home *** CD-ROM | disk | FTP | other *** search
Text File | 1996-10-12 | 51.5 KB | 1,784 lines |
- ;; Calculator for GNU Emacs, part II [calc-math.el]
- ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
- ;; Written by Dave Gillespie, daveg@synaptics.com.
-
- ;; This file is part of GNU Emacs.
-
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY. No author or distributor
- ;; accepts responsibility to anyone for the consequences of using it
- ;; or for whether it serves any particular purpose or works at all,
- ;; unless he says so in writing. Refer to the GNU Emacs General Public
- ;; License for full details.
-
- ;; Everyone is granted permission to copy, modify and redistribute
- ;; GNU Emacs, but only under the conditions described in the
- ;; GNU Emacs General Public License. A copy of this license is
- ;; supposed to have been given to you along with GNU Emacs so you
- ;; can know your rights and responsibilities. It should be in a
- ;; file named COPYING. Among other things, the copyright notice
- ;; and this notice must be preserved on all copies.
-
-
-
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
-
- (require 'calc-macs)
-
- (defun calc-Need-calc-math () nil)
-
-
- (defun calc-sqrt (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "^2" 'calcFunc-sqr arg)
- (calc-unary-op "sqrt" 'calcFunc-sqrt arg)))
- )
-
- (defun calc-isqrt (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "^2" 'calcFunc-sqr arg)
- (calc-unary-op "isqt" 'calcFunc-isqrt arg)))
- )
-
-
- (defun calc-hypot (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "hypt" 'calcFunc-hypot arg))
- )
-
- (defun calc-ln (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-exp arg)
- )
-
- (defun calc-log10 (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-ln arg)
- )
-
- (defun calc-log (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-binary-op "alog" 'calcFunc-alog arg)
- (calc-binary-op "log" 'calcFunc-log arg)))
- )
-
- (defun calc-ilog (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-binary-op "alog" 'calcFunc-alog arg)
- (calc-binary-op "ilog" 'calcFunc-ilog arg)))
- )
-
- (defun calc-lnp1 (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-expm1 arg)
- )
-
- (defun calc-exp (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "lg10" 'calcFunc-log10 arg)
- (calc-unary-op "10^" 'calcFunc-exp10 arg))
- (if (calc-is-inverse)
- (calc-unary-op "ln" 'calcFunc-ln arg)
- (calc-unary-op "exp" 'calcFunc-exp arg))))
- )
-
- (defun calc-expm1 (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "ln+1" 'calcFunc-lnp1 arg)
- (calc-unary-op "ex-1" 'calcFunc-expm1 arg)))
- )
-
- (defun calc-pi ()
- (interactive)
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (if (calc-is-hyperbolic)
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "phi" '(var phi var-phi))
- (calc-pop-push-record 0 "phi" (math-phi)))
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "gmma" '(var gamma var-gamma))
- (calc-pop-push-record 0 "gmma" (math-gamma-const))))
- (if (calc-is-hyperbolic)
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "e" '(var e var-e))
- (calc-pop-push-record 0 "e" (math-e)))
- (if calc-symbolic-mode
- (calc-pop-push-record 0 "pi" '(var pi var-pi))
- (calc-pop-push-record 0 "pi" (math-pi))))))
- )
-
- (defun calc-sin (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "asnh" 'calcFunc-arcsinh arg)
- (calc-unary-op "sinh" 'calcFunc-sinh arg))
- (if (calc-is-inverse)
- (calc-unary-op "asin" 'calcFunc-arcsin arg)
- (calc-unary-op "sin" 'calcFunc-sin arg))))
- )
-
- (defun calc-arcsin (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-sin arg)
- )
-
- (defun calc-sinh (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-sin arg)
- )
-
- (defun calc-arcsinh (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-hyperbolic-func)
- (calc-sin arg)
- )
-
- (defun calc-cos (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "acsh" 'calcFunc-arccosh arg)
- (calc-unary-op "cosh" 'calcFunc-cosh arg))
- (if (calc-is-inverse)
- (calc-unary-op "acos" 'calcFunc-arccos arg)
- (calc-unary-op "cos" 'calcFunc-cos arg))))
- )
-
- (defun calc-arccos (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-cos arg)
- )
-
- (defun calc-cosh (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-cos arg)
- )
-
- (defun calc-arccosh (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-hyperbolic-func)
- (calc-cos arg)
- )
-
- (defun calc-sincos ()
- (interactive)
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-enter-result 1 "asnc" (list 'calcFunc-arcsincos (calc-top-n 1)))
- (calc-enter-result 1 "sncs" (list 'calcFunc-sincos (calc-top-n 1)))))
- )
-
- (defun calc-tan (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (if (calc-is-inverse)
- (calc-unary-op "atnh" 'calcFunc-arctanh arg)
- (calc-unary-op "tanh" 'calcFunc-tanh arg))
- (if (calc-is-inverse)
- (calc-unary-op "atan" 'calcFunc-arctan arg)
- (calc-unary-op "tan" 'calcFunc-tan arg))))
- )
-
- (defun calc-arctan (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-tan arg)
- )
-
- (defun calc-tanh (arg)
- (interactive "P")
- (calc-hyperbolic-func)
- (calc-tan arg)
- )
-
- (defun calc-arctanh (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-hyperbolic-func)
- (calc-tan arg)
- )
-
- (defun calc-arctan2 ()
- (interactive)
- (calc-slow-wrapper
- (calc-enter-result 2 "atn2" (cons 'calcFunc-arctan2 (calc-top-list-n 2))))
- )
-
- (defun calc-conj (arg)
- (interactive "P")
- (calc-wrapper
- (calc-unary-op "conj" 'calcFunc-conj arg))
- )
-
- (defun calc-imaginary ()
- (interactive)
- (calc-slow-wrapper
- (calc-pop-push-record 1 "i*" (math-imaginary (calc-top-n 1))))
- )
-
-
-
- (defun calc-to-degrees (arg)
- (interactive "P")
- (calc-wrapper
- (calc-unary-op ">deg" 'calcFunc-deg arg))
- )
-
- (defun calc-to-radians (arg)
- (interactive "P")
- (calc-wrapper
- (calc-unary-op ">rad" 'calcFunc-rad arg))
- )
-
-
- (defun calc-degrees-mode (arg)
- (interactive "p")
- (cond ((= arg 1)
- (calc-wrapper
- (calc-change-mode 'calc-angle-mode 'deg)
- (message "Angles measured in degrees.")))
- ((= arg 2) (calc-radians-mode))
- ((= arg 3) (calc-hms-mode))
- (t (error "Prefix argument out of range")))
- )
-
- (defun calc-radians-mode ()
- (interactive)
- (calc-wrapper
- (calc-change-mode 'calc-angle-mode 'rad)
- (message "Angles measured in radians."))
- )
-
-
- ;;; Compute the integer square-root floor(sqrt(A)). A > 0. [I I] [Public]
- ;;; This method takes advantage of the fact that Newton's method starting
- ;;; with an overestimate always works, even using truncating integer division!
- (defun math-isqrt (a)
- (cond ((Math-zerop a) a)
- ((not (math-natnump a))
- (math-reject-arg a 'natnump))
- ((integerp a)
- (math-isqrt-small a))
- (t
- (math-normalize (cons 'bigpos (cdr (math-isqrt-bignum (cdr a)))))))
- )
-
- (defun calcFunc-isqrt (a)
- (if (math-realp a)
- (math-isqrt (math-floor a))
- (math-floor (math-sqrt a)))
- )
-
-
- ;;; This returns (flag . result) where the flag is T if A is a perfect square.
- (defun math-isqrt-bignum (a) ; [P.l L]
- (let ((len (length a)))
- (if (= (% len 2) 0)
- (let* ((top (nthcdr (- len 2) a)))
- (math-isqrt-bignum-iter
- a
- (math-scale-bignum-3
- (math-bignum-big
- (1+ (math-isqrt-small
- (+ (* (nth 1 top) 1000) (car top)))))
- (1- (/ len 2)))))
- (let* ((top (nth (1- len) a)))
- (math-isqrt-bignum-iter
- a
- (math-scale-bignum-3
- (list (1+ (math-isqrt-small top)))
- (/ len 2))))))
- )
-
- (defun math-isqrt-bignum-iter (a guess) ; [l L l]
- (math-working "isqrt" (cons 'bigpos guess))
- (let* ((q (math-div-bignum a guess))
- (s (math-add-bignum (car q) guess))
- (g2 (math-div2-bignum s))
- (comp (math-compare-bignum g2 guess)))
- (if (< comp 0)
- (math-isqrt-bignum-iter a g2)
- (cons (and (= comp 0)
- (math-zerop-bignum (cdr q))
- (= (% (car s) 2) 0))
- guess)))
- )
-
- (defun math-zerop-bignum (a)
- (and (eq (car a) 0)
- (progn
- (while (eq (car (setq a (cdr a))) 0))
- (null a)))
- )
-
- (defun math-scale-bignum-3 (a n) ; [L L S]
- (while (> n 0)
- (setq a (cons 0 a)
- n (1- n)))
- a
- )
-
- (defun math-isqrt-small (a) ; A > 0. [S S]
- (let ((g (cond ((>= a 10000) 1000)
- ((>= a 100) 100)
- (t 10)))
- g2)
- (while (< (setq g2 (/ (+ g (/ a g)) 2)) g)
- (setq g g2))
- g)
- )
-
-
-
-
- ;;; Compute the square root of a number.
- ;;; [T N] if possible, else [F N] if possible, else [C N]. [Public]
- (defun math-sqrt (a)
- (or
- (and (Math-zerop a) a)
- (and (math-known-nonposp a)
- (math-imaginary (math-sqrt (math-neg a))))
- (and (integerp a)
- (let ((sqrt (math-isqrt-small a)))
- (if (= (* sqrt sqrt) a)
- sqrt
- (if calc-symbolic-mode
- (list 'calcFunc-sqrt a)
- (math-sqrt-float (math-float a) (math-float sqrt))))))
- (and (eq (car-safe a) 'bigpos)
- (let* ((res (math-isqrt-bignum (cdr a)))
- (sqrt (math-normalize (cons 'bigpos (cdr res)))))
- (if (car res)
- sqrt
- (if calc-symbolic-mode
- (list 'calcFunc-sqrt a)
- (math-sqrt-float (math-float a) (math-float sqrt))))))
- (and (eq (car-safe a) 'frac)
- (let* ((num-res (math-isqrt-bignum (cdr (Math-bignum-test (nth 1 a)))))
- (num-sqrt (math-normalize (cons 'bigpos (cdr num-res))))
- (den-res (math-isqrt-bignum (cdr (Math-bignum-test (nth 2 a)))))
- (den-sqrt (math-normalize (cons 'bigpos (cdr den-res)))))
- (if (and (car num-res) (car den-res))
- (list 'frac num-sqrt den-sqrt)
- (if calc-symbolic-mode
- (if (or (car num-res) (car den-res))
- (math-div (if (car num-res)
- num-sqrt (list 'calcFunc-sqrt (nth 1 a)))
- (if (car den-res)
- den-sqrt (list 'calcFunc-sqrt (nth 2 a))))
- (list 'calcFunc-sqrt a))
- (math-sqrt-float (math-float a)
- (math-div (math-float num-sqrt) den-sqrt))))))
- (and (eq (car-safe a) 'float)
- (if calc-symbolic-mode
- (if (= (% (nth 2 a) 2) 0)
- (let ((res (math-isqrt-bignum
- (cdr (Math-bignum-test (nth 1 a))))))
- (if (car res)
- (math-make-float (math-normalize
- (cons 'bigpos (cdr res)))
- (/ (nth 2 a) 2))
- (signal 'inexact-result nil)))
- (signal 'inexact-result nil))
- (math-sqrt-float a)))
- (and (eq (car-safe a) 'cplx)
- (math-with-extra-prec 2
- (let* ((d (math-abs a))
- (imag (math-sqrt (math-mul (math-sub d (nth 1 a))
- '(float 5 -1)))))
- (list 'cplx
- (math-sqrt (math-mul (math-add d (nth 1 a)) '(float 5 -1)))
- (if (math-negp (nth 2 a)) (math-neg imag) imag)))))
- (and (eq (car-safe a) 'polar)
- (list 'polar
- (math-sqrt (nth 1 a))
- (math-mul (nth 2 a) '(float 5 -1))))
- (and (eq (car-safe a) 'sdev)
- (let ((sqrt (math-sqrt (nth 1 a))))
- (math-make-sdev sqrt
- (math-div (nth 2 a) (math-mul sqrt 2)))))
- (and (eq (car-safe a) 'intv)
- (not (math-negp (nth 2 a)))
- (math-make-intv (nth 1 a) (math-sqrt (nth 2 a)) (math-sqrt (nth 3 a))))
- (and (eq (car-safe a) '*)
- (or (math-known-nonnegp (nth 1 a))
- (math-known-nonnegp (nth 2 a)))
- (math-mul (math-sqrt (nth 1 a)) (math-sqrt (nth 2 a))))
- (and (eq (car-safe a) '/)
- (or (and (math-known-nonnegp (nth 2 a))
- (math-div (math-sqrt (nth 1 a)) (math-sqrt (nth 2 a))))
- (and (math-known-nonnegp (nth 1 a))
- (not (math-equal-int (nth 1 a) 1))
- (math-mul (math-sqrt (nth 1 a))
- (math-sqrt (math-div 1 (nth 2 a)))))))
- (and (eq (car-safe a) '^)
- (math-known-evenp (nth 2 a))
- (math-known-realp (nth 1 a))
- (math-abs (math-pow (nth 1 a) (math-div (nth 2 a) 2))))
- (let ((inf (math-infinitep a)))
- (and inf
- (math-mul (math-sqrt (math-infinite-dir a inf)) inf)))
- (progn
- (calc-record-why 'numberp a)
- (list 'calcFunc-sqrt a)))
- )
- (fset 'calcFunc-sqrt (symbol-function 'math-sqrt))
-
- (defun math-infinite-dir (a &optional inf)
- (or inf (setq inf (math-infinitep a)))
- (math-normalize (math-expr-subst a inf 1))
- )
-
- (defun math-sqrt-float (a &optional guess) ; [F F F]
- (if calc-symbolic-mode
- (signal 'inexact-result nil)
- (math-with-extra-prec 1 (math-sqrt-raw a guess)))
- )
-
- (defun math-sqrt-raw (a &optional guess) ; [F F F]
- (if (not (Math-posp a))
- (math-sqrt a)
- (if (null guess)
- (let ((ldiff (- (math-numdigs (nth 1 a)) 6)))
- (or (= (% (+ (nth 2 a) ldiff) 2) 0) (setq ldiff (1+ ldiff)))
- (setq guess (math-make-float (math-isqrt-small
- (math-scale-int (nth 1 a) (- ldiff)))
- (/ (+ (nth 2 a) ldiff) 2)))))
- (math-sqrt-float-iter a guess))
- )
-
- (defun math-sqrt-float-iter (a guess) ; [F F F]
- (math-working "sqrt" guess)
- (let ((g2 (math-mul-float (math-add-float guess (math-div-float a guess))
- '(float 5 -1))))
- (if (math-nearly-equal-float g2 guess)
- g2
- (math-sqrt-float-iter a g2)))
- )
-
- ;;; True if A and B differ only in the last digit of precision. [P F F]
- (defun math-nearly-equal-float (a b)
- (let ((ediff (- (nth 2 a) (nth 2 b))))
- (cond ((= ediff 0) ;; Expanded out for speed
- (setq ediff (math-add (Math-integer-neg (nth 1 a)) (nth 1 b)))
- (or (eq ediff 0)
- (and (not (consp ediff))
- (< ediff 10)
- (> ediff -10)
- (= (math-numdigs (nth 1 a)) calc-internal-prec))))
- ((= ediff 1)
- (setq ediff (math-add (Math-integer-neg (nth 1 b))
- (math-scale-int (nth 1 a) 1)))
- (and (not (consp ediff))
- (< ediff 10)
- (> ediff -10)
- (= (math-numdigs (nth 1 b)) calc-internal-prec)))
- ((= ediff -1)
- (setq ediff (math-add (Math-integer-neg (nth 1 a))
- (math-scale-int (nth 1 b) 1)))
- (and (not (consp ediff))
- (< ediff 10)
- (> ediff -10)
- (= (math-numdigs (nth 1 a)) calc-internal-prec)))))
- )
-
- (defun math-nearly-equal (a b) ; [P N N] [Public]
- (setq a (math-float a))
- (setq b (math-float b))
- (if (eq (car a) 'polar) (setq a (math-complex a)))
- (if (eq (car b) 'polar) (setq b (math-complex b)))
- (if (eq (car a) 'cplx)
- (if (eq (car b) 'cplx)
- (and (or (math-nearly-equal-float (nth 1 a) (nth 1 b))
- (and (math-nearly-zerop-float (nth 1 a) (nth 2 a))
- (math-nearly-zerop-float (nth 1 b) (nth 2 b))))
- (or (math-nearly-equal-float (nth 2 a) (nth 2 b))
- (and (math-nearly-zerop-float (nth 2 a) (nth 1 a))
- (math-nearly-zerop-float (nth 2 b) (nth 1 b)))))
- (and (math-nearly-equal-float (nth 1 a) b)
- (math-nearly-zerop-float (nth 2 a) b)))
- (if (eq (car b) 'cplx)
- (and (math-nearly-equal-float a (nth 1 b))
- (math-nearly-zerop-float a (nth 2 b)))
- (math-nearly-equal-float a b)))
- )
-
- ;;; True if A is nearly zero compared to B. [P F F]
- (defun math-nearly-zerop-float (a b)
- (or (eq (nth 1 a) 0)
- (<= (+ (math-numdigs (nth 1 a)) (nth 2 a))
- (1+ (- (+ (math-numdigs (nth 1 b)) (nth 2 b)) calc-internal-prec))))
- )
-
- (defun math-nearly-zerop (a b) ; [P N R] [Public]
- (setq a (math-float a))
- (setq b (math-float b))
- (if (eq (car a) 'cplx)
- (and (math-nearly-zerop-float (nth 1 a) b)
- (math-nearly-zerop-float (nth 2 a) b))
- (if (eq (car a) 'polar)
- (math-nearly-zerop-float (nth 1 a) b)
- (math-nearly-zerop-float a b)))
- )
-
- ;;; This implementation could be improved, accuracy-wise.
- (defun math-hypot (a b)
- (cond ((Math-zerop a) (math-abs b))
- ((Math-zerop b) (math-abs a))
- ((not (Math-scalarp a))
- (if (math-infinitep a)
- (if (math-infinitep b)
- (if (equal a b)
- a
- '(var nan var-nan))
- a)
- (calc-record-why 'scalarp a)
- (list 'calcFunc-hypot a b)))
- ((not (Math-scalarp b))
- (if (math-infinitep b)
- b
- (calc-record-why 'scalarp b)
- (list 'calcFunc-hypot a b)))
- ((and (Math-numberp a) (Math-numberp b))
- (math-with-extra-prec 1
- (math-sqrt (math-add (calcFunc-abssqr a) (calcFunc-abssqr b)))))
- ((eq (car-safe a) 'hms)
- (if (eq (car-safe b) 'hms) ; this helps sdev's of hms forms
- (math-to-hms (math-hypot (math-from-hms a 'deg)
- (math-from-hms b 'deg)))
- (math-to-hms (math-hypot (math-from-hms a 'deg) b))))
- ((eq (car-safe b) 'hms)
- (math-to-hms (math-hypot a (math-from-hms b 'deg))))
- (t nil))
- )
- (fset 'calcFunc-hypot (symbol-function 'math-hypot))
-
- (defun calcFunc-sqr (x)
- (math-pow x 2)
- )
-
-
-
- (defun math-nth-root (a n)
- (cond ((= n 2) (math-sqrt a))
- ((Math-zerop a) a)
- ((Math-negp a) nil)
- ((Math-integerp a)
- (let ((root (math-nth-root-integer a n)))
- (if (car root)
- (cdr root)
- (and (not calc-symbolic-mode)
- (math-nth-root-float (math-float a) n
- (math-float (cdr root)))))))
- ((eq (car-safe a) 'frac)
- (let* ((num-root (math-nth-root-integer (nth 1 a) n))
- (den-root (math-nth-root-integer (nth 2 a) n)))
- (if (and (car num-root) (car den-root))
- (list 'frac (cdr num-root) (cdr den-root))
- (and (not calc-symbolic-mode)
- (math-nth-root-float
- (math-float a) n
- (math-div-float (math-float (cdr num-root))
- (math-float (cdr den-root))))))))
- ((eq (car-safe a) 'float)
- (and (not calc-symbolic-mode)
- (math-nth-root-float a n)))
- ((eq (car-safe a) 'polar)
- (let ((root (math-nth-root (nth 1 a) n)))
- (and root (list 'polar root (math-div (nth 2 a) n)))))
- (t nil))
- )
-
- (defun math-nth-root-float (a n &optional guess)
- (math-inexact-result)
- (math-with-extra-prec 1
- (let ((nf (math-float n))
- (nfm1 (math-float (1- n))))
- (math-nth-root-float-iter a (or guess
- (math-make-float
- 1 (/ (+ (math-numdigs (nth 1 a))
- (nth 2 a)
- (/ n 2))
- n))))))
- )
-
- (defun math-nth-root-float-iter (a guess) ; uses "n", "nf", "nfm1"
- (math-working "root" guess)
- (let ((g2 (math-div-float (math-add-float (math-mul nfm1 guess)
- (math-div-float
- a (math-ipow guess (1- n))))
- nf)))
- (if (math-nearly-equal-float g2 guess)
- g2
- (math-nth-root-float-iter a g2)))
- )
-
- (defun math-nth-root-integer (a n &optional guess) ; [I I S]
- (math-nth-root-int-iter a (or guess
- (math-scale-int 1 (/ (+ (math-numdigs a)
- (1- n))
- n))))
- )
-
- (defun math-nth-root-int-iter (a guess) ; uses "n"
- (math-working "root" guess)
- (let* ((q (math-idivmod a (math-ipow guess (1- n))))
- (s (math-add (car q) (math-mul (1- n) guess)))
- (g2 (math-idivmod s n)))
- (if (Math-natnum-lessp (car g2) guess)
- (math-nth-root-int-iter a (car g2))
- (cons (and (equal (car g2) guess)
- (eq (cdr q) 0)
- (eq (cdr g2) 0))
- guess)))
- )
-
- (defun calcFunc-nroot (x n)
- (calcFunc-pow x (if (integerp n)
- (math-make-frac 1 n)
- (math-div 1 n)))
- )
-
-
-
-
- ;;;; Transcendental functions.
-
- ;;; All of these functions are defined on the complex plane.
- ;;; (Branch cuts, etc. follow Steele's Common Lisp book.)
-
- ;;; Most functions increase calc-internal-prec by 2 digits, then round
- ;;; down afterward. "-raw" functions use the current precision, require
- ;;; their arguments to be in float (or complex float) format, and always
- ;;; work in radians (where applicable).
-
- (defun math-to-radians (a) ; [N N]
- (cond ((eq (car-safe a) 'hms)
- (math-from-hms a 'rad))
- ((memq calc-angle-mode '(deg hms))
- (math-mul a (math-pi-over-180)))
- (t a))
- )
-
- (defun math-from-radians (a) ; [N N]
- (cond ((eq calc-angle-mode 'deg)
- (if (math-constp a)
- (math-div a (math-pi-over-180))
- (list 'calcFunc-deg a)))
- ((eq calc-angle-mode 'hms)
- (math-to-hms a 'rad))
- (t a))
- )
-
- (defun math-to-radians-2 (a) ; [N N]
- (cond ((eq (car-safe a) 'hms)
- (math-from-hms a 'rad))
- ((memq calc-angle-mode '(deg hms))
- (if calc-symbolic-mode
- (math-div (math-mul a '(var pi var-pi)) 180)
- (math-mul a (math-pi-over-180))))
- (t a))
- )
-
- (defun math-from-radians-2 (a) ; [N N]
- (cond ((memq calc-angle-mode '(deg hms))
- (if calc-symbolic-mode
- (math-div (math-mul 180 a) '(var pi var-pi))
- (math-div a (math-pi-over-180))))
- (t a))
- )
-
-
-
- ;;; Sine, cosine, and tangent.
-
- (defun calcFunc-sin (x) ; [N N] [Public]
- (cond ((and (integerp x)
- (if (eq calc-angle-mode 'deg)
- (= (% x 90) 0)
- (= x 0)))
- (aref [0 1 0 -1] (math-mod (/ x 90) 4)))
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-sin-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (math-make-sdev (car sc) (math-mul xs (cdr sc)))))
- (math-make-sdev (calcFunc-sin (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-cos (nth 1 x))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (calcFunc-cos (math-sub x (math-quarter-circle nil))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-sin x)))
- )
-
- (defun calcFunc-cos (x) ; [N N] [Public]
- (cond ((and (integerp x)
- (if (eq calc-angle-mode 'deg)
- (= (% x 90) 0)
- (= x 0)))
- (aref [1 0 -1 0] (math-mod (/ x 90) 4)))
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-cos-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (math-make-sdev (cdr sc) (math-mul xs (car sc)))))
- (math-make-sdev (calcFunc-cos (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-sin (nth 1 x))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float x)))
- (na (math-floor (math-div (nth 2 xx) (math-pi))))
- (nb (math-floor (math-div (nth 3 xx) (math-pi))))
- (span (math-sub nb na)))
- (if (memq span '(0 1))
- (let ((int (math-sort-intv (nth 1 x)
- (math-cos-raw (nth 2 xx))
- (math-cos-raw (nth 3 xx)))))
- (if (eq span 1)
- (if (math-evenp na)
- (math-make-intv (logior (nth 1 x) 2)
- -1
- (nth 3 int))
- (math-make-intv (logior (nth 1 x) 1)
- (nth 2 int)
- 1))
- int))
- (list 'intv 3 -1 1)))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-cos x)))
- )
-
- (defun calcFunc-sincos (x) ; [V N] [Public]
- (if (Math-scalarp x)
- (math-with-extra-prec 2
- (let ((sc (math-sin-cos-raw (math-to-radians (math-float x)))))
- (list 'vec (cdr sc) (car sc)))) ; the vector [cos, sin]
- (list 'vec (calcFunc-sin x) (calcFunc-cos x)))
- )
-
- (defun calcFunc-tan (x) ; [N N] [Public]
- (cond ((and (integerp x)
- (if (eq calc-angle-mode 'deg)
- (= (% x 180) 0)
- (= x 0)))
- 0)
- ((Math-scalarp x)
- (math-with-extra-prec 2
- (math-tan-raw (math-to-radians (math-float x)))))
- ((eq (car x) 'sdev)
- (if (math-constp x)
- (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float (nth 1 x))))
- (xs (math-to-radians (math-float (nth 2 x))))
- (sc (math-sin-cos-raw xx)))
- (if (and (math-zerop (cdr sc)) (not calc-infinite-mode))
- (progn
- (calc-record-why "*Division by zero")
- (list 'calcFunc-tan x))
- (math-make-sdev (math-div-float (car sc) (cdr sc))
- (math-div-float xs (math-sqr (cdr sc)))))))
- (math-make-sdev (calcFunc-tan (nth 1 x))
- (math-div (nth 2 x)
- (math-sqr (calcFunc-cos (nth 1 x)))))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (or (math-with-extra-prec 2
- (let* ((xx (math-to-radians (math-float x)))
- (na (math-floor (math-div (math-sub (nth 2 xx)
- (math-pi-over-2))
- (math-pi))))
- (nb (math-floor (math-div (math-sub (nth 3 xx)
- (math-pi-over-2))
- (math-pi)))))
- (and (equal na nb)
- (math-sort-intv (nth 1 x)
- (math-tan-raw (nth 2 xx))
- (math-tan-raw (nth 3 xx))))))
- '(intv 3 (neg (var inf var-inf)) (var inf var-inf))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'scalarp x)
- (list 'calcFunc-tan x)))
- )
-
- (defun math-sin-raw (x) ; [N N]
- (cond ((eq (car x) 'cplx)
- (let* ((expx (math-exp-raw (nth 2 x)))
- (expmx (math-div-float '(float 1 0) expx))
- (sc (math-sin-cos-raw (nth 1 x))))
- (list 'cplx
- (math-mul-float (car sc)
- (math-mul-float (math-add-float expx expmx)
- '(float 5 -1)))
- (math-mul-float (cdr sc)
- (math-mul-float (math-sub-float expx expmx)
- '(float 5 -1))))))
- ((eq (car x) 'polar)
- (math-polar (math-sin-raw (math-complex x))))
- ((Math-integer-negp (nth 1 x))
- (math-neg-float (math-sin-raw (math-neg-float x))))
- ((math-lessp-float '(float 7 0) x) ; avoid inf loops due to roundoff
- (math-sin-raw (math-mod x (math-two-pi))))
- (t (math-sin-raw-2 x x)))
- )
-
- (defun math-cos-raw (x) ; [N N]
- (if (eq (car-safe x) 'polar)
- (math-polar (math-cos-raw (math-complex x)))
- (math-sin-raw (math-sub (math-pi-over-2) x)))
- )
-
- ;;; This could use a smarter method: Reduce x as in math-sin-raw, then
- ;;; compute either sin(x) or cos(x), whichever is smaller, and compute
- ;;; the other using the identity sin(x)^2 + cos(x)^2 = 1.
- (defun math-sin-cos-raw (x) ; [F.F F] (result is (sin x . cos x))
- (cons (math-sin-raw x) (math-cos-raw x))
- )
-
- (defun math-tan-raw (x) ; [N N]
- (cond ((eq (car x) 'cplx)
- (let* ((x (math-mul x '(float 2 0)))
- (expx (math-exp-raw (nth 2 x)))
- (expmx (math-div-float '(float 1 0) expx))
- (sc (math-sin-cos-raw (nth 1 x)))
- (d (math-add-float (cdr sc)
- (math-mul-float (math-add-float expx expmx)
- '(float 5 -1)))))
- (and (not (eq (nth 1 d) 0))
- (list 'cplx
- (math-div-float (car sc) d)
- (math-div-float (math-mul-float (math-sub-float expx
- expmx)
- '(float 5 -1)) d)))))
- ((eq (car x) 'polar)
- (math-polar (math-tan-raw (math-complex x))))
- (t
- (let ((sc (math-sin-cos-raw x)))
- (if (eq (nth 1 (cdr sc)) 0)
- (math-div (car sc) 0)
- (math-div-float (car sc) (cdr sc))))))
- )
-
- (defun math-sin-raw-2 (x orgx) ; This avoids poss of inf recursion. [F F]
- (let ((xmpo2 (math-sub-float (math-pi-over-2) x)))
- (cond ((Math-integer-negp (nth 1 xmpo2))
- (math-neg-float (math-sin-raw-2 (math-sub-float x (math-pi))
- orgx)))
- ((math-lessp-float (math-pi-over-4) x)
- (math-cos-raw-2 xmpo2 orgx))
- ((math-lessp-float x (math-neg (math-pi-over-4)))
- (math-neg (math-cos-raw-2 (math-add (math-pi-over-2) x) orgx)))
- ((math-nearly-zerop-float x orgx) '(float 0 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- (t (math-sin-series x 6 4 x (math-neg-float (math-sqr-float x))))))
- )
-
- (defun math-cos-raw-2 (x orgx) ; [F F]
- (cond ((math-nearly-zerop-float x orgx) '(float 1 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- (t (let ((xnegsqr (math-neg-float (math-sqr-float x))))
- (math-sin-series
- (math-add-float '(float 1 0)
- (math-mul-float xnegsqr '(float 5 -1)))
- 24 5 xnegsqr xnegsqr))))
- )
-
- (defun math-sin-series (sum nfac n x xnegsqr)
- (math-working "sin" sum)
- (let* ((nextx (math-mul-float x xnegsqr))
- (nextsum (math-add-float sum (math-div-float nextx
- (math-float nfac)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-sin-series nextsum (math-mul nfac (* n (1+ n)))
- (+ n 2) nextx xnegsqr)))
- )
-
-
- ;;; Inverse sine, cosine, tangent.
-
- (defun calcFunc-arcsin (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((and (eq x 1) (eq calc-angle-mode 'deg)) 90)
- ((and (eq x -1) (eq calc-angle-mode 'deg)) -90)
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (math-from-radians (math-arcsin-raw (math-float x)))))
- ((eq (car x) 'sdev)
- (math-make-sdev (calcFunc-arcsin (nth 1 x))
- (math-from-radians
- (math-div (nth 2 x)
- (math-sqrt
- (math-sub 1 (math-sqr (nth 1 x))))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arcsin (nth 2 x))
- (calcFunc-arcsin (nth 3 x))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arcsin x)))
- )
-
- (defun calcFunc-arccos (x) ; [N N] [Public]
- (cond ((eq x 1) 0)
- ((and (eq x 0) (eq calc-angle-mode 'deg)) 90)
- ((and (eq x -1) (eq calc-angle-mode 'deg)) 180)
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (math-from-radians (math-arccos-raw (math-float x)))))
- ((eq (car x) 'sdev)
- (math-make-sdev (calcFunc-arccos (nth 1 x))
- (math-from-radians
- (math-div (nth 2 x)
- (math-sqrt
- (math-sub 1 (math-sqr (nth 1 x))))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arccos (nth 2 x))
- (calcFunc-arccos (nth 3 x))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arccos x)))
- )
-
- (defun calcFunc-arctan (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((and (eq x 1) (eq calc-angle-mode 'deg)) 45)
- ((and (eq x -1) (eq calc-angle-mode 'deg)) -45)
- ((Math-numberp x)
- (math-with-extra-prec 2
- (math-from-radians (math-arctan-raw (math-float x)))))
- ((eq (car x) 'sdev)
- (math-make-sdev (calcFunc-arctan (nth 1 x))
- (math-from-radians
- (math-div (nth 2 x)
- (math-add 1 (math-sqr (nth 1 x)))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arctan (nth 2 x))
- (calcFunc-arctan (nth 3 x))))
- ((equal x '(var inf var-inf))
- (math-quarter-circle t))
- ((equal x '(neg (var inf var-inf)))
- (math-neg (math-quarter-circle t)))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arctan x)))
- )
-
- (defun math-arcsin-raw (x) ; [N N]
- (let ((a (math-sqrt-raw (math-sub '(float 1 0) (math-sqr x)))))
- (if (or (memq (car x) '(cplx polar))
- (memq (car a) '(cplx polar)))
- (math-with-extra-prec 2 ; use extra precision for difficult case
- (math-mul '(cplx 0 -1)
- (math-ln-raw (math-add (math-mul '(cplx 0 1) x) a))))
- (math-arctan2-raw x a)))
- )
-
- (defun math-arccos-raw (x) ; [N N]
- (math-sub (math-pi-over-2) (math-arcsin-raw x))
- )
-
- (defun math-arctan-raw (x) ; [N N]
- (cond ((memq (car x) '(cplx polar))
- (math-with-extra-prec 2 ; extra-extra
- (math-div (math-sub
- (math-ln-raw (math-add 1 (math-mul '(cplx 0 1) x)))
- (math-ln-raw (math-add 1 (math-mul '(cplx 0 -1) x))))
- '(cplx 0 2))))
- ((Math-integer-negp (nth 1 x))
- (math-neg-float (math-arctan-raw (math-neg-float x))))
- ((math-zerop x) x)
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((math-equal-int x 1) (math-pi-over-4))
- ((math-equal-int x -1) (math-neg (math-pi-over-4)))
- ((math-lessp-float '(float 414214 -6) x) ; if x > sqrt(2) - 1, reduce
- (if (math-lessp-float '(float 1 0) x)
- (math-sub-float (math-mul-float (math-pi) '(float 5 -1))
- (math-arctan-raw (math-div-float '(float 1 0) x)))
- (math-sub-float (math-mul-float (math-pi) '(float 25 -2))
- (math-arctan-raw (math-div-float
- (math-sub-float '(float 1 0) x)
- (math-add-float '(float 1 0)
- x))))))
- (t (math-arctan-series x 3 x (math-neg-float (math-sqr-float x)))))
- )
-
- (defun math-arctan-series (sum n x xnegsqr)
- (math-working "arctan" sum)
- (let* ((nextx (math-mul-float x xnegsqr))
- (nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-arctan-series nextsum (+ n 2) nextx xnegsqr)))
- )
-
- (defun calcFunc-arctan2 (y x) ; [F R R] [Public]
- (if (Math-anglep y)
- (if (Math-anglep x)
- (math-with-extra-prec 2
- (math-from-radians (math-arctan2-raw (math-float y)
- (math-float x))))
- (calc-record-why 'anglep x)
- (list 'calcFunc-arctan2 y x))
- (if (and (or (math-infinitep x) (math-anglep x))
- (or (math-infinitep y) (math-anglep y)))
- (progn
- (if (math-posp x)
- (setq x 1)
- (if (math-negp x)
- (setq x -1)
- (or (math-zerop x)
- (setq x nil))))
- (if (math-posp y)
- (setq y 1)
- (if (math-negp y)
- (setq y -1)
- (or (math-zerop y)
- (setq y nil))))
- (if (and y x)
- (calcFunc-arctan2 y x)
- '(var nan var-nan)))
- (calc-record-why 'anglep y)
- (list 'calcFunc-arctan2 y x)))
- )
-
- (defun math-arctan2-raw (y x) ; [F R R]
- (cond ((math-zerop y)
- (if (math-negp x) (math-pi)
- (if (or (math-floatp x) (math-floatp y)) '(float 0 0) 0)))
- ((math-zerop x)
- (if (math-posp y)
- (math-pi-over-2)
- (math-neg (math-pi-over-2))))
- ((math-posp x)
- (math-arctan-raw (math-div-float y x)))
- ((math-posp y)
- (math-add-float (math-arctan-raw (math-div-float y x))
- (math-pi)))
- (t
- (math-sub-float (math-arctan-raw (math-div-float y x))
- (math-pi))))
- )
-
- (defun calcFunc-arcsincos (x) ; [V N] [Public]
- (if (and (Math-vectorp x)
- (= (length x) 3))
- (calcFunc-arctan2 (nth 2 x) (nth 1 x))
- (math-reject-arg x "*Two-element vector expected"))
- )
-
-
-
- ;;; Exponential function.
-
- (defun calcFunc-exp (x) ; [N N] [Public]
- (cond ((eq x 0) 1)
- ((and (memq x '(1 -1)) calc-symbolic-mode)
- (if (eq x 1) '(var e var-e) (math-div 1 '(var e var-e))))
- ((Math-numberp x)
- (math-with-extra-prec 2 (math-exp-raw (math-float x))))
- ((eq (car-safe x) 'sdev)
- (let ((ex (calcFunc-exp (nth 1 x))))
- (math-make-sdev ex (math-mul (nth 2 x) ex))))
- ((eq (car-safe x) 'intv)
- (math-make-intv (nth 1 x) (calcFunc-exp (nth 2 x))
- (calcFunc-exp (nth 3 x))))
- ((equal x '(var inf var-inf))
- x)
- ((equal x '(neg (var inf var-inf)))
- 0)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-exp x)))
- )
-
- (defun calcFunc-expm1 (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((math-zerop x) '(float 0 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (let ((x (math-float x)))
- (if (and (eq (car x) 'float)
- (math-lessp-float x '(float 1 0))
- (math-lessp-float '(float -1 0) x))
- (math-exp-minus-1-raw x)
- (math-add (math-exp-raw x) -1)))))
- ((eq (car-safe x) 'sdev)
- (if (math-constp x)
- (let ((ex (calcFunc-expm1 (nth 1 x))))
- (math-make-sdev ex (math-mul (nth 2 x) (math-add ex 1))))
- (math-make-sdev (calcFunc-expm1 (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-exp (nth 1 x))))))
- ((eq (car-safe x) 'intv)
- (math-make-intv (nth 1 x)
- (calcFunc-expm1 (nth 2 x))
- (calcFunc-expm1 (nth 3 x))))
- ((equal x '(var inf var-inf))
- x)
- ((equal x '(neg (var inf var-inf)))
- -1)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-expm1 x)))
- )
-
- (defun calcFunc-exp10 (x) ; [N N] [Public]
- (if (eq x 0)
- 1
- (math-pow '(float 1 1) x))
- )
-
- (defun math-exp-raw (x) ; [N N]
- (cond ((math-zerop x) '(float 1 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((eq (car x) 'cplx)
- (let ((expx (math-exp-raw (nth 1 x)))
- (sc (math-sin-cos-raw (nth 2 x))))
- (list 'cplx
- (math-mul-float expx (cdr sc))
- (math-mul-float expx (car sc)))))
- ((eq (car x) 'polar)
- (let ((xc (math-complex x)))
- (list 'polar
- (math-exp-raw (nth 1 xc))
- (math-from-radians (nth 2 xc)))))
- ((or (math-lessp-float '(float 5 -1) x)
- (math-lessp-float x '(float -5 -1)))
- (if (math-lessp-float '(float 921035 1) x)
- (math-overflow)
- (if (math-lessp-float x '(float -921035 1))
- (math-underflow)))
- (let* ((two-x (math-mul-float x '(float 2 0)))
- (hint (math-scale-int (nth 1 two-x) (nth 2 two-x)))
- (hfrac (math-sub-float x (math-mul-float (math-float hint)
- '(float 5 -1)))))
- (math-mul-float (math-ipow (math-sqrt-e) hint)
- (math-add-float '(float 1 0)
- (math-exp-minus-1-raw hfrac)))))
- (t (math-add-float '(float 1 0) (math-exp-minus-1-raw x))))
- )
-
- (defun math-exp-minus-1-raw (x) ; [F F]
- (math-exp-series x 2 3 x x)
- )
-
- (defun math-exp-series (sum nfac n xpow x)
- (math-working "exp" sum)
- (let* ((nextx (math-mul-float xpow x))
- (nextsum (math-add-float sum (math-div-float nextx
- (math-float nfac)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-exp-series nextsum (math-mul nfac n) (1+ n) nextx x)))
- )
-
-
-
- ;;; Logarithms.
-
- (defun calcFunc-ln (x) ; [N N] [Public]
- (cond ((math-zerop x)
- (if calc-infinite-mode
- '(neg (var inf var-inf))
- (math-reject-arg x "*Logarithm of zero")))
- ((eq x 1) 0)
- ((Math-numberp x)
- (math-with-extra-prec 2 (math-ln-raw (math-float x))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-ln (nth 1 x))
- (math-div (nth 2 x) (nth 1 x))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (Math-zerop (nth 2 x))
- (not (math-intv-constp x))))
- (let ((calc-infinite-mode t))
- (math-make-intv (nth 1 x) (calcFunc-ln (nth 2 x))
- (calcFunc-ln (nth 3 x)))))
- ((equal x '(var e var-e))
- 1)
- ((and (eq (car-safe x) '^)
- (equal (nth 1 x) '(var e var-e))
- (math-known-realp (nth 2 x)))
- (nth 2 x))
- ((math-infinitep x)
- (if (equal x '(var nan var-nan))
- x
- '(var inf var-inf)))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-ln x)))
- )
-
- (defun calcFunc-log10 (x) ; [N N] [Public]
- (cond ((math-equal-int x 1)
- (if (math-floatp x) '(float 0 0) 0))
- ((and (Math-integerp x)
- (math-posp x)
- (let ((res (math-integer-log x 10)))
- (and (car res)
- (setq x (cdr res)))))
- x)
- ((and (eq (car-safe x) 'frac)
- (eq (nth 1 x) 1)
- (let ((res (math-integer-log (nth 2 x) 10)))
- (and (car res)
- (setq x (- (cdr res))))))
- x)
- ((math-zerop x)
- (if calc-infinite-mode
- '(neg (var inf var-inf))
- (math-reject-arg x "*Logarithm of zero")))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (let ((xf (math-float x)))
- (if (eq (nth 1 xf) 0)
- (math-reject-arg x "*Logarithm of zero"))
- (if (Math-integer-posp (nth 1 xf))
- (if (eq (nth 1 xf) 1) ; log10(1*10^n) = n
- (math-float (nth 2 xf))
- (let ((xdigs (1- (math-numdigs (nth 1 xf)))))
- (math-add-float
- (math-div-float (math-ln-raw-2
- (list 'float (nth 1 xf) (- xdigs)))
- (math-ln-10))
- (math-float (+ (nth 2 xf) xdigs)))))
- (math-div (calcFunc-ln xf) (math-ln-10))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-log10 (nth 1 x))
- (math-div (nth 2 x)
- (math-mul (nth 1 x) (math-ln-10)))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (not (math-intv-constp x))))
- (math-make-intv (nth 1 x)
- (calcFunc-log10 (nth 2 x))
- (calcFunc-log10 (nth 3 x))))
- ((math-infinitep x)
- (if (equal x '(var nan var-nan))
- x
- '(var inf var-inf)))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-log10 x)))
- )
-
- (defun calcFunc-log (x &optional b) ; [N N N] [Public]
- (cond ((or (null b) (equal b '(var e var-e)))
- (math-normalize (list 'calcFunc-ln x)))
- ((or (eq b 10) (equal b '(float 1 1)))
- (math-normalize (list 'calcFunc-log10 x)))
- ((math-zerop x)
- (if calc-infinite-mode
- (math-div (calcFunc-ln x) (calcFunc-ln b))
- (math-reject-arg x "*Logarithm of zero")))
- ((math-zerop b)
- (if calc-infinite-mode
- (math-div (calcFunc-ln x) (calcFunc-ln b))
- (math-reject-arg b "*Logarithm of zero")))
- ((math-equal-int b 1)
- (if calc-infinite-mode
- (math-div (calcFunc-ln x) 0)
- (math-reject-arg b "*Logarithm base one")))
- ((math-equal-int x 1)
- (if (or (math-floatp a) (math-floatp b)) '(float 0 0) 0))
- ((and (Math-ratp x) (Math-ratp b)
- (math-posp x) (math-posp b)
- (let* ((sign 1) (inv nil)
- (xx (if (Math-lessp 1 x)
- x
- (setq sign -1)
- (math-div 1 x)))
- (bb (if (Math-lessp 1 b)
- b
- (setq sign (- sign))
- (math-div 1 b)))
- (res (if (Math-lessp xx bb)
- (setq inv (math-integer-log bb xx))
- (math-integer-log xx bb))))
- (and (car res)
- (setq x (if inv
- (math-div 1 (* sign (cdr res)))
- (* sign (cdr res)))))))
- x)
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((and (Math-numberp x) (Math-numberp b))
- (math-with-extra-prec 2
- (math-div (math-ln-raw (math-float x))
- (math-log-base-raw b))))
- ((and (eq (car-safe x) 'sdev)
- (Math-numberp b))
- (math-make-sdev (calcFunc-log (nth 1 x) b)
- (math-div (nth 2 x)
- (math-mul (nth 1 x)
- (math-log-base-raw b)))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (not (math-intv-constp x)))
- (math-realp b))
- (math-make-intv (nth 1 x)
- (calcFunc-log (nth 2 x) b)
- (calcFunc-log (nth 3 x) b)))
- ((or (eq (car-safe x) 'intv) (eq (car-safe b) 'intv))
- (math-div (calcFunc-ln x) (calcFunc-ln b)))
- ((or (math-infinitep x)
- (math-infinitep b))
- (math-div (calcFunc-ln x) (calcFunc-ln b)))
- (t (if (Math-numberp b)
- (calc-record-why 'numberp x)
- (calc-record-why 'numberp b))
- (list 'calcFunc-log x b)))
- )
-
- (defun calcFunc-alog (x &optional b)
- (cond ((or (null b) (equal b '(var e var-e)))
- (math-normalize (list 'calcFunc-exp x)))
- (t (math-pow b x)))
- )
-
- (defun calcFunc-ilog (x b)
- (if (and (math-natnump x) (not (eq x 0))
- (math-natnump b) (not (eq b 0)))
- (if (eq b 1)
- (math-reject-arg x "*Logarithm base one")
- (if (Math-natnum-lessp x b)
- 0
- (cdr (math-integer-log x b))))
- (math-floor (calcFunc-log x b)))
- )
-
- (defun math-integer-log (x b)
- (let ((pows (list b))
- (pow (math-sqr b))
- next
- sum n)
- (while (not (Math-lessp x pow))
- (setq pows (cons pow pows)
- pow (math-sqr pow)))
- (setq n (lsh 1 (1- (length pows)))
- sum n
- pow (car pows))
- (while (and (setq pows (cdr pows))
- (Math-lessp pow x))
- (setq n (/ n 2)
- next (math-mul pow (car pows)))
- (or (Math-lessp x next)
- (setq pow next
- sum (+ sum n))))
- (cons (equal pow x) sum))
- )
-
-
- (defun math-log-base-raw (b) ; [N N]
- (if (not (and (equal (car math-log-base-cache) b)
- (eq (nth 1 math-log-base-cache) calc-internal-prec)))
- (setq math-log-base-cache (list b calc-internal-prec
- (math-ln-raw (math-float b)))))
- (nth 2 math-log-base-cache)
- )
- (setq math-log-base-cache nil)
-
- (defun calcFunc-lnp1 (x) ; [N N] [Public]
- (cond ((Math-equal-int x -1)
- (if calc-infinite-mode
- '(neg (var inf var-inf))
- (math-reject-arg x "*Logarithm of zero")))
- ((eq x 0) 0)
- ((math-zerop x) '(float 0 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((Math-numberp x)
- (math-with-extra-prec 2
- (let ((x (math-float x)))
- (if (and (eq (car x) 'float)
- (math-lessp-float x '(float 5 -1))
- (math-lessp-float '(float -5 -1) x))
- (math-ln-plus-1-raw x)
- (math-ln-raw (math-add-float x '(float 1 0)))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-lnp1 (nth 1 x))
- (math-div (nth 2 x) (math-add (nth 1 x) 1))))
- ((and (eq (car-safe x) 'intv) (or (Math-posp (nth 2 x))
- (not (math-intv-constp x))))
- (math-make-intv (nth 1 x)
- (calcFunc-lnp1 (nth 2 x))
- (calcFunc-lnp1 (nth 3 x))))
- ((math-infinitep x)
- (if (equal x '(var nan var-nan))
- x
- '(var inf var-inf)))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-lnp1 x)))
- )
-
- (defun math-ln-raw (x) ; [N N] --- must be float format!
- (cond ((eq (car-safe x) 'cplx)
- (list 'cplx
- (math-mul-float (math-ln-raw
- (math-add-float (math-sqr-float (nth 1 x))
- (math-sqr-float (nth 2 x))))
- '(float 5 -1))
- (math-arctan2-raw (nth 2 x) (nth 1 x))))
- ((eq (car x) 'polar)
- (math-polar (list 'cplx
- (math-ln-raw (nth 1 x))
- (math-to-radians (nth 2 x)))))
- ((Math-equal-int x 1)
- '(float 0 0))
- (calc-symbolic-mode (signal 'inexact-result nil))
- ((math-posp (nth 1 x)) ; positive and real
- (let ((xdigs (1- (math-numdigs (nth 1 x)))))
- (math-add-float (math-ln-raw-2 (list 'float (nth 1 x) (- xdigs)))
- (math-mul-float (math-float (+ (nth 2 x) xdigs))
- (math-ln-10)))))
- ((math-zerop x)
- (math-reject-arg x "*Logarithm of zero"))
- ((eq calc-complex-mode 'polar) ; negative and real
- (math-polar
- (list 'cplx ; negative and real
- (math-ln-raw (math-neg-float x))
- (math-pi))))
- (t (list 'cplx ; negative and real
- (math-ln-raw (math-neg-float x))
- (math-pi))))
- )
-
- (defun math-ln-raw-2 (x) ; [F F]
- (cond ((math-lessp-float '(float 14 -1) x)
- (math-add-float (math-ln-raw-2 (math-mul-float x '(float 5 -1)))
- (math-ln-2)))
- (t ; now .7 < x <= 1.4
- (math-ln-raw-3 (math-div-float (math-sub-float x '(float 1 0))
- (math-add-float x '(float 1 0))))))
- )
-
- (defun math-ln-raw-3 (x) ; [F F]
- (math-mul-float (math-ln-raw-series x 3 x (math-sqr-float x))
- '(float 2 0))
- )
-
- ;;; Compute ln((1+x)/(1-x))
- (defun math-ln-raw-series (sum n x xsqr)
- (math-working "log" sum)
- (let* ((nextx (math-mul-float x xsqr))
- (nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-ln-raw-series nextsum (+ n 2) nextx xsqr)))
- )
-
- (defun math-ln-plus-1-raw (x)
- (math-lnp1-series x 2 x (math-neg x))
- )
-
- (defun math-lnp1-series (sum n xpow x)
- (math-working "lnp1" sum)
- (let* ((nextx (math-mul-float xpow x))
- (nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
- (if (math-nearly-equal-float sum nextsum)
- sum
- (math-lnp1-series nextsum (1+ n) nextx x)))
- )
-
- (math-defcache math-ln-10 (float (bigpos 018 684 045 994 092 585 302 2) -21)
- (math-ln-raw-2 '(float 1 1)))
-
- (math-defcache math-ln-2 (float (bigpos 417 309 945 559 180 147 693) -21)
- (math-ln-raw-3 (math-float '(frac 1 3))))
-
-
-
- ;;; Hyperbolic functions.
-
- (defun calcFunc-sinh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- (math-expand-formulas
- (math-normalize
- (list '/ (list '- (list 'calcFunc-exp x)
- (list 'calcFunc-exp (list 'neg x))) 2)))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let ((expx (math-exp-raw (math-float x))))
- (math-mul (math-add expx (math-div -1 expx)) '(float 5 -1)))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-sinh (nth 1 x))
- (math-mul (nth 2 x) (calcFunc-cosh (nth 1 x)))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-sinh (nth 2 x))
- (calcFunc-sinh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-sinh x)))
- )
- (put 'calcFunc-sinh 'math-expandable t)
-
- (defun calcFunc-cosh (x) ; [N N] [Public]
- (cond ((eq x 0) 1)
- (math-expand-formulas
- (math-normalize
- (list '/ (list '+ (list 'calcFunc-exp x)
- (list 'calcFunc-exp (list 'neg x))) 2)))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let ((expx (math-exp-raw (math-float x))))
- (math-mul (math-add expx (math-div 1 expx)) '(float 5 -1)))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-cosh (nth 1 x))
- (math-mul (nth 2 x)
- (calcFunc-sinh (nth 1 x)))))
- ((and (eq (car x) 'intv) (math-intv-constp x))
- (setq x (math-abs x))
- (math-sort-intv (nth 1 x)
- (calcFunc-cosh (nth 2 x))
- (calcFunc-cosh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- (math-abs x))
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-cosh x)))
- )
- (put 'calcFunc-cosh 'math-expandable t)
-
- (defun calcFunc-tanh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- (math-expand-formulas
- (math-normalize
- (let ((expx (list 'calcFunc-exp x))
- (expmx (list 'calcFunc-exp (list 'neg x))))
- (math-normalize
- (list '/ (list '- expx expmx) (list '+ expx expmx))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (let* ((expx (calcFunc-exp (math-float x)))
- (expmx (math-div 1 expx)))
- (math-div (math-sub expx expmx)
- (math-add expx expmx)))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-tanh (nth 1 x))
- (math-div (nth 2 x)
- (math-sqr (calcFunc-cosh (nth 1 x))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-tanh (nth 2 x))
- (calcFunc-tanh (nth 3 x))))
- ((equal x '(var inf var-inf))
- 1)
- ((equal x '(neg (var inf var-inf)))
- -1)
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-tanh x)))
- )
- (put 'calcFunc-tanh 'math-expandable t)
-
- (defun calcFunc-arcsinh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- (math-expand-formulas
- (math-normalize
- (list 'calcFunc-ln (list '+ x (list 'calcFunc-sqrt
- (list '+ (list '^ x 2) 1))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (math-ln-raw (math-add x (math-sqrt-raw (math-add (math-sqr x)
- '(float 1 0)))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-arcsinh (nth 1 x))
- (math-div (nth 2 x)
- (math-sqrt
- (math-add (math-sqr (nth 1 x)) 1)))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arcsinh (nth 2 x))
- (calcFunc-arcsinh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arcsinh x)))
- )
- (put 'calcFunc-arcsinh 'math-expandable t)
-
- (defun calcFunc-arccosh (x) ; [N N] [Public]
- (cond ((eq x 1) 0)
- ((and (eq x -1) calc-symbolic-mode)
- '(var pi var-pi))
- ((and (eq x 0) calc-symbolic-mode)
- (math-div (math-mul '(var pi var-pi) '(var i var-i)) 2))
- (math-expand-formulas
- (math-normalize
- (list 'calcFunc-ln (list '+ x (list 'calcFunc-sqrt
- (list '- (list '^ x 2) 1))))))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (if (Math-equal-int x -1)
- (math-imaginary (math-pi))
- (math-with-extra-prec 2
- (if (or t ; need to do this even in the real case!
- (memq (car-safe x) '(cplx polar)))
- (let ((xp1 (math-add 1 x))) ; this gets the branch cuts right
- (math-ln-raw
- (math-add x (math-mul xp1
- (math-sqrt-raw
- (math-div (math-sub
- x
- '(float 1 0))
- xp1))))))
- (math-ln-raw
- (math-add x (math-sqrt-raw (math-add (math-sqr x)
- '(float -1 0)))))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-arccosh (nth 1 x))
- (math-div (nth 2 x)
- (math-sqrt
- (math-add (math-sqr (nth 1 x)) -1)))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arccosh (nth 2 x))
- (calcFunc-arccosh (nth 3 x))))
- ((or (equal x '(var inf var-inf))
- (equal x '(neg (var inf var-inf)))
- (equal x '(var nan var-nan)))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arccosh x)))
- )
- (put 'calcFunc-arccosh 'math-expandable t)
-
- (defun calcFunc-arctanh (x) ; [N N] [Public]
- (cond ((eq x 0) 0)
- ((and (Math-equal-int x 1) calc-infinite-mode)
- '(var inf var-inf))
- ((and (Math-equal-int x -1) calc-infinite-mode)
- '(neg (var inf var-inf)))
- (math-expand-formulas
- (list '/ (list '-
- (list 'calcFunc-ln (list '+ 1 x))
- (list 'calcFunc-ln (list '- 1 x))) 2))
- ((Math-numberp x)
- (if calc-symbolic-mode (signal 'inexact-result nil))
- (math-with-extra-prec 2
- (if (or (memq (car-safe x) '(cplx polar))
- (Math-lessp 1 x))
- (math-mul (math-sub (math-ln-raw (math-add '(float 1 0) x))
- (math-ln-raw (math-sub '(float 1 0) x)))
- '(float 5 -1))
- (if (and (math-equal-int x 1) calc-infinite-mode)
- '(var inf var-inf)
- (if (and (math-equal-int x -1) calc-infinite-mode)
- '(neg (var inf var-inf))
- (math-mul (math-ln-raw (math-div (math-add '(float 1 0) x)
- (math-sub 1 x)))
- '(float 5 -1)))))))
- ((eq (car-safe x) 'sdev)
- (math-make-sdev (calcFunc-arctanh (nth 1 x))
- (math-div (nth 2 x)
- (math-sub 1 (math-sqr (nth 1 x))))))
- ((eq (car x) 'intv)
- (math-sort-intv (nth 1 x)
- (calcFunc-arctanh (nth 2 x))
- (calcFunc-arctanh (nth 3 x))))
- ((equal x '(var nan var-nan))
- x)
- (t (calc-record-why 'numberp x)
- (list 'calcFunc-arctanh x)))
- )
- (put 'calcFunc-arctanh 'math-expandable t)
-
-
- ;;; Convert A from HMS or degrees to radians.
- (defun calcFunc-rad (a) ; [R R] [Public]
- (cond ((or (Math-numberp a)
- (eq (car a) 'intv))
- (math-with-extra-prec 2
- (math-mul a (math-pi-over-180))))
- ((eq (car a) 'hms)
- (math-from-hms a 'rad))
- ((eq (car a) 'sdev)
- (math-make-sdev (calcFunc-rad (nth 1 a))
- (calcFunc-rad (nth 2 a))))
- (math-expand-formulas
- (math-div (math-mul a '(var pi var-pi)) 180))
- ((math-infinitep a) a)
- (t (list 'calcFunc-rad a)))
- )
- (put 'calcFunc-rad 'math-expandable t)
-
- ;;; Convert A from HMS or radians to degrees.
- (defun calcFunc-deg (a) ; [R R] [Public]
- (cond ((or (Math-numberp a)
- (eq (car a) 'intv))
- (math-with-extra-prec 2
- (math-div a (math-pi-over-180))))
- ((eq (car a) 'hms)
- (math-from-hms a 'deg))
- ((eq (car a) 'sdev)
- (math-make-sdev (calcFunc-deg (nth 1 a))
- (calcFunc-deg (nth 2 a))))
- (math-expand-formulas
- (math-div (math-mul 180 a) '(var pi var-pi)))
- ((math-infinitep a) a)
- (t (list 'calcFunc-deg a)))
- )
- (put 'calcFunc-deg 'math-expandable t)
-
-
-
-
-