home *** CD-ROM | disk | FTP | other *** search
- ;; Calculator for GNU Emacs, part II [calc-cplx.el]
- ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
- ;; Written by Dave Gillespie, daveg@synaptics.com.
-
- ;; This file is part of GNU Emacs.
-
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY. No author or distributor
- ;; accepts responsibility to anyone for the consequences of using it
- ;; or for whether it serves any particular purpose or works at all,
- ;; unless he says so in writing. Refer to the GNU Emacs General Public
- ;; License for full details.
-
- ;; Everyone is granted permission to copy, modify and redistribute
- ;; GNU Emacs, but only under the conditions described in the
- ;; GNU Emacs General Public License. A copy of this license is
- ;; supposed to have been given to you along with GNU Emacs so you
- ;; can know your rights and responsibilities. It should be in a
- ;; file named COPYING. Among other things, the copyright notice
- ;; and this notice must be preserved on all copies.
-
-
-
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
-
- (require 'calc-macs)
-
- (defun calc-Need-calc-cplx () nil)
-
-
- (defun calc-argument (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "arg" 'calcFunc-arg arg))
- )
-
- (defun calc-re (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "re" 'calcFunc-re arg))
- )
-
- (defun calc-im (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "im" 'calcFunc-im arg))
- )
-
-
- (defun calc-polar ()
- (interactive)
- (calc-slow-wrapper
- (let ((arg (calc-top-n 1)))
- (if (or (calc-is-inverse)
- (eq (car-safe arg) 'polar))
- (calc-enter-result 1 "p-r" (list 'calcFunc-rect arg))
- (calc-enter-result 1 "r-p" (list 'calcFunc-polar arg)))))
- )
-
-
-
-
- (defun calc-complex-notation ()
- (interactive)
- (calc-wrapper
- (calc-change-mode 'calc-complex-format nil t)
- (message "Displaying complex numbers in (X,Y) format."))
- )
-
- (defun calc-i-notation ()
- (interactive)
- (calc-wrapper
- (calc-change-mode 'calc-complex-format 'i t)
- (message "Displaying complex numbers in X+Yi format."))
- )
-
- (defun calc-j-notation ()
- (interactive)
- (calc-wrapper
- (calc-change-mode 'calc-complex-format 'j t)
- (message "Displaying complex numbers in X+Yj format."))
- )
-
-
- (defun calc-polar-mode (n)
- (interactive "P")
- (calc-wrapper
- (if (if n
- (> (prefix-numeric-value n) 0)
- (eq calc-complex-mode 'cplx))
- (progn
- (calc-change-mode 'calc-complex-mode 'polar)
- (message "Preferred complex form is polar."))
- (calc-change-mode 'calc-complex-mode 'cplx)
- (message "Preferred complex form is rectangular.")))
- )
-
-
- ;;;; Complex numbers.
-
- (defun math-normalize-polar (a)
- (let ((r (math-normalize (nth 1 a)))
- (th (math-normalize (nth 2 a))))
- (cond ((math-zerop r)
- '(polar 0 0))
- ((or (math-zerop th))
- r)
- ((and (not (eq calc-angle-mode 'rad))
- (or (equal th '(float 18 1))
- (equal th 180)))
- (math-neg r))
- ((math-negp r)
- (math-neg (list 'polar (math-neg r) th)))
- (t
- (list 'polar r th))))
- )
-
-
- ;;; Coerce A to be complex (rectangular form). [c N]
- (defun math-complex (a)
- (cond ((eq (car-safe a) 'cplx) a)
- ((eq (car-safe a) 'polar)
- (if (math-zerop (nth 1 a))
- (nth 1 a)
- (let ((sc (calcFunc-sincos (nth 2 a))))
- (list 'cplx
- (math-mul (nth 1 a) (nth 1 sc))
- (math-mul (nth 1 a) (nth 2 sc))))))
- (t (list 'cplx a 0)))
- )
-
- ;;; Coerce A to be complex (polar form). [c N]
- (defun math-polar (a)
- (cond ((eq (car-safe a) 'polar) a)
- ((math-zerop a) '(polar 0 0))
- (t
- (list 'polar
- (math-abs a)
- (calcFunc-arg a))))
- )
-
- ;;; Multiply A by the imaginary constant i. [N N] [Public]
- (defun math-imaginary (a)
- (if (and (or (Math-objvecp a) (math-infinitep a))
- (not calc-symbolic-mode))
- (math-mul a
- (if (or (eq (car-safe a) 'polar)
- (and (not (eq (car-safe a) 'cplx))
- (eq calc-complex-mode 'polar)))
- (list 'polar 1 (math-quarter-circle nil))
- '(cplx 0 1)))
- (math-mul a '(var i var-i)))
- )
-
-
-
-
- (defun math-want-polar (a b)
- (cond ((eq (car-safe a) 'polar)
- (if (eq (car-safe b) 'cplx)
- (eq calc-complex-mode 'polar)
- t))
- ((eq (car-safe a) 'cplx)
- (if (eq (car-safe b) 'polar)
- (eq calc-complex-mode 'polar)
- nil))
- ((eq (car-safe b) 'polar)
- t)
- ((eq (car-safe b) 'cplx)
- nil)
- (t (eq calc-complex-mode 'polar)))
- )
-
- ;;; Force A to be in the (-pi,pi] or (-180,180] range.
- (defun math-fix-circular (a &optional dir) ; [R R]
- (cond ((eq (car-safe a) 'hms)
- (cond ((and (Math-lessp 180 (nth 1 a)) (not (eq dir 1)))
- (math-fix-circular (math-add a '(float -36 1)) -1))
- ((or (Math-lessp -180 (nth 1 a)) (eq dir -1))
- a)
- (t
- (math-fix-circular (math-add a '(float 36 1)) 1))))
- ((eq calc-angle-mode 'rad)
- (cond ((and (Math-lessp (math-pi) a) (not (eq dir 1)))
- (math-fix-circular (math-sub a (math-two-pi)) -1))
- ((or (Math-lessp (math-neg (math-pi)) a) (eq dir -1))
- a)
- (t
- (math-fix-circular (math-add a (math-two-pi)) 1))))
- (t
- (cond ((and (Math-lessp '(float 18 1) a) (not (eq dir 1)))
- (math-fix-circular (math-add a '(float -36 1)) -1))
- ((or (Math-lessp '(float -18 1) a) (eq dir -1))
- a)
- (t
- (math-fix-circular (math-add a '(float 36 1)) 1)))))
- )
-
-
- ;;;; Complex numbers.
-
- (defun calcFunc-polar (a) ; [C N] [Public]
- (cond ((Math-vectorp a)
- (math-map-vec 'calcFunc-polar a))
- ((Math-realp a) a)
- ((Math-numberp a)
- (math-normalize (math-polar a)))
- (t (list 'calcFunc-polar a)))
- )
-
- (defun calcFunc-rect (a) ; [N N] [Public]
- (cond ((Math-vectorp a)
- (math-map-vec 'calcFunc-rect a))
- ((Math-realp a) a)
- ((Math-numberp a)
- (math-normalize (math-complex a)))
- (t (list 'calcFunc-rect a)))
- )
-
- ;;; Compute the complex conjugate of A. [O O] [Public]
- (defun calcFunc-conj (a)
- (let (aa bb)
- (cond ((Math-realp a)
- a)
- ((eq (car a) 'cplx)
- (list 'cplx (nth 1 a) (math-neg (nth 2 a))))
- ((eq (car a) 'polar)
- (list 'polar (nth 1 a) (math-neg (nth 2 a))))
- ((eq (car a) 'vec)
- (math-map-vec 'calcFunc-conj a))
- ((eq (car a) 'calcFunc-conj)
- (nth 1 a))
- ((math-known-realp a)
- a)
- ((and (equal a '(var i var-i))
- (math-imaginary-i))
- (math-neg a))
- ((and (memq (car a) '(+ - * /))
- (progn
- (setq aa (calcFunc-conj (nth 1 a))
- bb (calcFunc-conj (nth 2 a)))
- (or (not (eq (car-safe aa) 'calcFunc-conj))
- (not (eq (car-safe bb) 'calcFunc-conj)))))
- (if (eq (car a) '+)
- (math-add aa bb)
- (if (eq (car a) '-)
- (math-sub aa bb)
- (if (eq (car a) '*)
- (math-mul aa bb)
- (math-div aa bb)))))
- ((eq (car a) 'neg)
- (math-neg (calcFunc-conj (nth 1 a))))
- ((let ((inf (math-infinitep a)))
- (and inf
- (math-mul (calcFunc-conj (math-infinite-dir a inf)) inf))))
- (t (calc-record-why 'numberp a)
- (list 'calcFunc-conj a))))
- )
-
-
- ;;; Compute the complex argument of A. [F N] [Public]
- (defun calcFunc-arg (a)
- (cond ((Math-anglep a)
- (if (math-negp a) (math-half-circle nil) 0))
- ((eq (car-safe a) 'cplx)
- (calcFunc-arctan2 (nth 2 a) (nth 1 a)))
- ((eq (car-safe a) 'polar)
- (nth 2 a))
- ((eq (car a) 'vec)
- (math-map-vec 'calcFunc-arg a))
- ((and (equal a '(var i var-i))
- (math-imaginary-i))
- (math-quarter-circle t))
- ((and (equal a '(neg (var i var-i)))
- (math-imaginary-i))
- (math-neg (math-quarter-circle t)))
- ((let ((signs (math-possible-signs a)))
- (or (and (memq signs '(2 4 6)) 0)
- (and (eq signs 1) (math-half-circle nil)))))
- ((math-infinitep a)
- (if (or (equal a '(var uinf var-uinf))
- (equal a '(var nan var-nan)))
- '(var nan var-nan)
- (calcFunc-arg (math-infinite-dir a))))
- (t (calc-record-why 'numvecp a)
- (list 'calcFunc-arg a)))
- )
-
- (defun math-imaginary-i ()
- (let ((val (calc-var-value 'var-i)))
- (or (eq (car-safe val) 'special-const)
- (equal val '(cplx 0 1))
- (and (eq (car-safe val) 'polar)
- (eq (nth 1 val) 0)
- (Math-equal (nth 1 val) (math-quarter-circle nil)))))
- )
-
- ;;; Extract the real or complex part of a complex number. [R N] [Public]
- ;;; Also extracts the real part of a modulo form.
- (defun calcFunc-re (a)
- (let (aa bb)
- (cond ((Math-realp a) a)
- ((memq (car a) '(mod cplx))
- (nth 1 a))
- ((eq (car a) 'polar)
- (math-mul (nth 1 a) (calcFunc-cos (nth 2 a))))
- ((eq (car a) 'vec)
- (math-map-vec 'calcFunc-re a))
- ((math-known-realp a) a)
- ((eq (car a) 'calcFunc-conj)
- (calcFunc-re (nth 1 a)))
- ((and (equal a '(var i var-i))
- (math-imaginary-i))
- 0)
- ((and (memq (car a) '(+ - *))
- (progn
- (setq aa (calcFunc-re (nth 1 a))
- bb (calcFunc-re (nth 2 a)))
- (or (not (eq (car-safe aa) 'calcFunc-re))
- (not (eq (car-safe bb) 'calcFunc-re)))))
- (if (eq (car a) '+)
- (math-add aa bb)
- (if (eq (car a) '-)
- (math-sub aa bb)
- (math-sub (math-mul aa bb)
- (math-mul (calcFunc-im (nth 1 a))
- (calcFunc-im (nth 2 a)))))))
- ((and (eq (car a) '/)
- (math-known-realp (nth 2 a)))
- (math-div (calcFunc-re (nth 1 a)) (nth 2 a)))
- ((eq (car a) 'neg)
- (math-neg (calcFunc-re (nth 1 a))))
- (t (calc-record-why 'numberp a)
- (list 'calcFunc-re a))))
- )
-
- (defun calcFunc-im (a)
- (let (aa bb)
- (cond ((Math-realp a)
- (if (math-floatp a) '(float 0 0) 0))
- ((eq (car a) 'cplx)
- (nth 2 a))
- ((eq (car a) 'polar)
- (math-mul (nth 1 a) (calcFunc-sin (nth 2 a))))
- ((eq (car a) 'vec)
- (math-map-vec 'calcFunc-im a))
- ((math-known-realp a)
- 0)
- ((eq (car a) 'calcFunc-conj)
- (math-neg (calcFunc-im (nth 1 a))))
- ((and (equal a '(var i var-i))
- (math-imaginary-i))
- 1)
- ((and (memq (car a) '(+ - *))
- (progn
- (setq aa (calcFunc-im (nth 1 a))
- bb (calcFunc-im (nth 2 a)))
- (or (not (eq (car-safe aa) 'calcFunc-im))
- (not (eq (car-safe bb) 'calcFunc-im)))))
- (if (eq (car a) '+)
- (math-add aa bb)
- (if (eq (car a) '-)
- (math-sub aa bb)
- (math-add (math-mul (calcFunc-re (nth 1 a)) bb)
- (math-mul aa (calcFunc-re (nth 2 a)))))))
- ((and (eq (car a) '/)
- (math-known-realp (nth 2 a)))
- (math-div (calcFunc-im (nth 1 a)) (nth 2 a)))
- ((eq (car a) 'neg)
- (math-neg (calcFunc-im (nth 1 a))))
- (t (calc-record-why 'numberp a)
- (list 'calcFunc-im a))))
- )
-
-
-
-