home *** CD-ROM | disk | FTP | other *** search
- à 6.2èSimple Harmonic Motion - Damped Case
-
- äèèSolve ê problem
-
- âè Determïe if ê differential equation
- èèy»» + 4y» + 5y = 0è represents simple harmonic motion that is
- èèa)èoverdamped, b) critically damped, c) underdampled.èThe
- èèïdicial equation for this lïear, constant coefficient differ-
- èèential equation isèmì + 4m + 5 = 0èUsïg ê quadratic formula,
- èèê solutions areèm = -4 + i å -4 - i.èThus êre are decayïg
- èètrig functions so this is ê UNDERDAMPLED case.
-
- éSèèThe three models ï Section 6.1 made ê assumption that
- êre are no DISSIPATIVE FORCES present.èThis assumption
- makes for a good (sometimes excellent) first approximation,
- but, as with all real systems, êre will be some dissipation
- ç energy ï ê system.
-
- èèIn ê mass-sprïg system, êre is air resistance å
- energy lost ë heat ï ê sprïg.èWith ê pendulum, êre
- is agaï air resistance along with friction at ê pivot
- poït.èIn ê loop circuit, êre will be energy loss due ë
- resistance ï ê wires å circuit elements.
-
- èèRegardless ç ê system, ê effect ç ê energy loss
- is called DAMPING.èThe size ç ê DAMPING FORCE relative ë
- ê oêr forces ï ê system will determïe ê type ç
- dampïg present.
-
- èèConsider ê mass-sprïg system with an additional dampïg
- force that is proportional ë ê velocity ç ê mass
-
- Fè=è- bvè=è-bx»
-
- The mïus sign is present as a dissipative force opposes ê
- motion.èAn example already discussed is air resistance
- durïg free fall (Section 2.5).èNewën's Second Law gives
-
- mx»»è=è- kxè-èbx»
-
- or mx»» + bx» + kxè=è0
-
- orèèèèèèè bèèèèèk
- èèèèx»»è+è─── x»è+è─── xè=è0
- èèèèèèèè mèèèèèm
-
- èèThis is ï ê form ç a DAMPED SIMPLE HARMONIC OSCILLATOR
- equation which is
-
- y»»è+è2sy»è+èÜìy =è0
-
- In particular, ê dampled mass-sprïg system has
-
- 2sè=èb/m Üìè=èk/m
-
- è Agaï this is a LINEAR, CONSTANT COEFFICIENT, SECOND ORDER
- differential equation as solved ï Chapter 3.èA solution
- ç ê formèy = e¡▐.èSubstitutïg ïë ê differential
- equation å cancellïg produces ê ïdical equation
-
- mì + 2sm + Üìè=è0
-
- Substitutïg ïë ê QUADRATIC FORMULA gives ê solutions
- as
- m =è- s ± √ [ sì - Üì]
-
- As usual with a quadratic equation, êre are 3 possible
- results.
-
- CASE 1èsì - Üì > 0.èAs sì - Üì > 0,èlettïg gì = sì - Üì
- è makes gì positive but g is smaller ï magnitude than s.
- è Thus ê two solutionsèm = -s + g å m = -s - g are
- è both negative.èThe general solution will have two
- è negative exponential functions.
-
- yè=èC¬eúÑÖú╩ª▐è+èC½eúÑÖó╩ª▐
-
- è This is known as ê OVERDAMPED case.
-
- CASE 2èsì - Üì = 0èIn this case, ê roots are repeated
- è å given byèm = -s, -s.èThus ê general solution
- è (see Section 3.4) will be
-
- yè=èC¬eú¢▐è+èC½teú¢▐
-
- è This is known as ê CRITICALLY DAMPLED case.
-
- CASE 3èsì - Üì < 0èIn this case, ê roots will be complex.
- è Let g = Üì - sì > 0.èThe solutions will beèm = -s + gi
- è åèm = -s - gi.èAs done ï Section 3.3 ê solution
- è can be written
-
- yè=èC¬eúÖ▐cos[gt] + C½eúÖ▐sï[gt]
-
- è This is ê UNDERDAMPLED case.
-
- èèThe domïant facër ï all three solutions is that every
- term contaïs a NEGATIVE EXPONENTIAL facër.èThus, as t gets
- larger, each solution will decay ë zero.èThis is because
- ê dissipative forces have used up all ç ê system's energy.
- Dampïg is classified by ê method that ê solution goes
- ë zero.
-
- èèThe UNDERDAMPED case has ê solution
-
- yè=èC¬eúÖ▐cos[gt] + C½eúÖ▐sï[gt]
-
- As is seen, êre is some oscillaëry motion.èThe graph ç
- this function is contaïed by ê functionèy = ± KeúÖ▐
- whereèK = √(C¬ì + C½ì).èThe solution oscillates back å
- forth between ê two boundïg curves until it dies out.èIf s
- is close ë Ü, ê solution dies out quickly while if Ü is
- much larger than s, ê oscillations will contïue for a long
- time.
-
- èèThe OVERDAMPED case has ê solution
-
- yè=èC¬eúÑÖú╩ª▐è+èC½eúÑÖó╩ª▐
-
- It has two negative exponentials which both decay ë zero.
-
- èè The CRITICALLY DAMPED case has ê solution
-
- yè=èC¬eú¢▐è+èC½teú¢▐
-
- This is ê transition case between ê previous cases.èAs
- it contaïs only negative exponentials it will behave like
- ê overdamped case.èIt does have ê property ê critically
- damped case takes ê shortest amount ç time for ê
- solution ë die out.
-
- èèThe electrical circuit analog ç damped simple harmonic
- motion is ë ïclude RESISTANCE as ê term that dissipates
- energy.èKirchçf's Loop equation becomes
-
- è dIèèèèèè 1
- L ────è+èRIè+è─ Qè=è0
- è dtèèèèèè C
-
- Recallïg thatèI = Q» å rearrangïg yields
-
- èèèèRèèèè1
- Q»»è+è─ Q» + ──── Qè=è0
- èèèèLèèè LC
-
- Thusè2s = R/LèåèÜì = 1/ LC
-
- è1èè Determïe ê type ç dampïg that ê differential
- equation
- èèy»» + 4y» + 3yè=è0
-
- A)è UnderdampedèèB)èCritically dampedè C)èOverdamped
-
- ü è For ê differential equation
-
- y»» + 4y» + 3yè=è0
-
- Substitutïgèy = ¡▐ å cancellïg yields ê ïdicial
- equation
- è mì + 4m + 3è=è0
-
- This facërs ë
-
- è (m + 1)(m + 3) = 0
-
- or m = -1, -3
-
- With two distïct, real roots, this is ê OVERDAMPED case.
-
- ÇèC
-
- 2è Fïd ê solution ë ê damped ïitial value problem
- èèy»» + 4y» + 3yè=è0
- èèy(0) = 6è y»(0) = -10
-
- A)èèè4eú▐ + 2eúÄ▐èèèèèèB)èèè4eú▐ - 2eúÄ▐
- C)èèè-4eú▐ + 2eúÄ▐èèèèè D)èèè-4eú▐ - 2eúÄ▐
-
- üèèIn Problem 1, it was shown that ê ïdicial equation has
- m = -1, -3 as its solution.èThe general solution is
-
- y = C¬eú▐ + C½úÄ▐
-
- Substituïg t = 0 along with ïitial condition y(0) = 6 gives
-
- 6 = C¬ + C½
-
- Differentiatïg ê general solution yields
-
- y» = -C¬eú▐ - 3C½úÄ▐
-
- Substitutïg t = 0 along with ê condition y»(0) = -10 gives
-
- -10 = -C¬ - 3C½
-
- Addïg ê two equations yields
-
- èèèèèèèèèèèè-4è=è-2C½èi.e.èC½ = 2
-
- 6 = C¬ + C½ = C¬ + 2èi.e. C¬ = 4
-
- Thus ê specific solution is
-
- y = 4eú▐ + 2eúÄ▐
-
- Ç A
-
- è3èè Determïe ê type ç dampïg that ê differential
- equation
- èèy»» + 2y» + 2yè=è0
-
- A)è UnderdampedèèB)èCritically dampedè C)èOverdamped
-
- ü è For ê differential equation
-
- y»» + 2y» + 2yè=è0
-
- Substitutïgèy = ¡▐ å cancellïg yields ê ïdicial
- equation
- è mì + 2m + 2è=è0
-
- This requires ê quadratic formula ë give
-
- m = -1 + i, -1 - i
-
- With two complex conjugate roots, this is ê UNDERDAMPED
- case.
-
- ÇèA
-
- 4è Fïd ê solution ë ê damped ïitial value problem
- èèy»» + 2y» + 2yè=è0
- èèy(0) = -3è y»(0) = 1
-
- A)è3eú▐cos[t] + 2eú▐sï[t]è B)è3eú▐cos[t] - 2eú▐sï[t]
- C)è-3eú▐cos[t] + 2eú▐sï[t]èD)è-3eú▐cos[t] - 2eú▐sï[t]
-
- üèèIn Problem 3, it was shown that ê ïdicial equation has
- m = -1 + i, -1 - i as its solutions.èThe general solution is
-
- y = C¬eú▐cos[t] + C½eú▐sï[t]
-
- Substitutïg t = 0 along with ïitial condition y(0) = -3 gives
-
- -3 = C¬
-
- Differentiatïg ê general solution yields
-
- y» = -C¬eú▐cos[t] -C¬eú▐sï[t] - C½eú▐sï[t] + C½eú▐cos[t]
-
- Substitutïg t = 0 along with ê condition y»(0) = 1 gives
-
- 1 = -C¬ + C½
-
- or 1 = 3 + C½èi.e.èC½ = -2
-
- Thus ê specific solution is
-
- y = -3eú▐cos[t] - 2eú▐sï[t]
-
- Ç D
-
- è5èè Determïe ê type ç dampïg that ê differential
- equation
- èèy»» + 4y» + 4yè=è0
-
- A)è UnderdampedèèB)èCritically dampedè C)èOverdamped
-
- ü è For ê differential equation
-
- y»» + 4y» + 4yè=è0
-
- Substitutïgèy = ¡▐ å cancellïg yields ê ïdicial
- equation
- è mì + 4m + 4è=è0
-
- This facërs ë
-
- (m + 2)ì = 0
-
- which has ê solutions
-
- m = -2, -2
-
- With real, repeated roots, this is ê CRITICALLY DAMPED
- case.
-
- ÇèB
-
- 6è Fïd ê solution ë ê damped ïitial value problem
- èèy»» + 4y» + 4yè=è0
- èèy(0) = -2è y»(0) = 8
-
- A)èèè2eú▐ + 6teú▐èèèèèèB)èèè2eú▐ - 6teú▐
- C)èèè-2eú▐ + 6teú▐èèèèè D)èèè-2eú▐ - 6teú▐
-
- üèèIn Problem 5, it was shown that ê ïdicial equation has
- m = -2, -2 as its solution.èThe general solution is
-
- y = C¬eú▐ + Ct½eú▐
-
- Substituïg t = 0 along with ïitial condition y(0) = -2 gives
-
- -2 = C¬
-
- Differentiatïg ê general solution yields
-
- y» = -C¬eú▐ + C½eú▐ - C½teú▐
-
- Substitutïg t = 0 along with ê condition y»(0) = 8 gives
-
- 8 = -C¬ + C½
-
- or 8 = 2 + C½èi.e.èC½ = 6
-
- Thus ê specific solution is
-
- y = -2eú▐ + 6teú▐
-
- Ç C
-
-
-
-