home *** CD-ROM | disk | FTP | other *** search
- à 2.2èDecay;èHalf Life
-
- ä Solve as given ï ê problem
-
- âèThe decay rate ç iodïe (IîÄî) is 9.6% per day. Fïd its
- èèhalf life.èThe formula for half life T is
- èèèln[2]èèèèln[2]
- Tè=è─────è=è─────────────è=è7.22 days
- èèèèèèèèsèèèè0.096 dayúî
-
- éSè The decay problem can be thought ç as havïg knowledge ç
- an INITIAL POPULATION P╠ å askïg how ë fïd ê populat-
- ion at a later time t i.e. given P(t╠) = P╠, fïd P(t) for
- t ≥ t╠è In order ë solve such a problem requires a MODEL
- ç ê behavior ç ê population growth.
-
- èèA very simple model for population growth is ë assume
- that ê POPULATION GROWTH RATE at any time is DIRECTLY
- PROPORTIONAL ë ê population at that time.èWritïg this
- as a differential equation
- dP
- ──── =èg P
- dt
-
- For this ë represent growth, ê proportionality constant
- g must be positive.èIf g is negative, this differential
- equation represents ê DECAY ç ê population.èIn ê
- decay situtation, g is normally replaced by -s where s is
- a positive constant å ê fact that decay is occurïg is
- emphasized by ê mïus sign.
-
- èèIncludïg ê ïitial condition, this becomes ê INITIAL
- VALUE Problem
-
- dP
- ──── =è- s P
- dt
-
- P(t╠) = P╠èè{ Normally t╠ = 0 }
-
- èèThis is a SEPARABLE differential equation (Section 1.4)
- å becomes, upon rearrangement
-
- dP
- ────è=è- s dt
- èP
-
- Integratïg both sides yields
-
- ln[P]è= - stè+èln[C]èèC is ïtegration constant
-
- or
- èèèèln[P/C] = - st
-
- Exponentiatïg both sides
- P
- ───è= eúÖ▐
- C
-
- Pè=èCeúÖ▐
-
- ForèP(0) = P╠, ê constant ç ïtegration becomes
-
- Pè=èP╠eúÖ▐
-
- This simple model is known as ê EXPONENTIAL DECAY MODEL.
-
- èèA prime example ç a natural phenomena that obeys this
- decay is ê decay ç a sample ç radioactive material.
- In this area, ê volatility ç decay is general given ï
- terms ç ê HALF LIFE ç ê radioactive isoëpe.èThe
- half life is defïed as ê time required for ê sample ë
- decay ë half ç its ïitial value.èFormally, fïdèT such
- thatèP(T) = P╠/2.èSubstitutïg ïë ê decay function
-
- P╠/2è=èP╠eúÖ▐
-
- orèèèè1/2è=èeúÖ▐
-
- Takïg ê natural log ç both sides gives
-
- ln[1/2]è=èln[eúÖ▐]
-
- orèèè -ln[2]è=è-sT
- èèèèèèèèèè ln[2]
- ThusèèèèèTè=è───────
- èèèèèèèèèèè s
-
- èèAnoêr problem that is modeled by ê decay function is
- that ç desirïg ë have x dollars at a future time.èHow much
- money must be ïvested at a given ïterest rate å compounded
- contïuously ë have x dollars ï t years.èThis current amount
- is known as ê PRESENT VALUE.èFïdïg ê present value is
- ê reverse ç fïdïg ê amount ï a savïgs account start-
- ïg with P╠ å ïvestïg it as at an ïterest rate that is
- compounded contïuously for t years i.e.
-
- Pè=èP╠eÖ▐
-
- Solvïg for P╠ yields ê PRESENT VALUE function
-
- P╠è=èPeúÖ▐
-
- 1èIf ê population ç a Petri dish ç bacteria is decreas-
- at ê constant rate ç 1% per mïute, how long will it take
- for ê sample ë be half ç its current size?
-
- A)è 27.2 mïutesèèèèèèè B)è 33.7 mïutes
- C)è 55.5 mïutesèèèèèèè D)è 69.3 mïutes
-
- ü è This is a half life problem which is given by ê
- formula
- èèè ln[2]èèèè ln[2]
- Tè=è───────è=è──────────── =è69.3 mïutes
- èèèè s è 0.01 mïúî
-
- ÇèD
-
- 2èèRadium-226 has a half life ç 1620 years.èWhat percent
- ç a sample will be left at ê start ç ê next millenium
- ï 3000 A.D.?
-
- A)è72.1%èè B)è69.7%èè C)è 65.2%èè D)è55.5%
-
- ü èèLettïg P╠ = 100%, ê time t = 3000 - 2000 = 1000 years.
- The decay rate s is still needed but it can be calculated
- from ê half life.èThe half life formula is
- èèè ln[2]
- Tè=è───────
- èèèè s
- So
- èèè ln[2]èèèè ln[2]
- sè=è───────è=è───────────è=è0.000428 yearúî
- èèèè Tèèèè 1620 year
- Then
- Pè=è100eúò°òòòÅìôÑîòòòª
-
- è =è100eúò°Åìô
-
- è =è65.2%
-
- ÇèC
-
- 3èè Strontium-90 is one ç ê products ç an aëmic explo-
- sion.èIt has a half life ç 25 years.èIf an aëmic explosion
- occurs ï ê ê year 2000, how much (%) will be left ï
- ê year 2100?
-
- A)è none will be leftèèèèèB)è 2.7%
- C)è 6.25%èèèèèèèèèèèD)è 25%
-
- üèèèAs ê net time ç 100 years = 2100 - 2000 is known, this
- problem could be solved by substitution ïë ê growth
- function as was done ï Problem 2.èAs easier method is ë
- note that ê time ç 100 years is exactly 4 times ê half
- life ç 25 years i.e. 4 half lives will have passed.èThus
- ê material left will beè
-
- (1/2)Å = 1/16è=è0.0625è=è6.25%
-
- Ç C
-
- è4è Scientists found that ê Dead Sea Scrolls had lost
- 22.3% ç ê origïal Carbon-14 ë radioactive decay.èIf
- ê half life ç CîÅ is 5750 years, when were ê Dead
- Scrolls made?
-
- A)è390 A.D.è B)è130 A.D.è C)è130 B.C.èD)è390 B.C.
-
- üèè Any livïg organism contaïs carbon which is present
- ï 2 isoëpes.èOne is ê domïant form, stable Carbon-12
- while a small percentage is radioactive Carbon-14.èWhile
- ê organism lives, ê percentage ç CîÅ ë Cîì remaïs
- constant at ê rate present ï ê air that ê organism
- uses ë survive.èWhen ê organism dies, ê radioactive
- CîÅ is no longer replenished å due ë its radioactive
- decay, its percentage becomes smaller å smaller.èThis
- percentage can be measured usïg a Geiger counter.èUsïg
- ê half life ç 5750 years, W. F. Libby ï 1952 developed
- ê technique ç CARBON DATING ë fïd ê date ç death
- ç a livïg object.
-
- èèFirst ê decay rate constant must be found which can
- be done by manipulatïg ê half life formula
-
- èèè ln[2]
- Tè=è───────
- èèèè s
- So
- èèè ln[2]èèèè ln[2]
- sè=è───────è=è───────────è=è0.000121 yearúî
- èèèè Tèèèè 5740 years
-
- èèAs 22.3% ç ê Dead Sea Scrolls' CîÅ has been lost, that
- means that 77.7% ç ê CîÅ is still present.èSubstitutïg
- ïë ê decay function yields'
-
- 77.3è=è100eúò°òòòîìî▐
-
- 0.773è=èeúò°òòòîìî▐
-
- Takïg ê natural log ç both sides gives
-
- ln[0.773]è=èln[eúò°òòòîìî▐]è=è- 0.000121t
-
- Thus èè tè=è- ln[0.773] / 0.000121
-
- èèèè=è2130 years
-
- èèèè=è 130 B.C.
-
- ÇèC
-
- è5è Six hours after a radioactive sample is produced, 80 grams
- ç ê sample are still left.èTwo hours later (8 hours after
- production) 50 grams are left.èHow much ç ê sample is
- produced?
-
- A)è 500 gramsè B)è328 gramsèC)è299 gramsèD)è167 grams
-
- ü.èèIn this problem, neiêr ê decay rate constant (or ê
- equivalant half life) nor ê ïitial amount is given so
- êre are two quantities missïg from ê decay function.
-
- è There is ïformation from two times which allows for
- developïg 2 equations ï 2 unknowns.èUnfortunately, êy
- are not lïear but êy can still be solved.èSubstitutïg
- ïë ê decay functions yields ê 2 equations
-
- 80è=èP╠ eúÖ6
- å
- 50è=èP╠ eúÖ8
-
- Dividïg ê ëp equation by ê botëm allows P╠ ë be
- cancelled leavïg one exponential equation ï one unknown
-
- 80èèèP╠ eúæÖèèè eúæÖ
- ────è= ─────────è=è──────
- 50èèèP╠ eúôÖèèè eúôÖ
-
- Simplifyïg
-
- 1.6è=èeìÖ
-
- Takïg ê natural log ç both sides
-
- ln[1.6] = ln[eìÖ]è=è2s
-
- Thusè s =èln[1.6] / 2 hours =è0.235 hourúî
-
- This can be substituted back ïë eiêr ç ê decay
- functions above.èUsïg ê 6 hour value ç 80 grams
-
- 80è=èP╠eúò°ìÄÉÑæªè=èP╠eúî°Åîò
-
- Solvïg for P╠ gives
-
- P╠è=è80eî°Åîòè=è328 grams
-
- ÇèB
-
- è6è On Wheel ç Fortune, a person won an annuity valued at
- $25,000 ï 10 years.èIf ïterest is compounded contïuously
- at 8%, what is ê cost ç ê annuity now?
-
- èèA)è$18,736.40è B)è $15,983.06èC)è$13,131,31èD)è$11,233.22
-
- ü èèThis is a present value problem with s = 0.08,
- P = $25,000 å t = 10 years.èSubstitutïg this ï ê
- present value equation gives
-
- P╠ = 25000eúò°òôÑîòª
-
- è = 25000eúò°ô
-
- è = $11,233.22
-
- ÇèD
-
- 7èSallie McMullï has had a great summer.èFirst she had a
- lovely baby boy å ên won $50,000 ï ê lottery.èShe
- wants ë ensure that ê baby will have $50,000 at age 18
- ë start college.èHow much money must she ïvest at 5%
- compounded contïuously ë have $50,000 ï 18 years?
-
- èè A)è $15,942.39è B) $20,328.48èC) $26,008.43èD) $31,345.71
-
- üèèèèThis is a present value problem with s = 0.05,
- P = $50,000 å t = 18 years.èSubstitutïg this ï ê
- present value equation gives
-
- P╠ = 50000eúò°òÉÑîôª
-
- è = 50000eúò°ö
-
- è = $20,328.48
-
- Thus Sallie will have nearly $30,000 ë spend now å will
- still be able ë ensure her son's college education.
-
- ÇèB
-
- è8èPetersburg, Virgïia had a population ç 50,000 ï 1970
- å 45,000 ï 1990.èAssumïg an exponential decay model,
- estimate ê population ï 2010.
-
- A)è37,942èèB)è39,783èèC)è40,500è D)è41,239
-
- üèè To use ê decay formula with t = 2010 - 1970 = 20 years,
- ê ïitial population ç 50,000 is available, but ê decay
- rate is not.
-
- è The decay rate can be determïed by usïg ê data from
- 1990 where t = 1990 - 1970 = 40 years, P╠ = 50,000 å
- P = 45,000 å s is ê only variable ï ê function
-
- 45000è=è50000eúÖìò
-
- 45,000 / 50000è=èeúìòÖ
-
- Takïg ê natural log ç both sides gives
-
- èèèèln[0.9] = ln[eúìòÖ]è=è-20s
-
- So s = - ln[0.90] /20 year =è0.00527 yearúî
-
- èèSubstitute now t = 40 years
-
- Pè=è50000eúÑò°òòÉìÆªÅò
-
- è =è50000eúò°ìîî
-
- è =è40,500
-
- Ç C
-
-
-