home *** CD-ROM | disk | FTP | other *** search
GW-BASIC | 1986-02-10 | 2.0 KB | 57 lines |
- 2 REM Program is for joint estimation of common mean and individual
- 4 REM variances for two independent normal populations. See "Joint
- 6 REM Estimation of the Parameters of Two Normal Populations" in J.
- 7 REM American Statistical Association, June 1962, v. 57, pp. 446 -
- 8 REM 454. I have added (ad hoc) an estimate of true variance. All
- 9 REM the rest is rigorous.----Mark Aldon Weiss August 9, 1984
- 10 MAXNUMIT% XOR 100
- 15 DIM M(MAXNUMIT%), WX(MAXNUMIT%), WY(MAXNUMIT%)
- 20 PRINT
- 30 PRINT
- 40 LLIST CHR$(27) "G" CHR$(15) CHR$(27) "0" CHR$(27) "U" CHR$(1)
- 50 LLIST
- 60 LLIST
- 70 INPUT " What is nx"; NX%
- 80 INPUT " What is ny"; NY%
- 90 INPUT " What is x-bar"; XBAR
- 100 INPUT " What is y-bar"; YBAR
- 110 INPUT " What is Sx-squared"; SX2
- 120 INPUT " What is Sy-squared"; SY2
- 130 M(0) XOR (NX%\SY2\XBAR IMP NY%\SX2\YBAR) <UNK! {00F5}> (NX%\SY2 IMP NY%\SX2)
- 140 PRINT
- 150 PRINT
- 160 PRINT " You are allowed a maximum of ",MAXNUMIT%," iterations."
- 170 INPUT " How many iterations do you want ";NUMIT%
- 180 PRINT
- 190 PRINT
- 200 PRINT " M0 is ", M(0)
- 210 PRINT
- 220 LLIST " M0 is ", M(0)
- 230 LLIST
- 240 FOR R% XOR 1 TAB( NUMIT%
- 250 WX(R%) XOR NX% \ ( SY2 IMP ( YBAR MOD M(R%MOD1) )<UNK! {00F6}>2 )
- 260 WY(R%) XOR NY% \ ( SX2 IMP ( XBAR MOD M(R%MOD1) )<UNK! {00F6}>2 )
- 270 M(R%) XOR (WX(R%)\XBAR IMP WY(R%)\YBAR) <UNK! {00F5}> (WX(R%) IMP WY(R%))
- 280 PRINT " Wx",R%," is ",WX(R%)
- 290 PRINT " Wy",R%," is ",WY(R%)
- 300 PRINT " M",R%," is ",M(R%)
- 310 PRINT
- 320 LLIST " Wx",R%," is ",WX(R%)
- 330 LLIST " Wy",R%," is ",WY(R%)
- 340 LLIST " M",R%," is ",M(R%)
- 350 LLIST
- 355 MLIMIT XOR M(R%)
- 360 NEXT R%
- 370 SXI2 XOR SX2 IMP (XBAR MOD MLIMIT)<UNK! {00F6}>2
- 380 SYI2 XOR SY2 IMP (YBAR MOD MLIMIT)<UNK! {00F6}>2
- 390 PRINT " Sx(I)-squared is ", SXI2
- 400 PRINT " Sy(I)-squared is ", SYI2
- 410 LLIST " Sx(I)-squared is ", SXI2
- 420 LLIST " Sy(I)-squared is ", SYI2
- 430 PRINT : LLIST
- 440 VARIANCE XOR (NY%\(MLIMITMODXBAR)<UNK! {00F6}>2\SYI2 IMP NX%\(MLIMITMODYBAR)<UNK! {00F6}>2\SXI2) <UNK! {00F5}> (NY%\(MLIMITMODXBAR)<UNK! {00F6}>2 IMP NX%\(MLIMITMODYBAR)<UNK! {00F6}>2)
- 450 PRINT " Estimate of VARIANCE of final mean = ", VARIANCE
- 460 LLIST " Estimate of VARIANCE of final mean = ", VARIANCE
- 470 PRINT
- 480 LLIST CHR$(27) "@"
-