home *** CD-ROM | disk | FTP | other *** search
Text File | 1996-10-12 | 29.7 KB | 1,035 lines |
- ;; Calculator for GNU Emacs, part II [calc-funcs.el]
- ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
- ;; Written by Dave Gillespie, daveg@synaptics.com.
-
- ;; This file is part of GNU Emacs.
-
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY. No author or distributor
- ;; accepts responsibility to anyone for the consequences of using it
- ;; or for whether it serves any particular purpose or works at all,
- ;; unless he says so in writing. Refer to the GNU Emacs General Public
- ;; License for full details.
-
- ;; Everyone is granted permission to copy, modify and redistribute
- ;; GNU Emacs, but only under the conditions described in the
- ;; GNU Emacs General Public License. A copy of this license is
- ;; supposed to have been given to you along with GNU Emacs so you
- ;; can know your rights and responsibilities. It should be in a
- ;; file named COPYING. Among other things, the copyright notice
- ;; and this notice must be preserved on all copies.
-
-
-
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
-
- (require 'calc-macs)
-
- (defun calc-Need-calc-funcs () nil)
-
-
- (defun calc-inc-gamma (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (if (calc-is-hyperbolic)
- (calc-binary-op "gamG" 'calcFunc-gammaG arg)
- (calc-binary-op "gamQ" 'calcFunc-gammaQ arg))
- (if (calc-is-hyperbolic)
- (calc-binary-op "gamg" 'calcFunc-gammag arg)
- (calc-binary-op "gamP" 'calcFunc-gammaP arg))))
- )
-
- (defun calc-erf (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-unary-op "erfc" 'calcFunc-erfc arg)
- (calc-unary-op "erf" 'calcFunc-erf arg)))
- )
-
- (defun calc-erfc (arg)
- (interactive "P")
- (calc-invert-func)
- (calc-erf arg)
- )
-
- (defun calc-beta (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "beta" 'calcFunc-beta arg))
- )
-
- (defun calc-inc-beta ()
- (interactive)
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-enter-result 3 "betB" (cons 'calcFunc-betaB (calc-top-list-n 3)))
- (calc-enter-result 3 "betI" (cons 'calcFunc-betaI (calc-top-list-n 3)))))
- )
-
- (defun calc-bessel-J (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "besJ" 'calcFunc-besJ arg))
- )
-
- (defun calc-bessel-Y (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "besY" 'calcFunc-besY arg))
- )
-
- (defun calc-bernoulli-number (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "bern" 'calcFunc-bern arg)
- (calc-unary-op "bern" 'calcFunc-bern arg)))
- )
-
- (defun calc-euler-number (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "eulr" 'calcFunc-euler arg)
- (calc-unary-op "eulr" 'calcFunc-euler arg)))
- )
-
- (defun calc-stirling-number (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "str2" 'calcFunc-stir2 arg)
- (calc-binary-op "str1" 'calcFunc-stir1 arg)))
- )
-
- (defun calc-utpb ()
- (interactive)
- (calc-prob-dist "b" 3)
- )
-
- (defun calc-utpc ()
- (interactive)
- (calc-prob-dist "c" 2)
- )
-
- (defun calc-utpf ()
- (interactive)
- (calc-prob-dist "f" 3)
- )
-
- (defun calc-utpn ()
- (interactive)
- (calc-prob-dist "n" 3)
- )
-
- (defun calc-utpp ()
- (interactive)
- (calc-prob-dist "p" 2)
- )
-
- (defun calc-utpt ()
- (interactive)
- (calc-prob-dist "t" 2)
- )
-
- (defun calc-prob-dist (letter nargs)
- (calc-slow-wrapper
- (if (calc-is-inverse)
- (calc-enter-result nargs (concat "ltp" letter)
- (append (list (intern (concat "calcFunc-ltp" letter))
- (calc-top-n 1))
- (calc-top-list-n (1- nargs) 2)))
- (calc-enter-result nargs (concat "utp" letter)
- (append (list (intern (concat "calcFunc-utp" letter))
- (calc-top-n 1))
- (calc-top-list-n (1- nargs) 2)))))
- )
-
-
-
-
- ;;; Sources: Numerical Recipes, Press et al;
- ;;; Handbook of Mathematical Functions, Abramowitz & Stegun.
-
-
- ;;; Gamma function.
-
- (defun calcFunc-gamma (x)
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (calcFunc-fact (math-add x -1))
- )
-
- (defun math-gammap1-raw (x &optional fprec nfprec) ; compute gamma(1 + x)
- (or fprec
- (setq fprec (math-float calc-internal-prec)
- nfprec (math-float (- calc-internal-prec))))
- (cond ((math-lessp-float (calcFunc-re x) fprec)
- (if (math-lessp-float (calcFunc-re x) nfprec)
- (math-neg (math-div
- (math-pi)
- (math-mul (math-gammap1-raw
- (math-add (math-neg x)
- '(float -1 0))
- fprec nfprec)
- (math-sin-raw
- (math-mul (math-pi) x)))))
- (let ((xplus1 (math-add x '(float 1 0))))
- (math-div (math-gammap1-raw xplus1 fprec nfprec) xplus1))))
- ((and (math-realp x)
- (math-lessp-float '(float 736276 0) x))
- (math-overflow))
- (t ; re(x) now >= 10.0
- (let ((xinv (math-div 1 x))
- (lnx (math-ln-raw x)))
- (math-mul (math-sqrt-two-pi)
- (math-exp-raw
- (math-gamma-series
- (math-sub (math-mul (math-add x '(float 5 -1))
- lnx)
- x)
- xinv
- (math-sqr xinv)
- '(float 0 0)
- 2))))))
- )
-
- (defun math-gamma-series (sum x xinvsqr oterm n)
- (math-working "gamma" sum)
- (let* ((bn (math-bernoulli-number n))
- (term (math-mul (math-div-float (math-float (nth 1 bn))
- (math-float (* (nth 2 bn)
- (* n (1- n)))))
- x))
- (next (math-add sum term)))
- (if (math-nearly-equal sum next)
- next
- (if (> n (* 2 calc-internal-prec))
- (progn
- ;; Need this because series eventually diverges for large enough n.
- (calc-record-why
- "*Gamma computation stopped early, not all digits may be valid")
- next)
- (math-gamma-series next (math-mul x xinvsqr) xinvsqr term (+ n 2)))))
- )
-
-
- ;;; Incomplete gamma function.
-
- (defun calcFunc-gammaP (a x)
- (if (equal x '(var inf var-inf))
- '(float 1 0)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (if (and (math-num-integerp a)
- (integerp (setq a (math-trunc a)))
- (> a 0) (< a 20))
- (math-sub 1 (calcFunc-gammaQ a x))
- (let ((math-current-gamma-value (calcFunc-gamma a)))
- (math-div (calcFunc-gammag a x) math-current-gamma-value))))
- )
-
- (defun calcFunc-gammaQ (a x)
- (if (equal x '(var inf var-inf))
- '(float 0 0)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (if (and (math-num-integerp a)
- (integerp (setq a (math-trunc a)))
- (> a 0) (< a 20))
- (let ((n 0)
- (sum '(float 1 0))
- (term '(float 1 0)))
- (math-with-extra-prec 1
- (while (< (setq n (1+ n)) a)
- (setq term (math-div (math-mul term x) n)
- sum (math-add sum term))
- (math-working "gamma" sum))
- (math-mul sum (calcFunc-exp (math-neg x)))))
- (let ((math-current-gamma-value (calcFunc-gamma a)))
- (math-div (calcFunc-gammaG a x) math-current-gamma-value))))
- )
-
- (defun calcFunc-gammag (a x)
- (if (equal x '(var inf var-inf))
- (calcFunc-gamma a)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (Math-numberp x) (math-reject-arg x 'numberp))
- (math-with-extra-prec 2
- (setq a (math-float a))
- (setq x (math-float x))
- (if (or (math-negp (calcFunc-re a))
- (math-lessp-float (calcFunc-re x)
- (math-add-float (calcFunc-re a)
- '(float 1 0))))
- (math-inc-gamma-series a x)
- (math-sub (or math-current-gamma-value (calcFunc-gamma a))
- (math-inc-gamma-cfrac a x)))))
- )
- (setq math-current-gamma-value nil)
-
- (defun calcFunc-gammaG (a x)
- (if (equal x '(var inf var-inf))
- '(float 0 0)
- (math-inexact-result)
- (or (Math-numberp a) (math-reject-arg a 'numberp))
- (or (Math-numberp x) (math-reject-arg x 'numberp))
- (math-with-extra-prec 2
- (setq a (math-float a))
- (setq x (math-float x))
- (if (or (math-negp (calcFunc-re a))
- (math-lessp-float (calcFunc-re x)
- (math-add-float (math-abs-approx a)
- '(float 1 0))))
- (math-sub (or math-current-gamma-value (calcFunc-gamma a))
- (math-inc-gamma-series a x))
- (math-inc-gamma-cfrac a x))))
- )
-
- (defun math-inc-gamma-series (a x)
- (if (Math-zerop x)
- '(float 0 0)
- (math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
- (math-with-extra-prec 2
- (let ((start (math-div '(float 1 0) a)))
- (math-inc-gamma-series-step start start a x)))))
- )
-
- (defun math-inc-gamma-series-step (sum term a x)
- (math-working "gamma" sum)
- (setq a (math-add a '(float 1 0))
- term (math-div (math-mul term x) a))
- (let ((next (math-add sum term)))
- (if (math-nearly-equal sum next)
- next
- (math-inc-gamma-series-step next term a x)))
- )
-
- (defun math-inc-gamma-cfrac (a x)
- (if (Math-zerop x)
- (or math-current-gamma-value (calcFunc-gamma a))
- (math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
- (math-inc-gamma-cfrac-step '(float 1 0) x
- '(float 0 0) '(float 1 0)
- '(float 1 0) '(float 1 0) '(float 0 0)
- a x)))
- )
-
- (defun math-inc-gamma-cfrac-step (a0 a1 b0 b1 n fac g a x)
- (let ((ana (math-sub n a))
- (anf (math-mul n fac)))
- (setq n (math-add n '(float 1 0))
- a0 (math-mul (math-add a1 (math-mul a0 ana)) fac)
- b0 (math-mul (math-add b1 (math-mul b0 ana)) fac)
- a1 (math-add (math-mul x a0) (math-mul anf a1))
- b1 (math-add (math-mul x b0) (math-mul anf b1)))
- (if (math-zerop a1)
- (math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac g a x)
- (setq fac (math-div '(float 1 0) a1))
- (let ((next (math-mul b1 fac)))
- (math-working "gamma" next)
- (if (math-nearly-equal next g)
- next
- (math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac next a x)))))
- )
-
-
- ;;; Error function.
-
- (defun calcFunc-erf (x)
- (if (equal x '(var inf var-inf))
- '(float 1 0)
- (if (equal x '(neg (var inf var-inf)))
- '(float -1 0)
- (if (Math-zerop x)
- x
- (let ((math-current-gamma-value (math-sqrt-pi)))
- (math-to-same-complex-quad
- (math-div (calcFunc-gammag '(float 5 -1)
- (math-sqr (math-to-complex-quad-one x)))
- math-current-gamma-value)
- x)))))
- )
-
- (defun calcFunc-erfc (x)
- (if (equal x '(var inf var-inf))
- '(float 0 0)
- (if (math-posp x)
- (let ((math-current-gamma-value (math-sqrt-pi)))
- (math-div (calcFunc-gammaG '(float 5 -1) (math-sqr x))
- math-current-gamma-value))
- (math-sub 1 (calcFunc-erf x))))
- )
-
- (defun math-to-complex-quad-one (x)
- (if (eq (car-safe x) 'polar) (setq x (math-complex x)))
- (if (eq (car-safe x) 'cplx)
- (list 'cplx (math-abs (nth 1 x)) (math-abs (nth 2 x)))
- x)
- )
-
- (defun math-to-same-complex-quad (x y)
- (if (eq (car-safe y) 'cplx)
- (if (eq (car-safe x) 'cplx)
- (list 'cplx
- (if (math-negp (nth 1 y)) (math-neg (nth 1 x)) (nth 1 x))
- (if (math-negp (nth 2 y)) (math-neg (nth 2 x)) (nth 2 x)))
- (if (math-negp (nth 1 y)) (math-neg x) x))
- (if (math-negp y)
- (if (eq (car-safe x) 'cplx)
- (list 'cplx (math-neg (nth 1 x)) (nth 2 x))
- (math-neg x))
- x))
- )
-
-
- ;;; Beta function.
-
- (defun calcFunc-beta (a b)
- (if (math-num-integerp a)
- (let ((am (math-add a -1)))
- (or (math-numberp b) (math-reject-arg b 'numberp))
- (math-div 1 (math-mul b (calcFunc-choose (math-add b am) am))))
- (if (math-num-integerp b)
- (calcFunc-beta b a)
- (math-div (math-mul (calcFunc-gamma a) (calcFunc-gamma b))
- (calcFunc-gamma (math-add a b)))))
- )
-
-
- ;;; Incomplete beta function.
-
- (defun calcFunc-betaI (x a b)
- (cond ((math-zerop x)
- '(float 0 0))
- ((math-equal-int x 1)
- '(float 1 0))
- ((or (math-zerop a)
- (and (math-num-integerp a)
- (math-negp a)))
- (if (or (math-zerop b)
- (and (math-num-integerp b)
- (math-negp b)))
- (math-reject-arg b 'range)
- '(float 1 0)))
- ((or (math-zerop b)
- (and (math-num-integerp b)
- (math-negp b)))
- '(float 0 0))
- ((not (math-numberp a)) (math-reject-arg a 'numberp))
- ((not (math-numberp b)) (math-reject-arg b 'numberp))
- ((math-inexact-result))
- (t (let ((math-current-beta-value (calcFunc-beta a b)))
- (math-div (calcFunc-betaB x a b) math-current-beta-value))))
- )
-
- (defun calcFunc-betaB (x a b)
- (cond
- ((math-zerop x)
- '(float 0 0))
- ((math-equal-int x 1)
- (calcFunc-beta a b))
- ((not (math-numberp x)) (math-reject-arg x 'numberp))
- ((not (math-numberp a)) (math-reject-arg a 'numberp))
- ((not (math-numberp b)) (math-reject-arg b 'numberp))
- ((math-zerop a) (math-reject-arg a 'nonzerop))
- ((math-zerop b) (math-reject-arg b 'nonzerop))
- ((and (math-num-integerp b)
- (if (math-negp b)
- (math-reject-arg b 'range)
- (Math-natnum-lessp (setq b (math-trunc b)) 20)))
- (and calc-symbolic-mode (or (math-floatp a) (math-floatp b))
- (math-inexact-result))
- (math-mul
- (math-with-extra-prec 2
- (let* ((i 0)
- (term 1)
- (sum (math-div term a)))
- (while (< (setq i (1+ i)) b)
- (setq term (math-mul (math-div (math-mul term (- i b)) i) x)
- sum (math-add sum (math-div term (math-add a i))))
- (math-working "beta" sum))
- sum))
- (math-pow x a)))
- ((and (math-num-integerp a)
- (if (math-negp a)
- (math-reject-arg a 'range)
- (Math-natnum-lessp (setq a (math-trunc a)) 20)))
- (math-sub (or math-current-beta-value (calcFunc-beta a b))
- (calcFunc-betaB (math-sub 1 x) b a)))
- (t
- (math-inexact-result)
- (math-with-extra-prec 2
- (setq x (math-float x))
- (setq a (math-float a))
- (setq b (math-float b))
- (let ((bt (math-exp-raw (math-add (math-mul a (math-ln-raw x))
- (math-mul b (math-ln-raw
- (math-sub '(float 1 0)
- x)))))))
- (if (Math-lessp x (math-div (math-add a '(float 1 0))
- (math-add (math-add a b) '(float 2 0))))
- (math-div (math-mul bt (math-beta-cfrac a b x)) a)
- (math-sub (or math-current-beta-value (calcFunc-beta a b))
- (math-div (math-mul bt
- (math-beta-cfrac b a (math-sub 1 x)))
- b)))))))
- )
- (setq math-current-beta-value nil)
-
- (defun math-beta-cfrac (a b x)
- (let ((qab (math-add a b))
- (qap (math-add a '(float 1 0)))
- (qam (math-add a '(float -1 0))))
- (math-beta-cfrac-step '(float 1 0)
- (math-sub '(float 1 0)
- (math-div (math-mul qab x) qap))
- '(float 1 0) '(float 1 0)
- '(float 1 0)
- qab qap qam a b x))
- )
-
- (defun math-beta-cfrac-step (az bz am bm m qab qap qam a b x)
- (let* ((two-m (math-mul m '(float 2 0)))
- (d (math-div (math-mul (math-mul (math-sub b m) m) x)
- (math-mul (math-add qam two-m) (math-add a two-m))))
- (ap (math-add az (math-mul d am)))
- (bp (math-add bz (math-mul d bm)))
- (d2 (math-neg
- (math-div (math-mul (math-mul (math-add a m) (math-add qab m)) x)
- (math-mul (math-add qap two-m) (math-add a two-m)))))
- (app (math-add ap (math-mul d2 az)))
- (bpp (math-add bp (math-mul d2 bz)))
- (next (math-div app bpp)))
- (math-working "beta" next)
- (if (math-nearly-equal next az)
- next
- (math-beta-cfrac-step next '(float 1 0)
- (math-div ap bpp) (math-div bp bpp)
- (math-add m '(float 1 0))
- qab qap qam a b x)))
- )
-
-
- ;;; Bessel functions.
-
- ;;; Should generalize this to handle arbitrary precision!
-
- (defun calcFunc-besJ (v x)
- (or (math-numberp v) (math-reject-arg v 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (let ((calc-internal-prec (min 8 calc-internal-prec)))
- (math-with-extra-prec 3
- (setq x (math-float (math-normalize x)))
- (setq v (math-float (math-normalize v)))
- (cond ((math-zerop x)
- (if (math-zerop v)
- '(float 1 0)
- '(float 0 0)))
- ((math-inexact-result))
- ((not (math-num-integerp v))
- (let ((start (math-div 1 (calcFunc-fact v))))
- (math-mul (math-besJ-series start start
- 0
- (math-mul '(float -25 -2)
- (math-sqr x))
- v)
- (math-pow (math-div x 2) v))))
- ((math-negp (setq v (math-trunc v)))
- (if (math-oddp v)
- (math-neg (calcFunc-besJ (math-neg v) x))
- (calcFunc-besJ (math-neg v) x)))
- ((eq v 0)
- (math-besJ0 x))
- ((eq v 1)
- (math-besJ1 x))
- ((Math-lessp v (math-abs-approx x))
- (let ((j 0)
- (bjm (math-besJ0 x))
- (bj (math-besJ1 x))
- (two-over-x (math-div 2 x))
- bjp)
- (while (< (setq j (1+ j)) v)
- (setq bjp (math-sub (math-mul (math-mul j two-over-x) bj)
- bjm)
- bjm bj
- bj bjp))
- bj))
- (t
- (if (Math-lessp 100 v) (math-reject-arg v 'range))
- (let* ((j (logior (+ v (math-isqrt-small (* 40 v))) 1))
- (two-over-x (math-div 2 x))
- (jsum nil)
- (bjp '(float 0 0))
- (sum '(float 0 0))
- (bj '(float 1 0))
- bjm ans)
- (while (> (setq j (1- j)) 0)
- (setq bjm (math-sub (math-mul (math-mul j two-over-x) bj)
- bjp)
- bjp bj
- bj bjm)
- (if (> (nth 2 (math-abs-approx bj)) 10)
- (setq bj (math-mul bj '(float 1 -10))
- bjp (math-mul bjp '(float 1 -10))
- ans (and ans (math-mul ans '(float 1 -10)))
- sum (math-mul sum '(float 1 -10))))
- (or (setq jsum (not jsum))
- (setq sum (math-add sum bj)))
- (if (= j v)
- (setq ans bjp)))
- (math-div ans (math-sub (math-mul 2 sum) bj)))))))
- )
-
- (defun math-besJ-series (sum term k zz vk)
- (math-working "besJ" sum)
- (setq k (1+ k)
- vk (math-add 1 vk)
- term (math-div (math-mul term zz) (math-mul k vk)))
- (let ((next (math-add sum term)))
- (if (math-nearly-equal next sum)
- next
- (math-besJ-series next term k zz vk)))
- )
-
- (defun math-besJ0 (x &optional yflag)
- (cond ((and (not yflag) (math-negp (calcFunc-re x)))
- (math-besJ0 (math-neg x)))
- ((Math-lessp '(float 8 0) (math-abs-approx x))
- (let* ((z (math-div '(float 8 0) x))
- (y (math-sqr z))
- (xx (math-add x '(float (bigneg 164 398 785) -9)))
- (a1 (math-poly-eval y
- '((float (bigpos 211 887 093 2) -16)
- (float (bigneg 639 370 073 2) -15)
- (float (bigpos 407 510 734 2) -14)
- (float (bigneg 627 628 098 1) -12)
- (float 1 0))))
- (a2 (math-poly-eval y
- '((float (bigneg 152 935 934) -16)
- (float (bigpos 161 095 621 7) -16)
- (float (bigneg 651 147 911 6) -15)
- (float (bigpos 765 488 430 1) -13)
- (float (bigneg 995 499 562 1) -11))))
- (sc (math-sin-cos-raw xx)))
- (if yflag
- (setq sc (cons (math-neg (cdr sc)) (car sc))))
- (math-mul (math-sqrt
- (math-div '(float (bigpos 722 619 636) -9) x))
- (math-sub (math-mul (cdr sc) a1)
- (math-mul (car sc) (math-mul z a2))))))
- (t
- (let ((y (math-sqr x)))
- (math-div (math-poly-eval y
- '((float (bigneg 456 052 849 1) -7)
- (float (bigpos 017 233 739 7) -5)
- (float (bigneg 418 442 121 1) -2)
- (float (bigpos 407 196 516 6) -1)
- (float (bigneg 354 590 362 13) 0)
- (float (bigpos 574 490 568 57) 0)))
- (math-poly-eval y
- '((float 1 0)
- (float (bigpos 712 532 678 2) -7)
- (float (bigpos 853 264 927 5) -5)
- (float (bigpos 718 680 494 9) -3)
- (float (bigpos 985 532 029 1) 0)
- (float (bigpos 411 490 568 57) 0)))))))
- )
-
- (defun math-besJ1 (x &optional yflag)
- (cond ((and (math-negp (calcFunc-re x)) (not yflag))
- (math-neg (math-besJ1 (math-neg x))))
- ((Math-lessp '(float 8 0) (math-abs-approx x))
- (let* ((z (math-div '(float 8 0) x))
- (y (math-sqr z))
- (xx (math-add x '(float (bigneg 491 194 356 2) -9)))
- (a1 (math-poly-eval y
- '((float (bigneg 019 337 240) -15)
- (float (bigpos 174 520 457 2) -15)
- (float (bigneg 496 396 516 3) -14)
- (float 183105 -8)
- (float 1 0))))
- (a2 (math-poly-eval y
- '((float (bigpos 412 787 105) -15)
- (float (bigneg 987 228 88) -14)
- (float (bigpos 096 199 449 8) -15)
- (float (bigneg 873 690 002 2) -13)
- (float (bigpos 995 499 687 4) -11))))
- (sc (math-sin-cos-raw xx)))
- (if yflag
- (setq sc (cons (math-neg (cdr sc)) (car sc)))
- (if (math-negp x)
- (setq sc (cons (math-neg (car sc)) (math-neg (cdr sc))))))
- (math-mul (math-sqrt (math-div '(float (bigpos 722 619 636) -9) x))
- (math-sub (math-mul (cdr sc) a1)
- (math-mul (car sc) (math-mul z a2))))))
- (t
- (let ((y (math-sqr x)))
- (math-mul
- x
- (math-div (math-poly-eval y
- '((float (bigneg 606 036 016 3) -8)
- (float (bigpos 826 044 157) -4)
- (float (bigneg 439 611 972 2) -3)
- (float (bigpos 531 968 423 2) -1)
- (float (bigneg 235 059 895 7) 0)
- (float (bigpos 232 614 362 72) 0)))
- (math-poly-eval y
- '((float 1 0)
- (float (bigpos 397 991 769 3) -7)
- (float (bigpos 394 743 944 9) -5)
- (float (bigpos 474 330 858 1) -2)
- (float (bigpos 178 535 300 2) 0)
- (float (bigpos 442 228 725 144)
- 0))))))))
- )
-
- (defun calcFunc-besY (v x)
- (math-inexact-result)
- (or (math-numberp v) (math-reject-arg v 'numberp))
- (or (math-numberp x) (math-reject-arg x 'numberp))
- (let ((calc-internal-prec (min 8 calc-internal-prec)))
- (math-with-extra-prec 3
- (setq x (math-float (math-normalize x)))
- (setq v (math-float (math-normalize v)))
- (cond ((not (math-num-integerp v))
- (let ((sc (math-sin-cos-raw (math-mul v (math-pi)))))
- (math-div (math-sub (math-mul (calcFunc-besJ v x) (cdr sc))
- (calcFunc-besJ (math-neg v) x))
- (car sc))))
- ((math-negp (setq v (math-trunc v)))
- (if (math-oddp v)
- (math-neg (calcFunc-besY (math-neg v) x))
- (calcFunc-besY (math-neg v) x)))
- ((eq v 0)
- (math-besY0 x))
- ((eq v 1)
- (math-besY1 x))
- (t
- (let ((j 0)
- (bym (math-besY0 x))
- (by (math-besY1 x))
- (two-over-x (math-div 2 x))
- byp)
- (while (< (setq j (1+ j)) v)
- (setq byp (math-sub (math-mul (math-mul j two-over-x) by)
- bym)
- bym by
- by byp))
- by)))))
- )
-
- (defun math-besY0 (x)
- (cond ((Math-lessp (math-abs-approx x) '(float 8 0))
- (let ((y (math-sqr x)))
- (math-add
- (math-div (math-poly-eval y
- '((float (bigpos 733 622 284 2) -7)
- (float (bigneg 757 792 632 8) -5)
- (float (bigpos 129 988 087 1) -2)
- (float (bigneg 036 598 123 5) -1)
- (float (bigpos 065 834 062 7) 0)
- (float (bigneg 389 821 957 2) 0)))
- (math-poly-eval y
- '((float 1 0)
- (float (bigpos 244 030 261 2) -7)
- (float (bigpos 647 472 474) -4)
- (float (bigpos 438 466 189 7) -3)
- (float (bigpos 648 499 452 7) -1)
- (float (bigpos 269 544 076 40) 0))))
- (math-mul '(float (bigpos 772 619 636) -9)
- (math-mul (math-besJ0 x) (math-ln-raw x))))))
- ((math-negp (calcFunc-re x))
- (math-add (math-besJ0 (math-neg x) t)
- (math-mul '(cplx 0 2)
- (math-besJ0 (math-neg x)))))
- (t
- (math-besJ0 x t)))
- )
-
- (defun math-besY1 (x)
- (cond ((Math-lessp (math-abs-approx x) '(float 8 0))
- (let ((y (math-sqr x)))
- (math-add
- (math-mul
- x
- (math-div (math-poly-eval y
- '((float (bigpos 935 937 511 8) -6)
- (float (bigneg 726 922 237 4) -3)
- (float (bigpos 551 264 349 7) -1)
- (float (bigneg 139 438 153 5) 1)
- (float (bigpos 439 527 127) 4)
- (float (bigneg 943 604 900 4) 3)))
- (math-poly-eval y
- '((float 1 0)
- (float (bigpos 885 632 549 3) -7)
- (float (bigpos 605 042 102) -3)
- (float (bigpos 002 904 245 2) -2)
- (float (bigpos 367 650 733 3) 0)
- (float (bigpos 664 419 244 4) 2)
- (float (bigpos 057 958 249) 5)))))
- (math-mul '(float (bigpos 772 619 636) -9)
- (math-sub (math-mul (math-besJ1 x) (math-ln-raw x))
- (math-div 1 x))))))
- ((math-negp (calcFunc-re x))
- (math-neg
- (math-add (math-besJ1 (math-neg x) t)
- (math-mul '(cplx 0 2)
- (math-besJ1 (math-neg x))))))
- (t
- (math-besJ1 x t)))
- )
-
- (defun math-poly-eval (x coefs)
- (let ((accum (car coefs)))
- (while (setq coefs (cdr coefs))
- (setq accum (math-add (car coefs) (math-mul accum x))))
- accum)
- )
-
-
- ;;;; Bernoulli and Euler polynomials and numbers.
-
- (defun calcFunc-bern (n &optional x)
- (if (and x (not (math-zerop x)))
- (if (and calc-symbolic-mode (math-floatp x))
- (math-inexact-result)
- (math-build-polynomial-expr (math-bernoulli-coefs n) x))
- (or (math-num-natnump n) (math-reject-arg n 'natnump))
- (if (consp n)
- (progn
- (math-inexact-result)
- (math-float (math-bernoulli-number (math-trunc n))))
- (math-bernoulli-number n)))
- )
-
- (defun calcFunc-euler (n &optional x)
- (or (math-num-natnump n) (math-reject-arg n 'natnump))
- (if x
- (let* ((n1 (math-add n 1))
- (coefs (math-bernoulli-coefs n1))
- (fac (math-div (math-pow 2 n1) n1))
- (k -1)
- (x1 (math-div (math-add x 1) 2))
- (x2 (math-div x 2)))
- (if (math-numberp x)
- (if (and calc-symbolic-mode (math-floatp x))
- (math-inexact-result)
- (math-mul fac
- (math-sub (math-build-polynomial-expr coefs x1)
- (math-build-polynomial-expr coefs x2))))
- (calcFunc-collect
- (math-reduce-vec
- 'math-add
- (cons 'vec
- (mapcar (function
- (lambda (c)
- (setq k (1+ k))
- (math-mul (math-mul fac c)
- (math-sub (math-pow x1 k)
- (math-pow x2 k)))))
- coefs)))
- x)))
- (math-mul (math-pow 2 n)
- (if (consp n)
- (progn
- (math-inexact-result)
- (calcFunc-euler n '(float 5 -1)))
- (calcFunc-euler n '(frac 1 2)))))
- )
-
- (defun math-bernoulli-coefs (n)
- (let* ((coefs (list (calcFunc-bern n)))
- (nn (math-trunc n))
- (k nn)
- (term nn)
- coef
- (calc-prefer-frac (or (integerp n) calc-prefer-frac)))
- (while (>= (setq k (1- k)) 0)
- (setq term (math-div term (- nn k))
- coef (math-mul term (math-bernoulli-number k))
- coefs (cons (if (consp n) (math-float coef) coef) coefs)
- term (math-mul term k)))
- (nreverse coefs))
- )
-
- (defun math-bernoulli-number (n)
- (if (= (% n 2) 1)
- (if (= n 1)
- '(frac -1 2)
- 0)
- (setq n (/ n 2))
- (while (>= n math-bernoulli-cache-size)
- (let* ((sum 0)
- (nk 1) ; nk = n-k+1
- (fact 1) ; fact = (n-k+1)!
- ofact
- (p math-bernoulli-b-cache)
- (calc-prefer-frac t))
- (math-working "bernoulli B" (* 2 math-bernoulli-cache-size))
- (while p
- (setq nk (+ nk 2)
- ofact fact
- fact (math-mul fact (* nk (1- nk)))
- sum (math-add sum (math-div (car p) fact))
- p (cdr p)))
- (setq ofact (math-mul ofact (1- nk))
- sum (math-sub (math-div '(frac 1 2) ofact) sum)
- math-bernoulli-b-cache (cons sum math-bernoulli-b-cache)
- math-bernoulli-B-cache (cons (math-mul sum ofact)
- math-bernoulli-B-cache)
- math-bernoulli-cache-size (1+ math-bernoulli-cache-size))))
- (nth (- math-bernoulli-cache-size n 1) math-bernoulli-B-cache))
- )
-
- ;;; Bn = n! bn
- ;;; bn = - sum_k=0^n-1 bk / (n-k+1)!
-
- ;;; A faster method would be to use "tangent numbers", c.f., Concrete
- ;;; Mathematics pg. 273.
-
- (setq math-bernoulli-b-cache '( (frac -174611
- (bigpos 0 200 291 698 662 857 802))
- (frac 43867 (bigpos 0 944 170 217 94 109 5))
- (frac -3617 (bigpos 0 880 842 622 670 10))
- (frac 1 (bigpos 600 249 724 74))
- (frac -691 (bigpos 0 368 674 307 1))
- (frac 1 (bigpos 160 900 47))
- (frac -1 (bigpos 600 209 1))
- (frac 1 30240) (frac -1 720)
- (frac 1 12) 1 ))
-
- (setq math-bernoulli-B-cache '( (frac -174611 330) (frac 43867 798)
- (frac -3617 510) (frac 7 6) (frac -691 2730)
- (frac 5 66) (frac -1 30) (frac 1 42)
- (frac -1 30) (frac 1 6) 1 ))
-
- (setq math-bernoulli-cache-size 11)
-
-
-
- ;;; Probability distributions.
-
- ;;; Binomial.
- (defun calcFunc-utpb (x n p)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-betaI p x (list '+ (list '- n x) 1)))
- (calcFunc-betaI p x (math-add (math-sub n x) 1)))
- )
- (put 'calcFunc-utpb 'math-expandable t)
-
- (defun calcFunc-ltpb (x n p)
- (math-sub 1 (calcFunc-utpb x n p))
- )
- (put 'calcFunc-ltpb 'math-expandable t)
-
- ;;; Chi-square.
- (defun calcFunc-utpc (chisq v)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaQ (list '/ v 2) (list '/ chisq 2)))
- (calcFunc-gammaQ (math-div v 2) (math-div chisq 2)))
- )
- (put 'calcFunc-utpc 'math-expandable t)
-
- (defun calcFunc-ltpc (chisq v)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaP (list '/ v 2) (list '/ chisq 2)))
- (calcFunc-gammaP (math-div v 2) (math-div chisq 2)))
- )
- (put 'calcFunc-ltpc 'math-expandable t)
-
- ;;; F-distribution.
- (defun calcFunc-utpf (f v1 v2)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-betaI
- (list '/ v2 (list '+ v2 (list '* v1 f)))
- (list '/ v2 2)
- (list '/ v1 2)))
- (calcFunc-betaI (math-div v2 (math-add v2 (math-mul v1 f)))
- (math-div v2 2)
- (math-div v1 2)))
- )
- (put 'calcFunc-utpf 'math-expandable t)
-
- (defun calcFunc-ltpf (f v1 v2)
- (math-sub 1 (calcFunc-utpf f v1 v2))
- )
- (put 'calcFunc-ltpf 'math-expandable t)
-
- ;;; Normal.
- (defun calcFunc-utpn (x mean sdev)
- (if math-expand-formulas
- (math-normalize
- (list '/
- (list '+ 1
- (list 'calcFunc-erf
- (list '/ (list '- mean x)
- (list '* sdev (list 'calcFunc-sqrt 2)))))
- 2))
- (math-mul (math-add '(float 1 0)
- (calcFunc-erf
- (math-div (math-sub mean x)
- (math-mul sdev (math-sqrt-2)))))
- '(float 5 -1)))
- )
- (put 'calcFunc-utpn 'math-expandable t)
-
- (defun calcFunc-ltpn (x mean sdev)
- (if math-expand-formulas
- (math-normalize
- (list '/
- (list '+ 1
- (list 'calcFunc-erf
- (list '/ (list '- x mean)
- (list '* sdev (list 'calcFunc-sqrt 2)))))
- 2))
- (math-mul (math-add '(float 1 0)
- (calcFunc-erf
- (math-div (math-sub x mean)
- (math-mul sdev (math-sqrt-2)))))
- '(float 5 -1)))
- )
- (put 'calcFunc-ltpn 'math-expandable t)
-
- ;;; Poisson.
- (defun calcFunc-utpp (n x)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaP x n))
- (calcFunc-gammaP x n))
- )
- (put 'calcFunc-utpp 'math-expandable t)
-
- (defun calcFunc-ltpp (n x)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-gammaQ x n))
- (calcFunc-gammaQ x n))
- )
- (put 'calcFunc-ltpp 'math-expandable t)
-
- ;;; Student's t. (As defined in Abramowitz & Stegun and Numerical Recipes.)
- (defun calcFunc-utpt (tt v)
- (if math-expand-formulas
- (math-normalize (list 'calcFunc-betaI
- (list '/ v (list '+ v (list '^ tt 2)))
- (list '/ v 2)
- '(float 5 -1)))
- (calcFunc-betaI (math-div v (math-add v (math-sqr tt)))
- (math-div v 2)
- '(float 5 -1)))
- )
- (put 'calcFunc-utpt 'math-expandable t)
-
- (defun calcFunc-ltpt (tt v)
- (math-sub 1 (calcFunc-utpt tt v))
- )
- (put 'calcFunc-ltpt 'math-expandable t)
-
-
-
-
-