syntax |= RE_HAT_LISTS_NOT_NEWLINE;
- /* It also changes the matching behavior. */
- preg->newline_anchor = 1;
- }
- else
- preg->newline_anchor = 0;
-
- preg->no_sub = !!(cflags & REG_NOSUB);
-
- /* POSIX says a null character in the pattern terminates it, so we
- can use strlen here in compiling the pattern. */
- ret = regex_compile (pattern, strlen (pattern), syntax, preg);
-
- /* POSIX doesn't distinguish between an unmatched open-group and an
- unmatched close-group: both are REG_EPAREN. */
- if (ret == REG_ERPAREN) ret = REG_EPAREN;
-
- return (int) ret;
- }
-
-
- /* regexec searches for a given pattern, specified by PREG, in the
- string STRING.
-
- If NMATCH is zero or REG_NOSUB was set in the cflags argument to
- `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
- least NMATCH elements, and we set them to the offsets of the
- corresponding matched substrings.
-
- EFLAGS specifies `execution flags' which affect matching: if
- REG_NOTBOL is set, then ^ does not match at the beginning of the
- string; if REG_NOTEOL is set, then $ does not match at the end.
-
- We return 0 if we find a match and REG_NOMATCH if not. */
-
- int
- regexec (preg, string, nmatch, pmatch, eflags)
- const regex_t *preg;
- const char *string;
- size_t nmatch;
- regmatch_t pmatch[];
- int eflags;
- {
- int ret;
- struct re_registers regs;
- regex_t private_preg;
- int len = strlen (string);
- boolean want_reg_info = !preg->no_sub && nmatch > 0;
-
- private_preg = *preg;
-
- private_preg.not_bol = !!(eflags & REG_NOTBOL);
- private_preg.not_eol = !!(eflags & REG_NOTEOL);
-
- /* The user has told us how many registers to return information
- about, via `nmatch'. We have to pass that on to the matching
- routines. */
- private_preg.caller_allocated_regs = 1;
-
- if (want_reg_info)
- {
- regs.num_regs = nmatch;
- regs.start = TALLOC (nmatch, regoff_t);
- regs.end = TALLOC (nmatch, regoff_t);
- if (regs.start == NULL || regs.end == NULL)
- return (int) REG_NOMATCH;
- }
-
- /* Perform the searching operation. */
- ret = re_search (&private_preg, string, len,
- /* start: */ 0, /* range: */ len,
- want_reg_info ? ®s : NULL);
-
- /* Copy the register information to the POSIX structure. */
- if (want_reg_info)
- {
- if (ret >= 0)
- {
- unsigned r;
-
- for (r = 0; r < nmatch; r++)
- {
- pmatch[r].rm_so = regs.start[r];
- pmatch[r].rm_eo = regs.end[r];
- }
- }
-
- /* If we needed the temporary register info, free the space now. */
- free (regs.start);
- free (regs.end);
- }
-
- /* We want zero return to mean success, unlike `re_search'. */
- return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
- }
-
-
- /* Returns a message corresponding to an error code, ERRCODE, returned
- from either regcomp or regexec. */
-
- size_t
- regerror (errcode, preg, errbuf, errbuf_size)
- int errcode;
- const regex_t *preg;
- char *errbuf;
- size_t errbuf_size;
- {
- const char *msg
- = re_error_msg[errcode] == NULL ? "Success" : re_error_msg[errcode];
- size_t msg_size = strlen (msg) + 1; /* Includes the null. */
-
- if (errbuf_size != 0)
- {
- if (msg_size > errbuf_size)
- {
- strncpy (errbuf, msg, errbuf_size - 1);
- errbuf[errbuf_size - 1] = 0;
- }
- else
- strcpy (errbuf, msg);
- }
-
- return msg_size;
- }
-
-
- /* Free dynamically allocated space used by PREG. */
-
- void
- regfree (preg)
- regex_t *preg;
- {
- if (preg->buffer != NULL)
- free (preg->buffer);
- preg->buffer = NULL;
-
- preg->allocated = 0;
- preg->used = 0;
-
- if (preg->fastmap != NULL)
- free (preg->fastmap);
- preg->fastmap = NULL;
- preg->fastmap_accurate = 0;
-
- if (preg->translate != NULL)
- free (preg->translate);
- preg->translate = NULL;
- }
-
- #endif /* not emacs */
-
- #ifdef test
-
- #include <stdio.h>
-
- /* Indexed by a character, gives the upper case equivalent of the
- character. */
-
- char upcase[0400] =
- { 000, 001, 002, 003, 004, 005, 006, 007,
- 010, 011, 012, 013, 014, 015, 016, 017,
- 020, 021, 022, 023, 024, 025, 026, 027,
- 030, 031, 032, 033, 034, 035, 036, 037,
- 040, 041, 042, 043, 044, 045, 046, 047,
- 050, 051, 052, 053, 054, 055, 056, 057,
- 060, 061, 062, 063, 064, 065, 066, 067,
- 070, 071, 072, 073, 074, 075, 076, 077,
- 0100, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
- 0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
- 0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
- 0130, 0131, 0132, 0133, 0134, 0135, 0136, 0137,
- 0140, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
- 0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
- 0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
- 0130, 0131, 0132, 0173, 0174, 0175, 0176, 0177,
- 0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
- 0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
- 0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
- 0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
- 0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
- 0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
- 0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
- 0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
- 0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
- 0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
- 0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
- 0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
- 0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
- 0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
- 0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
- 0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
- };
-
-
- /* Use this to run interactive tests. */
-
- void
- main (argc, argv)
- int argc;
- char **argv;
- {
- char pat[500];
- struct re_pattern_buffer buf;
- int i;
- char c;
- char fastmap[(1 << BYTEWIDTH)];
-
- /* Allow a command argument to specify the style of syntax. */
- if (argc > 1)
- re_set_syntax (atoi (argv[1]));
-
- buf.allocated = 40;
- buf.buffer = (unsigned char *) malloc (buf.allocated);
- buf.fastmap = fastmap;
- buf.translate = upcase;
-
- for (;;)
- {
- printf ("Pattern = ");
- gets (pat);
-
- if (*pat)
- {
- void printchar ();
- re_compile_pattern (pat, strlen (pat), &buf);
-
- for (i = 0; i < buf.used; i++)
- printchar (buf.buffer[i]);
-
- putchar ('\n');
-
- printf ("%d allocated, %d used.\n", buf.allocated, buf.used);
-
- re_compile_fastmap (&buf);
- printf ("Allowed by fastmap: ");
- for (i = 0; i < (1 << BYTEWIDTH); i++)
- if (fastmap[i]) printchar (i);
- putchar ('\n');
- }
-
- printf ("String = ");
- gets (pat); /* Now read the string to match against */
-
- i = re_match (&buf, pat, strlen (pat), 0, 0);
- printf ("Match value %d.\n\n", i);
- }
- }
-
-
- #if 0
- /* We have a fancier version now, compiled_pattern_printer. */
- print_buf (bufp)
- struct re_pattern_buffer *bufp;
- {
- int i;
-
- printf ("buf is :\n----------------\n");
- for (i = 0; i < bufp->used; i++)
- printchar (bufp->buffer[i]);
-
- printf ("\n%d allocated, %d used.\n", bufp->allocated, bufp->used);
-
- printf ("Allowed by fastmap: ");
- for (i = 0; i < (1 << BYTEWIDTH); i++)
- if (bufp->fastmap[i])
- printchar (i);
- printf ("\nAllowed by translate: ");
- if (bufp->translate)
- for (i = 0; i < (1 << BYTEWIDTH); i++)
- if (bufp->translate[i])
- printchar (i);
- printf ("\nfastmap is%s accurate\n", bufp->fastmap_accurate ? "" : "n't");
- printf ("can %s be null\n----------", bufp->can_be_null ? "" : "not");
- }
- #endif /* 0 */
-
-
- void
- printchar (c)
- char c;
- {
- if (c < 040 || c >= 0177)
- {
- putchar ('\\');
- putchar (((c >> 6) & 3) + '0');
- putchar (((c >> 3) & 7) + '0');
- putchar ((c & 7) + '0');
- }
- else
- putchar (c);
- }
- #endif /* test */
-
- /*
- Local variables:
- make-backup-files: t
- version-control: t
- trim-versions-without-asking: nil
- End:
- */
-