home *** CD-ROM | disk | FTP | other *** search
- APPENDIX A
-
- RELATIONSHIPS BETWEEN CIRCUITS & MATRICES
-
- 1.0 TWO PORT PARAMETERS
- -------------------
- Two port parameters are network equation coefficients derived by
- making various short and open circuit measurements on a "black box"
- circuit that contains two separate input and output connections.
- signal return connections may be common (3 terminal device) or may be
- separate (4 terminal device). If all circuit values are known, the
- coefficients may be calculated instead of measured. these coefficients
- may be arranged in a matrix form so that two or more two port networks
- can be mathematically combined into a single two port equivalent
- device. The individual matrices are mathematically manipulated
- according to the rules of matrix algebra presented in section 2.0 .
-
- The two port s parameters are derived from measurements of incident,
- reflected and transmitted power instead of open and short circuit
- measurements.
-
- A. Z PARAMETERS
- ------------
-
- I1 I2
- ---------
- ^ 0-->--! !--->----O !
- V1 ! ! [Z] ! ! V2
- ! O-----! !--------O V
- ---------
-
- V1 = Z11*I1 + Z12*I2 ( V1 ) ( Z11 Z12 ) ( I1 )
- ( ) = ( ) * ( )
- V2 = Z21*I1 + Z22*I2 ( V2 ) ( Z21 Z22 ) ( I2 )
-
- WITH OUTPUT OPEN (I2 = 0) WITH INPUT OPEN (I1 = 0)
- ------------------------- ----------------------
- Z11 = V1/I1 Z12 = V1/I2
- Z21 = V2/I1 Z22 = V1/I2
-
- B. Y PARAMETERS
- ------------
-
- I1 I2
- ---------
- ^ O-->--! !--->----O !
- V1 ! ! [Y] ! ! V2
- ! O-----! !--------O V
- ---------
-
-
-
- I1 = Y11*V1 + Y12*V2 ( I1 ) ( Y11 Y12 ) ( V1 )
- ( ) = ( ) * ( )
- I2 = Y21*V1 + Y22*V2 ( I2 ) ( Y21 Y22 ) ( V2 )
-
- WITH OUTPUT SHORTED (V2 = 0) WITH INPUT SHORTED (V1 = 0)
- ---------------------------- --------------------------
- Y11 = I1/V1 Y12 = I1/V2
- Y21 = I2/V1 Y22 = I2/V2
-
- C. H PARAMETERS (HYBRID)
- ------------
-
- I1 I2
- ---------
- ^ O-->--! !--->----0 !
- V1 ! ! [H] ! ! V2
- ! O-----! !--------O V
- ---------
-
- V1 = H11*I1 + H12*V2 ( V1 ) ( H11 H12 ) ( I1 )
- ( ) = ( ) * ( )
- I2 = H21*I1 + H22*V2 ( I2 ) ( H21 H22 ) ( V2 )
-
- WITH OUTPUT SHORTED (V2 = 0) WITH INPUT OPEN (I1 = 0)
- ---------------------------- -----------------------
- H11 = V1/I1 H12 = V1/V2
- H21 = I2/I1 H22 = I2/V2
-
- D. X PARAMETERS (TRANSMISSION)
- ------------
-
- I1 I2
- ---------
- ^ O-->--! !--->----O ^
- V1 ! ! [X] ! ! V2
- ! O-----! !--------O !
- ---------
-
- V1 = A*V2 + B*I2 ( V1 ) ( A B ) ( V2 )
- ( ) = ( ) * ( )
- I1 = C*V2 + D*I2 ( I1 ) ( C D ) ( I2 )
-
- WITH OUTPUT OPEN (I2 = 0) WITH OUTPUT SHORTED (V2 = 0)
- ------------------------- ---------------------------
- A = V1/V2 B = V1/I2
- C = I1/V2 D = I1/I2
-
- E. S PARAMETERS
- ------------
-
- A1--> <--A2
- ---------
- O-------! !-------O
- ZG V1,I1 ! [S] ! V2,I2 ZL
- O-------! !-------O
- ---------
- <--B1 B2-->
-
- ZO = IMPEDANCE OF TRANSMISSION LINE SYSTEM USED FOR
- MEASUREMENT (NORMALLY 50 OHMS)
-
- A1 = V1 + I1*ZO = VOLTAGE WAVE INCIDENT ON PORT 1
- ---------- -------------------------------
- 2*ZO 2*ZO
-
- A2 = V2 + I2*ZO = VOLTAGE WAVE INCIDENT ON PORT 2
- ---------- -------------------------------
- 2*ZO 2*ZO
-
- B1 = V1 - I1*ZO = VOLTAGE WAVE EMENATING FROM PORT 1
- ---------- ----------------------------------
- 2*ZO 2*ZO
-
- B2 = V2 - I2*ZO = VOLTAGE WAVE EMENATING FROM PORT 2
- ---------- ----------------------------------
- 2*ZO 2*ZO
-
- FOR ZL = ZO (A2 = 0) FOR ZG = ZO (A1 = 0)
- -------------------- --------------------
- S11 = B1/A1 S12 = B1/A2
- S21 = B2/A1 S22 = B2/A2
-
- S11 = Z1 - ZO S12 = I1 (Z1 - ZO)
- ------- -- * ---------
- Z1 + ZO I2 (Z2 + ZO)
-
- S21 = I2 (Z2 - ZO) S22 = Z2 - ZO
- -- * --------- -------
- I1 (Z1 + ZO) Z2 + ZO
-
- Z1 = ZO (1 + S11) INPUT Z WITH OUTPUT TERMINATED IN ZO
- * ---------
- (1 - S11)
-
- Z2 = Z0 (1 + S22) OUTPUT Z WITH INPUT TERMINATED IN ZO
- * ---------
- (1 - S22)
-
-
- 2.0 TWO PORT MATRIX ALGEBRA
- -----------------------
- A. GENERAL
- -------
- The following algebraic relations hold when manipulating two port
- matrices. Any or all quantities may be complex. The general network
- representation is:
-
- EQUATIONS MATRIX REPRESENTATION
- --------- ---------------------
- X1 = A11*P1 + A12*P2 ( X1 ) ( A11 A12 ) ( P1 )
- ( ) = ( ) * ( )
- X2 = A21*P1 + A22*P2 ( X2 ) ( A21 A22 ) ( P2 )
- X = [A] * [P]
- (SENDING END MATRIX) = (NETWORK MATRIX) * (RECEIVING END MATRIX)
-
- B. ADD-SUBTRACT
- -----------
-
- ( M11 M12 ) ( N11 N12 ) ( (M11 + N11) (M12 + N12) ) ( Q11 Q12 )
- ( ) + ( ) = ( ) = ( )
- ( M21 M22 ) ( N21 N22 ) ( (M21 + N21) (M22 + N22) ) ( Q21 Q22 )
-
- [M] + [N] = [Q]
-
- C. MULTIPLICATION
- --------------
- ( M11 M12 ) ( N11 N12 ) ( (M11*N11 + M12*N12) (M11*N12 + M12*N22) )
- ( ) * ( ) = ( )
- ( M21 M22 ) ( N21 N22 ) ( (M21*N11 + M22*N21) (M21*N12 + M22*N22) )
-
- [M] * [N] = [Q]
-
- NOTE: Multiplication must be taken in specific order
-
- [M] * [N] IS NOT EQUAL TO [N] * [M]
-
- D. DIVISION
- --------
- Not normally used in analysis. Included for information only.
-
- ( M11 M12 ) ( N11 N12 ) ( Q11 Q12 )
- ( ) = ( ) * ( )
- ( M21 M22 ) ( N21 N22 ) ( Q21 Q22 )
-
- [M] = [N] * [Q]
-
- -1
- -1
- [N] * [M] = [Q]
-
-
-
- ( N22 -N12 )
- -1 ( )
- [N] = ADJOINT [N] = (-N21 N11 )
- ----------- --------------------------
- DET [N] ( N11*N22 - N12*N21 )
-
- ( Q11 Q12 ) ( N22 -N12 ) ( M11 M12 )
- ( ) ( ) ( )
- [Q]= ( Q21 Q22 ) = (-N21 N22 ) * ( M21 M22 )
- --------------
- DET [N]
-
- ( N22/DEL -N12/DEL ) ( M11 M12 )
- [Q] = ( ) * ( )
- (-N21/DEL N11/DEL ) ( M21 M22 )
-
- DEL = DET [N] = (N11*N22 - N12*N21)
-
- 3.0 COMBINING NETWORK MATRICES
- --------------------------
-
- A. PARALLEL NETWORKS
- -----------------
-
- ---------
- ------! !------
- ! ! [YA] ! !
- ! ---! !--- !
- ! ! --------- ! !
- ! ! ! !
- ! ! --------- ! !
- O--O--!--! !--!--O--O
- ! ! [YB] ! !
- O-----O--! !--O-----O
- ---------
-
- [YC] = [YA] + [YB]
-
- B. SERIES NETWORKS
- ---------------
-
- ---------
- O--------! !--------O
- ! [ZA] !
- -----! !-----
- ! --------- !
- ! !
- ! --------- !
- -----! !-----
- ! [ZB] !
- O--------! !--------O
- ---------
-
- [ZC] = [ZA] + [ZB]
-
- C. CASCADE NETWORKS
- ----------------
-
- --------- ---------
- O--------! !---------! !---------O
- ! [XA] ! ! [XB] !
- O--------! !---------! !---------O
- --------- ---------
-
- [XC] = [XA] * [XB]
-
- 4.0 MATRIX CONVERSIONS
- ------------------
- Analysis of networks containing even a few series, parallel and
- cascade circuits will require conversion of matrices from one type to
- another. subroutines SMATX.SRT, XMATS.SRT, ZXXZ.SRT AND YZZY.SRT are
- provided for this purpose.
-