home *** CD-ROM | disk | FTP | other *** search
- ;; Calculator for GNU Emacs, part II [calc-mat.el]
- ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
- ;; Written by Dave Gillespie, daveg@synaptics.com.
-
- ;; This file is part of GNU Emacs.
-
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY. No author or distributor
- ;; accepts responsibility to anyone for the consequences of using it
- ;; or for whether it serves any particular purpose or works at all,
- ;; unless he says so in writing. Refer to the GNU Emacs General Public
- ;; License for full details.
-
- ;; Everyone is granted permission to copy, modify and redistribute
- ;; GNU Emacs, but only under the conditions described in the
- ;; GNU Emacs General Public License. A copy of this license is
- ;; supposed to have been given to you along with GNU Emacs so you
- ;; can know your rights and responsibilities. It should be in a
- ;; file named COPYING. Among other things, the copyright notice
- ;; and this notice must be preserved on all copies.
-
-
-
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
-
- (require 'calc-macs)
-
- (defun calc-Need-calc-mat () nil)
-
-
- (defun calc-mdet (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "mdet" 'calcFunc-det arg))
- )
-
- (defun calc-mtrace (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "mtr" 'calcFunc-tr arg))
- )
-
- (defun calc-mlud (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "mlud" 'calcFunc-lud arg))
- )
-
-
- ;;; Coerce row vector A to be a matrix. [V V]
- (defun math-row-matrix (a)
- (if (and (Math-vectorp a)
- (not (math-matrixp a)))
- (list 'vec a)
- a)
- )
-
- ;;; Coerce column vector A to be a matrix. [V V]
- (defun math-col-matrix (a)
- (if (and (Math-vectorp a)
- (not (math-matrixp a)))
- (cons 'vec (mapcar (function (lambda (x) (list 'vec x))) (cdr a)))
- a)
- )
-
-
-
- ;;; Multiply matrices A and B. [V V V]
- (defun math-mul-mats (a b)
- (let ((mat nil)
- (cols (length (nth 1 b)))
- row col ap bp accum)
- (while (setq a (cdr a))
- (setq col cols
- row nil)
- (while (> (setq col (1- col)) 0)
- (setq ap (cdr (car a))
- bp (cdr b)
- accum (math-mul (car ap) (nth col (car bp))))
- (while (setq ap (cdr ap) bp (cdr bp))
- (setq accum (math-add accum (math-mul (car ap) (nth col (car bp))))))
- (setq row (cons accum row)))
- (setq mat (cons (cons 'vec row) mat)))
- (cons 'vec (nreverse mat)))
- )
-
- (defun math-mul-mat-vec (a b)
- (cons 'vec (mapcar (function (lambda (row)
- (math-dot-product row b)))
- (cdr a)))
- )
-
-
-
- (defun calcFunc-tr (mat) ; [Public]
- (if (math-square-matrixp mat)
- (math-matrix-trace-step 2 (1- (length mat)) mat (nth 1 (nth 1 mat)))
- (math-reject-arg mat 'square-matrixp))
- )
-
- (defun math-matrix-trace-step (n size mat sum)
- (if (<= n size)
- (math-matrix-trace-step (1+ n) size mat
- (math-add sum (nth n (nth n mat))))
- sum)
- )
-
-
- ;;; Matrix inverse and determinant.
- (defun math-matrix-inv-raw (m)
- (let ((n (1- (length m))))
- (if (<= n 3)
- (let ((det (math-det-raw m)))
- (and (not (math-zerop det))
- (math-div
- (cond ((= n 1) 1)
- ((= n 2)
- (list 'vec
- (list 'vec
- (nth 2 (nth 2 m))
- (math-neg (nth 2 (nth 1 m))))
- (list 'vec
- (math-neg (nth 1 (nth 2 m)))
- (nth 1 (nth 1 m)))))
- ((= n 3)
- (list 'vec
- (list 'vec
- (math-sub (math-mul (nth 3 (nth 3 m))
- (nth 2 (nth 2 m)))
- (math-mul (nth 3 (nth 2 m))
- (nth 2 (nth 3 m))))
- (math-sub (math-mul (nth 3 (nth 1 m))
- (nth 2 (nth 3 m)))
- (math-mul (nth 3 (nth 3 m))
- (nth 2 (nth 1 m))))
- (math-sub (math-mul (nth 3 (nth 2 m))
- (nth 2 (nth 1 m)))
- (math-mul (nth 3 (nth 1 m))
- (nth 2 (nth 2 m)))))
- (list 'vec
- (math-sub (math-mul (nth 3 (nth 2 m))
- (nth 1 (nth 3 m)))
- (math-mul (nth 3 (nth 3 m))
- (nth 1 (nth 2 m))))
- (math-sub (math-mul (nth 3 (nth 3 m))
- (nth 1 (nth 1 m)))
- (math-mul (nth 3 (nth 1 m))
- (nth 1 (nth 3 m))))
- (math-sub (math-mul (nth 3 (nth 1 m))
- (nth 1 (nth 2 m)))
- (math-mul (nth 3 (nth 2 m))
- (nth 1 (nth 1 m)))))
- (list 'vec
- (math-sub (math-mul (nth 2 (nth 3 m))
- (nth 1 (nth 2 m)))
- (math-mul (nth 2 (nth 2 m))
- (nth 1 (nth 3 m))))
- (math-sub (math-mul (nth 2 (nth 1 m))
- (nth 1 (nth 3 m)))
- (math-mul (nth 2 (nth 3 m))
- (nth 1 (nth 1 m))))
- (math-sub (math-mul (nth 2 (nth 2 m))
- (nth 1 (nth 1 m)))
- (math-mul (nth 2 (nth 1 m))
- (nth 1 (nth 2 m))))))))
- det)))
- (let ((lud (math-matrix-lud m)))
- (and lud
- (math-lud-solve lud (calcFunc-idn 1 n))))))
- )
-
- (defun calcFunc-det (m)
- (if (math-square-matrixp m)
- (math-with-extra-prec 2 (math-det-raw m))
- (if (and (eq (car-safe m) 'calcFunc-idn)
- (or (math-zerop (nth 1 m))
- (math-equal-int (nth 1 m) 1)))
- (nth 1 m)
- (math-reject-arg m 'square-matrixp)))
- )
-
- (defun math-det-raw (m)
- (let ((n (1- (length m))))
- (cond ((= n 1)
- (nth 1 (nth 1 m)))
- ((= n 2)
- (math-sub (math-mul (nth 1 (nth 1 m))
- (nth 2 (nth 2 m)))
- (math-mul (nth 2 (nth 1 m))
- (nth 1 (nth 2 m)))))
- ((= n 3)
- (math-sub
- (math-sub
- (math-sub
- (math-add
- (math-add
- (math-mul (nth 1 (nth 1 m))
- (math-mul (nth 2 (nth 2 m))
- (nth 3 (nth 3 m))))
- (math-mul (nth 2 (nth 1 m))
- (math-mul (nth 3 (nth 2 m))
- (nth 1 (nth 3 m)))))
- (math-mul (nth 3 (nth 1 m))
- (math-mul (nth 1 (nth 2 m))
- (nth 2 (nth 3 m)))))
- (math-mul (nth 3 (nth 1 m))
- (math-mul (nth 2 (nth 2 m))
- (nth 1 (nth 3 m)))))
- (math-mul (nth 1 (nth 1 m))
- (math-mul (nth 3 (nth 2 m))
- (nth 2 (nth 3 m)))))
- (math-mul (nth 2 (nth 1 m))
- (math-mul (nth 1 (nth 2 m))
- (nth 3 (nth 3 m))))))
- (t (let ((lud (math-matrix-lud m)))
- (if lud
- (let ((lu (car lud)))
- (math-det-step n (nth 2 lud)))
- 0)))))
- )
-
- (defun math-det-step (n prod)
- (if (> n 0)
- (math-det-step (1- n) (math-mul prod (nth n (nth n lu))))
- prod)
- )
-
- ;;; This returns a list (LU index d), or NIL if not possible.
- ;;; Argument M must be a square matrix.
- (defun math-matrix-lud (m)
- (let ((old (assoc m math-lud-cache))
- (context (list calc-internal-prec calc-prefer-frac)))
- (if (and old (equal (nth 1 old) context))
- (cdr (cdr old))
- (let* ((lud (catch 'singular (math-do-matrix-lud m)))
- (entry (cons context lud)))
- (if old
- (setcdr old entry)
- (setq math-lud-cache (cons (cons m entry) math-lud-cache)))
- lud)))
- )
- (defvar math-lud-cache nil)
-
- ;;; Numerical Recipes section 2.3; implicit pivoting omitted.
- (defun math-do-matrix-lud (m)
- (let* ((lu (math-copy-matrix m))
- (n (1- (length lu)))
- i (j 1) k imax sum big
- (d 1) (index nil))
- (while (<= j n)
- (setq i 1
- big 0
- imax j)
- (while (< i j)
- (math-working "LUD step" (format "%d/%d" j i))
- (setq sum (nth j (nth i lu))
- k 1)
- (while (< k i)
- (setq sum (math-sub sum (math-mul (nth k (nth i lu))
- (nth j (nth k lu))))
- k (1+ k)))
- (setcar (nthcdr j (nth i lu)) sum)
- (setq i (1+ i)))
- (while (<= i n)
- (math-working "LUD step" (format "%d/%d" j i))
- (setq sum (nth j (nth i lu))
- k 1)
- (while (< k j)
- (setq sum (math-sub sum (math-mul (nth k (nth i lu))
- (nth j (nth k lu))))
- k (1+ k)))
- (setcar (nthcdr j (nth i lu)) sum)
- (let ((dum (math-abs-approx sum)))
- (if (Math-lessp big dum)
- (setq big dum
- imax i)))
- (setq i (1+ i)))
- (if (> imax j)
- (setq lu (math-swap-rows lu j imax)
- d (- d)))
- (setq index (cons imax index))
- (let ((pivot (nth j (nth j lu))))
- (if (math-zerop pivot)
- (throw 'singular nil)
- (setq i j)
- (while (<= (setq i (1+ i)) n)
- (setcar (nthcdr j (nth i lu))
- (math-div (nth j (nth i lu)) pivot)))))
- (setq j (1+ j)))
- (list lu (nreverse index) d))
- )
-
- (defun math-swap-rows (m r1 r2)
- (or (= r1 r2)
- (let* ((r1prev (nthcdr (1- r1) m))
- (row1 (cdr r1prev))
- (r2prev (nthcdr (1- r2) m))
- (row2 (cdr r2prev))
- (r2next (cdr row2)))
- (setcdr r2prev row1)
- (setcdr r1prev row2)
- (setcdr row2 (cdr row1))
- (setcdr row1 r2next)))
- m
- )
-
-
- (defun math-lud-solve (lud b &optional need)
- (if lud
- (let* ((x (math-copy-matrix b))
- (n (1- (length x)))
- (m (1- (length (nth 1 x))))
- (lu (car lud))
- (col 1)
- i j ip ii index sum)
- (while (<= col m)
- (math-working "LUD solver step" col)
- (setq i 1
- ii nil
- index (nth 1 lud))
- (while (<= i n)
- (setq ip (car index)
- index (cdr index)
- sum (nth col (nth ip x)))
- (setcar (nthcdr col (nth ip x)) (nth col (nth i x)))
- (if (null ii)
- (or (math-zerop sum)
- (setq ii i))
- (setq j ii)
- (while (< j i)
- (setq sum (math-sub sum (math-mul (nth j (nth i lu))
- (nth col (nth j x))))
- j (1+ j))))
- (setcar (nthcdr col (nth i x)) sum)
- (setq i (1+ i)))
- (while (>= (setq i (1- i)) 1)
- (setq sum (nth col (nth i x))
- j i)
- (while (<= (setq j (1+ j)) n)
- (setq sum (math-sub sum (math-mul (nth j (nth i lu))
- (nth col (nth j x))))))
- (setcar (nthcdr col (nth i x))
- (math-div sum (nth i (nth i lu)))))
- (setq col (1+ col)))
- x)
- (and need
- (math-reject-arg need "*Singular matrix")))
- )
-
- (defun calcFunc-lud (m)
- (if (math-square-matrixp m)
- (or (math-with-extra-prec 2
- (let ((lud (math-matrix-lud m)))
- (and lud
- (let* ((lmat (math-copy-matrix (car lud)))
- (umat (math-copy-matrix (car lud)))
- (n (1- (length (car lud))))
- (perm (calcFunc-idn 1 n))
- i (j 1))
- (while (<= j n)
- (setq i 1)
- (while (< i j)
- (setcar (nthcdr j (nth i lmat)) 0)
- (setq i (1+ i)))
- (setcar (nthcdr j (nth j lmat)) 1)
- (while (<= (setq i (1+ i)) n)
- (setcar (nthcdr j (nth i umat)) 0))
- (setq j (1+ j)))
- (while (>= (setq j (1- j)) 1)
- (let ((pos (nth (1- j) (nth 1 lud))))
- (or (= pos j)
- (setq perm (math-swap-rows perm j pos)))))
- (list 'vec perm lmat umat)))))
- (math-reject-arg m "*Singular matrix"))
- (math-reject-arg m 'square-matrixp))
- )
-
-