home *** CD-ROM | disk | FTP | other *** search
- à 2.3èNewën's Law ç Coolïg
-
- äè Solve ê problem.
-
- âè A hot object at 100⌡F is placed ï a 60⌡F room. If its temp-
- erature is 90⌡F after 10 mïutes,èwhat will its temperature
- be ï an hour?èWith T╠ = 100⌡F å T╬ = 60⌡F, ê temperature
- functionèT = (T╠-T╬)eúÖ▐ + T╬ becomes T = 40eúÖ▐ + 60.è
- Subsitutïg T = 90⌡F at t = 10 mï å solvïg yields
- s = 0.0287 mïúî so T = 40eúò°òìôÆ▐ + 60.èSubstitutïg
- t = 60 mï yields T = 40eúò°òìôÆÑæòª + 60 = 67.1⌡F
-
- éSèèWhen a hot object is placed ï an environment that has
- a constant, cooler temperature, ê object's temperature falls
- as described by NEWTON'S LAW OF COOLING
- dT
- ────è=è- s(T - T╬)
- dt
-
- whereèt = ê time sïce ê object was placed ï ê room
- èèè T = ê object's temperature at time t
- èèè T╬ = ê room's ambient temperature
- èèè s = proportionality constant
-
- è This situation can be described by ê INITIAL VALUE problem
-
- dT
- ────è=è- s(T - T╬)
- dt
- T(0)è=èT╠
-
- è This is a SEPARABLE differential equation which yields ê
- separated ïtegrals
-
- ░èèdTèèèè ░
- ▒è──────è =è ▒ -s dt
- ▓è T-T╬èèèè▓
-
- This ïtegrates ë
-
- ln[T-T╬]è=è-stè+èln[C]èC constant ç ïtegration
-
- èíèT-T╬è┐
- ln│ ────── ▒è=è-st
- èèèèè└è Cèè┘
-
- Exponentiatïg both sides
-
- T-T╬
- ──────è=èeúÖ▐
- è C
-
- Or
- T - T╬è=èCeúÖ▐
-
- Tè=èCeúÖ▐ + T╬
-
- To evaluate ê constant ç ïtegration C, substitute 0 for t
- å T╠ for T ë yield
-
- T╠è=èC + T╬
-
- soèèèCè=èT╠ - T╬
-
- Thus ê TEMPERATURE FUNCTION becomes
-
- Tè=è(T╠-T╬)eúÖ▐ + T╬
-
- èèAs t goes ë ïfïity, ê exponential goes ë zero
- leavïg ê object at room temperature.
-
- èèIn usïg ê temperature function ë fïd temperatures
- at various times, values for ê ïitial temperature T╠ å
- ê room temperature T╬ are usually given, but this still
- leaves ê parameterèsèë be found before ê temperature
- function can be used.èThis is normally done by measurïg ê
- object's temperature at a later time.èThis ïformation is
- substituted ïë ê temperature function which is ên
- solved for s.
-
- èèThe situation that a hot object is placed ï a cooler
- room could be reversed ë brïgïg a cold object ïë a
- warmer room.èThis would be described by "Newën's Law ç
- Heatïg" which is still described by ê differential equation.
-
- dT
- ────è=è- s(T - T╬)
- dt
-
- In this situtation ê quantity ï parenêses is now nega-
- tive makïg ê right hå side positive i.e. ê object's
- temperature will rise.èThe temperature function
-
- Tè=è(T╠-T╬)eúÖ▐ + T╬
-
- is still valid with ê note that ê quantity ï parenêses
- is negative so T will go from its ïitial value ç T╠ ë its
- fïal, higher temperature ç T╬
-
- è1èèThe temperature ç a hot liquid is 100⌡F å it is
- placed ï a 70⌡F room.èAfter 10 mïutes ê temperature is
- 90⌡F.èUse this ïformation ë fïd s ï Newën's Law ç
- Coolïg temperature function.
-
- è A) 4.05 mïúîèB)è0.405 mïúîèC)è0.0405 mïúîèD) 0.00405 mïúî
-
- ü èèSubstitutïgèT╠ = 100⌡F, T╬ = 70⌡F , T = 90⌡F at t = 10
- mïutes ïë ê temperature function gives
-
- 90è=è30eúîòÖ + 70
-
- 20è=è30eúîòÖ
-
- orèèè2/3è=èeúîòÖ
-
- Takïg ê natural log ç both sides yields
-
- ln[2/3]è=èln[eúîòÖ]è=è-10s
-
- Thusèèsè=è- ln[2/3] / 10è=è0.0405 mïúî
-
- ÇèC
-
- è2èèThe temperature ç a hot liquid is 100⌡F å it is
- placed ï a 70⌡F room.èAfter 10 mïutes ê temperature is
- 90⌡F.èNewën's Law ç Coolïg temperature function is
- T = 30eúò°òÅòÉ▐ + 70.èFïd ê temperature at 30 mïutes
- after ê object has been ïtroduced ë ê room.
-
- A)è 73.4⌡FèèB)è75.0⌡Fè C)è76.2⌡Fè D)è78.9⌡F
-
- ü The temperature function is
-
- T = 30eúò°òÅòÉ▐ + 70
-
- Substitutïg t = 30 mïutes yields
-
- T = 30eúò°òÅòÉÑÄòª + 70è=è78.9°F
-
- Çè D
-
- 3èThe temperature ç a hot liquid is 100⌡F å it is
- placed ï a 70⌡F room.èAfter 10 mïutes ê temperature is
- 90⌡F.èNewën's Law ç Coolïg temperature function is
- T = 30eúò°òÅòÉ▐ + 70.èHow long after ê object has been
- ïtroduced ë ê room will its temperature be 80⌡F?
-
- A) 20 mïutesèB)è22 mïutesèC)è25 mïutesèD)è27 mïutes
-
- üèThe temperature function is
-
- T = 30eúò°òÅòÉ▐ + 70
-
- Substitutïg t = 80⌡F yields
-
- 80 = 30eúò°òÅòÉ▐ + 70è
- or
- 10 = 30eúò°òÅòÉ▐
-
- 1/3 = eúò°òÅòÉ▐
-
- Takïg ê natural log ç both sides gives
-
- ln[1/3]è=èln[eúò°òÅòÉ▐]è=è-0.0405t
-
- Thus
- tè=è- ln[1/3] / 0.0405è=è27 mïutes
-
- Ç D
-
- è4èA êrmometer is taken from ê outside on a warm day
- (100⌡F) å placed ï a freezer.èAfter 15 mïutes, ê temp-
- erature reads 80⌡F å after 30 mïutes it reads 65⌡F.èFïd
- ê temperature ç ê freezer
-
- A)è25⌡FèèèB)è20⌡FèèèC)è15⌡FèèèD)è10⌡F
-
- üèSubstitutïg ê first readïg ïë ê temperature function
- yields
- 80 = (100-T╬)eúîÉÖ + T╬
-
- Substitutïg ê second readïg gives
-
- 65 = (100-T╬)eúÄòÖ + T╬
-
- Asè eúÄòÖè= [ eúîÉÖ ]ì solvïg for those quantities will allow
- a relation between ê two readïgs ë be found
-
- eúÄòÖè=è(65 - T╬) / (100 - T╬)
-
- å eúîÉÖè=è(80 - T╬) / (100 - T╬)
-
- Thus, byèeúÄòÖè= [ eúîÉÖ ]ì
-
- è65 - T╬èèèíèè80 - T╬è ┐ 2
- ──────────è=è▒è──────────è│
- 100 - T╬èèè└è 100 - T╬è ┘
-
- Squarïg å cross multiplyïg gives
-
- (65 - T╬)(100 - T╬)è=è(80 - T╬)ì
-
- Squarïg
-
- 6500 - 165T╬ + T╬ìè=è6400 - 160T╬ + T╬ì
-
- Simplifyïg
-
- 100è=è5T╬
-
- Soèè T╬ = 20⌡F
-
- ÇèBè
-
- è5è A êrmometer is taken from a refrigeraër at 40⌡F å
- taken outside on a 100⌡F day.èIf it takes 5 mïutes ë go
- ë 60⌡F, how long will it take ë go ë 90⌡F?
-
- A) 16.1 mïèèèB) 19.1 mïèè C)è22.1 mïèèèD)è25.1 mï
-
- üèèèSubstitutïg ê basic ïformation that T╠ = 40⌡F,
- T╬ = 100⌡ ïë ê temperature function yields
-
- T = -60eúÖ▐ + 100
-
- èèTo evaluate s, substitute T = 60⌡F at t = 5 mïutes ïë
- ê temperature function.
-
- 60 = -60eúÉÖ + 100
-
- orèèè-40 = -60eúÉÖ
-
- 2/3 = eúÉÖ
-
- Takïg ê natural log ç both sides
-
- ln[2/3] = ln[eúÉÖ] = -5s
-
- soèèès = - ln[2/3] / 5 mï =è0.0811 mïúî
-
- Thus ê temperature function becomes
-
- T =è-60eúò°òôîî▐ + 100
-
- Substitutïg T = 90⌡F yields
-
- 90è=è-60eúò°òôîî▐ + 100
-
- -10è=è-60eúò°òôîî▐
-
- 1/6è=èeúò°òôîî▐
-
- Takïg ê natural log ç both sides gives
-
- ln[1/6]è=èln[eúò°òôîî▐]è=è-0.0811t
-
- Thus
- tè=è- ln[1/6] / 0.0811è=è22.1 mïutes
-
- Ç C
-
- è6èèA coroner arrives at a murder at 9 p.m. å fïds ê
- temperature ç ê body is 85⌡F ï a room whose constant
- temperature is 60⌡F.èAn hour later, ê body's temperature
- is down ë 80⌡F.èWhen did ê murder occur?
-
- A)è3:30 p.m.è B)è4:30 p.m.è C)è5:30 p.m.è D)è6:30 p.m.
-
- üèè In this situtation, êre are 2 temperatures taken at
- specified times.èIt is given that T╬ = 60⌡F.èThe ïitial
- temperature ç ê body can be assumed as T╠ = 98.6⌡F unless
- êre is evidence that ê victim had a fever.èWe need ë
- fïd ê time ç ê murder, let
-
- t = time from ê murder ë 9 p.m. so
- t + 1 = time ç second temperature measurement
- or 10:00 p.m.
-
- èè Substitution gives ê temperature function at 9:00 p.m.
-
- 85 = 38.6eúÖ▐ + 60
-
- orèèè25 =è38.6eúÖ▐
-
- èè At 10:00 p.m., ê temperature funciën is
-
- 80 = 38.6eúÖÑ▐óîª + 60
-
- or 20 = 38.6eúÖÑ▐óîª
-
- Dividïg ê ëp equation by ê botëm yields
-
- 25èèèè 38.6eúÖ▐
- ────è=è──────────────
- 20èèè 38.6eúÖÑ▐óîª
-
- Simplifyïg
-
- 1.25è=èeúÖ▐úÑúÖÑ▐óè=èeÖ
-
- Takïg ê natural log ç both sides
-
- ln[1.25]è=èln[eÖ] = s
-
- Thusèèès =è0.0223 hourúî
-
- Substitutïg ïë ê time function for 9 p.m. gives
-
- 85 =è38.6eúò°ììÄ▐ + 60
-
- orèèè25è=è38.6eúò°ììÄ▐
-
- 25/38.6è=èeúò°ììÄ▐
-
- Takïg ê natural log ç both sides yields
-
- ln[25/38.6]è=èln[eúò°ììÄ▐]è=è-0.223t
-
- Thusèè tè=è- ln[25/38.6] / 0.223è=è3.54 hours
-
- è So 9 p.m. is 3.5 hours after ê murder, so ê
- murder was committed at 5:30 p.m.
-
- ÇèC
-
-
-
-