home *** CD-ROM | disk | FTP | other *** search
Text File | 1996-10-12 | 53.0 KB | 1,700 lines |
- ;; Calculator for GNU Emacs, part II [calc-alg.el]
- ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
- ;; Written by Dave Gillespie, daveg@synaptics.com.
-
- ;; This file is part of GNU Emacs.
-
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY. No author or distributor
- ;; accepts responsibility to anyone for the consequences of using it
- ;; or for whether it serves any particular purpose or works at all,
- ;; unless he says so in writing. Refer to the GNU Emacs General Public
- ;; License for full details.
-
- ;; Everyone is granted permission to copy, modify and redistribute
- ;; GNU Emacs, but only under the conditions described in the
- ;; GNU Emacs General Public License. A copy of this license is
- ;; supposed to have been given to you along with GNU Emacs so you
- ;; can know your rights and responsibilities. It should be in a
- ;; file named COPYING. Among other things, the copyright notice
- ;; and this notice must be preserved on all copies.
-
-
-
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
-
- (require 'calc-macs)
-
- (defun calc-Need-calc-alg () nil)
-
-
- ;;; Algebra commands.
-
- (defun calc-alg-evaluate (arg)
- (interactive "p")
- (calc-slow-wrapper
- (calc-with-default-simplification
- (let ((math-simplify-only nil))
- (calc-modify-simplify-mode arg)
- (calc-enter-result 1 "dsmp" (calc-top 1)))))
- )
-
- (defun calc-modify-simplify-mode (arg)
- (if (= (math-abs arg) 2)
- (setq calc-simplify-mode 'alg)
- (if (>= (math-abs arg) 3)
- (setq calc-simplify-mode 'ext)))
- (if (< arg 0)
- (setq calc-simplify-mode (list calc-simplify-mode)))
- )
-
- (defun calc-simplify ()
- (interactive)
- (calc-slow-wrapper
- (calc-with-default-simplification
- (calc-enter-result 1 "simp" (math-simplify (calc-top-n 1)))))
- )
-
- (defun calc-simplify-extended ()
- (interactive)
- (calc-slow-wrapper
- (calc-with-default-simplification
- (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1)))))
- )
-
- (defun calc-expand-formula (arg)
- (interactive "p")
- (calc-slow-wrapper
- (calc-with-default-simplification
- (let ((math-simplify-only nil))
- (calc-modify-simplify-mode arg)
- (calc-enter-result 1 "expf"
- (if (> arg 0)
- (let ((math-expand-formulas t))
- (calc-top-n 1))
- (let ((top (calc-top-n 1)))
- (or (math-expand-formula top)
- top)))))))
- )
-
- (defun calc-factor (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "fctr" (if (calc-is-hyperbolic)
- 'calcFunc-factors 'calcFunc-factor)
- arg))
- )
-
- (defun calc-expand (n)
- (interactive "P")
- (calc-slow-wrapper
- (calc-enter-result 1 "expa"
- (append (list 'calcFunc-expand
- (calc-top-n 1))
- (and n (list (prefix-numeric-value n))))))
- )
-
- (defun calc-collect (&optional var)
- (interactive "sCollect terms involving: ")
- (calc-slow-wrapper
- (if (or (equal var "") (equal var "$") (null var))
- (calc-enter-result 2 "clct" (cons 'calcFunc-collect
- (calc-top-list-n 2)))
- (let ((var (math-read-expr var)))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (calc-enter-result 1 "clct" (list 'calcFunc-collect
- (calc-top-n 1)
- var)))))
- )
-
- (defun calc-apart (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "aprt" 'calcFunc-apart arg))
- )
-
- (defun calc-normalize-rat (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-unary-op "nrat" 'calcFunc-nrat arg))
- )
-
- (defun calc-poly-gcd (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "pgcd" 'calcFunc-pgcd arg))
- )
-
- (defun calc-poly-div (arg)
- (interactive "P")
- (calc-slow-wrapper
- (setq calc-poly-div-remainder nil)
- (calc-binary-op "pdiv" 'calcFunc-pdiv arg)
- (if (and calc-poly-div-remainder (null arg))
- (progn
- (calc-clear-command-flag 'clear-message)
- (calc-record calc-poly-div-remainder "prem")
- (if (not (Math-zerop calc-poly-div-remainder))
- (message "(Remainder was %s)"
- (math-format-flat-expr calc-poly-div-remainder 0))
- (message "(No remainder)")))))
- )
-
- (defun calc-poly-rem (arg)
- (interactive "P")
- (calc-slow-wrapper
- (calc-binary-op "prem" 'calcFunc-prem arg))
- )
-
- (defun calc-poly-div-rem (arg)
- (interactive "P")
- (calc-slow-wrapper
- (if (calc-is-hyperbolic)
- (calc-binary-op "pdvr" 'calcFunc-pdivide arg)
- (calc-binary-op "pdvr" 'calcFunc-pdivrem arg)))
- )
-
- (defun calc-substitute (&optional oldname newname)
- (interactive "sSubstitute old: ")
- (calc-slow-wrapper
- (let (old new (num 1) expr)
- (if (or (equal oldname "") (equal oldname "$") (null oldname))
- (setq new (calc-top-n 1)
- old (calc-top-n 2)
- expr (calc-top-n 3)
- num 3)
- (or newname
- (progn (calc-unread-command ?\C-a)
- (setq newname (read-string (concat "Substitute old: "
- oldname
- ", new: ")
- oldname))))
- (if (or (equal newname "") (equal newname "$") (null newname))
- (setq new (calc-top-n 1)
- expr (calc-top-n 2)
- num 2)
- (setq new (if (stringp newname) (math-read-expr newname) newname))
- (if (eq (car-safe new) 'error)
- (error "Bad format in expression: %s" (nth 1 new)))
- (setq expr (calc-top-n 1)))
- (setq old (if (stringp oldname) (math-read-expr oldname) oldname))
- (if (eq (car-safe old) 'error)
- (error "Bad format in expression: %s" (nth 1 old)))
- (or (math-expr-contains expr old)
- (error "No occurrences found.")))
- (calc-enter-result num "sbst" (math-expr-subst expr old new))))
- )
-
-
- (defun calc-has-rules (name)
- (setq name (calc-var-value name))
- (and (consp name)
- (memq (car name) '(vec calcFunc-assign calcFunc-condition))
- name)
- )
-
- (defun math-recompile-eval-rules ()
- (setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules)
- (math-compile-rewrites
- '(var EvalRules var-EvalRules)))
- math-eval-rules-cache-other (assq nil math-eval-rules-cache)
- math-eval-rules-cache-tag (calc-var-value 'var-EvalRules))
- )
-
-
- ;;; Try to expand a formula according to its definition.
- (defun math-expand-formula (expr)
- (and (consp expr)
- (symbolp (car expr))
- (or (get (car expr) 'calc-user-defn)
- (get (car expr) 'math-expandable))
- (let ((res (let ((math-expand-formulas t))
- (apply (car expr) (cdr expr)))))
- (and (not (eq (car-safe res) (car expr)))
- res)))
- )
-
-
-
-
- ;;; True if A comes before B in a canonical ordering of expressions. [P X X]
- (defun math-beforep (a b) ; [Public]
- (cond ((and (Math-realp a) (Math-realp b))
- (let ((comp (math-compare a b)))
- (or (eq comp -1)
- (and (eq comp 0)
- (not (equal a b))
- (> (length (memq (car-safe a)
- '(bigneg nil bigpos frac float)))
- (length (memq (car-safe b)
- '(bigneg nil bigpos frac float))))))))
- ((equal b '(neg (var inf var-inf))) nil)
- ((equal a '(neg (var inf var-inf))) t)
- ((equal a '(var inf var-inf)) nil)
- ((equal b '(var inf var-inf)) t)
- ((Math-realp a)
- (if (and (eq (car-safe b) 'intv) (math-intv-constp b))
- (if (or (math-beforep a (nth 2 b)) (Math-equal a (nth 2 b)))
- t
- nil)
- t))
- ((Math-realp b)
- (if (and (eq (car-safe a) 'intv) (math-intv-constp a))
- (if (math-beforep (nth 2 a) b)
- t
- nil)
- nil))
- ((and (eq (car a) 'intv) (eq (car b) 'intv)
- (math-intv-constp a) (math-intv-constp b))
- (let ((comp (math-compare (nth 2 a) (nth 2 b))))
- (cond ((eq comp -1) t)
- ((eq comp 1) nil)
- ((and (memq (nth 1 a) '(2 3)) (memq (nth 1 b) '(0 1))) t)
- ((and (memq (nth 1 a) '(0 1)) (memq (nth 1 b) '(2 3))) nil)
- ((eq (setq comp (math-compare (nth 3 a) (nth 3 b))) -1) t)
- ((eq comp 1) nil)
- ((and (memq (nth 1 a) '(0 2)) (memq (nth 1 b) '(1 3))) t)
- (t nil))))
- ((not (eq (not (Math-objectp a)) (not (Math-objectp b))))
- (Math-objectp a))
- ((eq (car a) 'var)
- (if (eq (car b) 'var)
- (string-lessp (symbol-name (nth 1 a)) (symbol-name (nth 1 b)))
- (not (Math-numberp b))))
- ((eq (car b) 'var) (Math-numberp a))
- ((eq (car a) (car b))
- (while (and (setq a (cdr a) b (cdr b)) a
- (equal (car a) (car b))))
- (and b
- (or (null a)
- (math-beforep (car a) (car b)))))
- (t (string-lessp (symbol-name (car a)) (symbol-name (car b)))))
- )
-
-
- (defun math-simplify-extended (a)
- (let ((math-living-dangerously t))
- (math-simplify a))
- )
- (fset 'calcFunc-esimplify (symbol-function 'math-simplify-extended))
-
- (defun math-simplify (top-expr)
- (let ((math-simplifying t)
- (top-only (consp calc-simplify-mode))
- (simp-rules (append (and (calc-has-rules 'var-AlgSimpRules)
- '((var AlgSimpRules var-AlgSimpRules)))
- (and math-living-dangerously
- (calc-has-rules 'var-ExtSimpRules)
- '((var ExtSimpRules var-ExtSimpRules)))
- (and math-simplifying-units
- (calc-has-rules 'var-UnitSimpRules)
- '((var UnitSimpRules var-UnitSimpRules)))
- (and math-integrating
- (calc-has-rules 'var-IntegSimpRules)
- '((var IntegSimpRules var-IntegSimpRules)))))
- res)
- (if top-only
- (let ((r simp-rules))
- (setq res (math-simplify-step (math-normalize top-expr))
- calc-simplify-mode '(nil)
- top-expr (math-normalize res))
- (while r
- (setq top-expr (math-rewrite top-expr (car r)
- '(neg (var inf var-inf)))
- r (cdr r))))
- (calc-with-default-simplification
- (while (let ((r simp-rules))
- (setq res (math-normalize top-expr))
- (while r
- (setq res (math-rewrite res (car r))
- r (cdr r)))
- (not (equal top-expr (setq res (math-simplify-step res)))))
- (setq top-expr res)))))
- top-expr
- )
- (fset 'calcFunc-simplify (symbol-function 'math-simplify))
-
- ;;; The following has a "bug" in that if any recursive simplifications
- ;;; occur only the first handler will be tried; this doesn't really
- ;;; matter, since math-simplify-step is iterated to a fixed point anyway.
- (defun math-simplify-step (a)
- (if (Math-primp a)
- a
- (let ((aa (if (or top-only
- (memq (car a) '(calcFunc-quote calcFunc-condition
- calcFunc-evalto)))
- a
- (cons (car a) (mapcar 'math-simplify-step (cdr a))))))
- (and (symbolp (car aa))
- (let ((handler (get (car aa) 'math-simplify)))
- (and handler
- (while (and handler
- (equal (setq aa (or (funcall (car handler) aa)
- aa))
- a))
- (setq handler (cdr handler))))))
- aa))
- )
-
-
- (defun math-need-std-simps ()
- ;; Placeholder, to synchronize autoloading.
- )
-
- (math-defsimplify (+ -)
- (math-simplify-plus))
-
- (defun math-simplify-plus ()
- (cond ((and (memq (car-safe (nth 1 expr)) '(+ -))
- (Math-numberp (nth 2 (nth 1 expr)))
- (not (Math-numberp (nth 2 expr))))
- (let ((x (nth 2 expr))
- (op (car expr)))
- (setcar (cdr (cdr expr)) (nth 2 (nth 1 expr)))
- (setcar expr (car (nth 1 expr)))
- (setcar (cdr (cdr (nth 1 expr))) x)
- (setcar (nth 1 expr) op)))
- ((and (eq (car expr) '+)
- (Math-numberp (nth 1 expr))
- (not (Math-numberp (nth 2 expr))))
- (let ((x (nth 2 expr)))
- (setcar (cdr (cdr expr)) (nth 1 expr))
- (setcar (cdr expr) x))))
- (let ((aa expr)
- aaa temp)
- (while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -))
- (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 expr)
- (eq (car aaa) '-) (eq (car expr) '-) t))
- (progn
- (setcar (cdr (cdr expr)) temp)
- (setcar expr '+)
- (setcar (cdr (cdr aaa)) 0)))
- (setq aa (nth 1 aa)))
- (if (setq temp (math-combine-sum aaa (nth 2 expr)
- nil (eq (car expr) '-) t))
- (progn
- (setcar (cdr (cdr expr)) temp)
- (setcar expr '+)
- (setcar (cdr aa) 0)))
- expr)
- )
-
- (math-defsimplify *
- (math-simplify-times))
-
- (defun math-simplify-times ()
- (if (eq (car-safe (nth 2 expr)) '*)
- (and (math-beforep (nth 1 (nth 2 expr)) (nth 1 expr))
- (or (math-known-scalarp (nth 1 expr) t)
- (math-known-scalarp (nth 1 (nth 2 expr)) t))
- (let ((x (nth 1 expr)))
- (setcar (cdr expr) (nth 1 (nth 2 expr)))
- (setcar (cdr (nth 2 expr)) x)))
- (and (math-beforep (nth 2 expr) (nth 1 expr))
- (or (math-known-scalarp (nth 1 expr) t)
- (math-known-scalarp (nth 2 expr) t))
- (let ((x (nth 2 expr)))
- (setcar (cdr (cdr expr)) (nth 1 expr))
- (setcar (cdr expr) x))))
- (let ((aa expr)
- aaa temp
- (safe t) (scalar (math-known-scalarp (nth 1 expr))))
- (if (and (Math-ratp (nth 1 expr))
- (setq temp (math-common-constant-factor (nth 2 expr))))
- (progn
- (setcar (cdr (cdr expr))
- (math-cancel-common-factor (nth 2 expr) temp))
- (setcar (cdr expr) (math-mul (nth 1 expr) temp))))
- (while (and (eq (car-safe (setq aaa (nth 2 aa))) '*)
- safe)
- (if (setq temp (math-combine-prod (nth 1 expr) (nth 1 aaa) nil nil t))
- (progn
- (setcar (cdr expr) temp)
- (setcar (cdr aaa) 1)))
- (setq safe (or scalar (math-known-scalarp (nth 1 aaa) t))
- aa (nth 2 aa)))
- (if (and (setq temp (math-combine-prod aaa (nth 1 expr) nil nil t))
- safe)
- (progn
- (setcar (cdr expr) temp)
- (setcar (cdr (cdr aa)) 1)))
- (if (and (eq (car-safe (nth 1 expr)) 'frac)
- (memq (nth 1 (nth 1 expr)) '(1 -1)))
- (math-div (math-mul (nth 2 expr) (nth 1 (nth 1 expr)))
- (nth 2 (nth 1 expr)))
- expr))
- )
-
- (math-defsimplify /
- (math-simplify-divide))
-
- (defun math-simplify-divide ()
- (let ((np (cdr expr))
- (nover nil)
- (nn (and (or (eq (car expr) '/) (not (Math-realp (nth 2 expr))))
- (math-common-constant-factor (nth 2 expr))))
- n op)
- (if nn
- (progn
- (setq n (and (or (eq (car expr) '/) (not (Math-realp (nth 1 expr))))
- (math-common-constant-factor (nth 1 expr))))
- (if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n))
- (progn
- (setcar (cdr expr) (math-mul (nth 2 nn) (nth 1 expr)))
- (setcar (cdr (cdr expr))
- (math-cancel-common-factor (nth 2 expr) nn))
- (if (and (math-negp nn)
- (setq op (assq (car expr) calc-tweak-eqn-table)))
- (setcar expr (nth 1 op))))
- (if (and n (not (eq (setq n (math-frac-gcd n nn)) 1)))
- (progn
- (setcar (cdr expr)
- (math-cancel-common-factor (nth 1 expr) n))
- (setcar (cdr (cdr expr))
- (math-cancel-common-factor (nth 2 expr) n))
- (if (and (math-negp n)
- (setq op (assq (car expr) calc-tweak-eqn-table)))
- (setcar expr (nth 1 op))))))))
- (if (and (eq (car-safe (car np)) '/)
- (math-known-scalarp (nth 2 expr) t))
- (progn
- (setq np (cdr (nth 1 expr)))
- (while (eq (car-safe (setq n (car np))) '*)
- (and (math-known-scalarp (nth 2 n) t)
- (math-simplify-divisor (cdr n) (cdr (cdr expr)) nil t))
- (setq np (cdr (cdr n))))
- (math-simplify-divisor np (cdr (cdr expr)) nil t)
- (setq nover t
- np (cdr (cdr (nth 1 expr))))))
- (while (eq (car-safe (setq n (car np))) '*)
- (and (math-known-scalarp (nth 2 n) t)
- (math-simplify-divisor (cdr n) (cdr (cdr expr)) nover t))
- (setq np (cdr (cdr n))))
- (math-simplify-divisor np (cdr (cdr expr)) nover t)
- expr)
- )
-
- (defun math-simplify-divisor (np dp nover dover)
- (cond ((eq (car-safe (car dp)) '/)
- (math-simplify-divisor np (cdr (car dp)) nover dover)
- (and (math-known-scalarp (nth 1 (car dp)) t)
- (math-simplify-divisor np (cdr (cdr (car dp)))
- nover (not dover))))
- ((or (or (eq (car expr) '/)
- (let ((signs (math-possible-signs (car np))))
- (or (memq signs '(1 4))
- (and (memq (car expr) '(calcFunc-eq calcFunc-neq))
- (eq signs 5))
- math-living-dangerously)))
- (math-numberp (car np)))
- (let ((n (car np))
- d dd temp op
- (safe t) (scalar (math-known-scalarp n)))
- (while (and (eq (car-safe (setq d (car dp))) '*)
- safe)
- (math-simplify-one-divisor np (cdr d))
- (setq safe (or scalar (math-known-scalarp (nth 1 d) t))
- dp (cdr (cdr d))))
- (if safe
- (math-simplify-one-divisor np dp)))))
- )
-
- (defun math-simplify-one-divisor (np dp)
- (if (setq temp (math-combine-prod (car np) (car dp) nover dover t))
- (progn
- (and (not (memq (car expr) '(/ calcFunc-eq calcFunc-neq)))
- (math-known-negp (car dp))
- (setq op (assq (car expr) calc-tweak-eqn-table))
- (setcar expr (nth 1 op)))
- (setcar np (if nover (math-div 1 temp) temp))
- (setcar dp 1))
- (and dover (not nover) (eq (car expr) '/)
- (eq (car-safe (car dp)) 'calcFunc-sqrt)
- (Math-integerp (nth 1 (car dp)))
- (progn
- (setcar np (math-mul (car np)
- (list 'calcFunc-sqrt (nth 1 (car dp)))))
- (setcar dp (nth 1 (car dp))))))
- )
-
- (defun math-common-constant-factor (expr)
- (if (Math-realp expr)
- (if (Math-ratp expr)
- (and (not (memq expr '(0 1 -1)))
- (math-abs expr))
- (if (math-ratp (setq expr (math-to-simple-fraction expr)))
- (math-common-constant-factor expr)))
- (if (memq (car expr) '(+ - cplx sdev))
- (let ((f1 (math-common-constant-factor (nth 1 expr)))
- (f2 (math-common-constant-factor (nth 2 expr))))
- (and f1 f2
- (not (eq (setq f1 (math-frac-gcd f1 f2)) 1))
- f1))
- (if (memq (car expr) '(* polar))
- (math-common-constant-factor (nth 1 expr))
- (if (eq (car expr) '/)
- (or (math-common-constant-factor (nth 1 expr))
- (and (Math-integerp (nth 2 expr))
- (list 'frac 1 (math-abs (nth 2 expr)))))))))
- )
-
- (defun math-cancel-common-factor (expr val)
- (if (memq (car-safe expr) '(+ - cplx sdev))
- (progn
- (setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) val))
- (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) val))
- expr)
- (if (eq (car-safe expr) '*)
- (math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr))
- (math-div expr val)))
- )
-
- (defun math-frac-gcd (a b)
- (if (Math-zerop a)
- b
- (if (Math-zerop b)
- a
- (if (and (Math-integerp a)
- (Math-integerp b))
- (math-gcd a b)
- (and (Math-integerp a) (setq a (list 'frac a 1)))
- (and (Math-integerp b) (setq b (list 'frac b 1)))
- (math-make-frac (math-gcd (nth 1 a) (nth 1 b))
- (math-gcd (nth 2 a) (nth 2 b))))))
- )
-
- (math-defsimplify %
- (math-simplify-mod))
-
- (defun math-simplify-mod ()
- (and (Math-realp (nth 2 expr))
- (Math-posp (nth 2 expr))
- (let ((lin (math-is-linear (nth 1 expr)))
- t1 t2 t3)
- (or (and lin
- (or (math-negp (car lin))
- (not (Math-lessp (car lin) (nth 2 expr))))
- (list '%
- (list '+
- (math-mul (nth 1 lin) (nth 2 lin))
- (math-mod (car lin) (nth 2 expr)))
- (nth 2 expr)))
- (and lin
- (not (math-equal-int (nth 1 lin) 1))
- (math-num-integerp (nth 1 lin))
- (math-num-integerp (nth 2 expr))
- (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 expr)))
- (not (math-equal-int t1 1))
- (list '*
- t1
- (list '%
- (list '+
- (math-mul (math-div (nth 1 lin) t1)
- (nth 2 lin))
- (let ((calc-prefer-frac t))
- (math-div (car lin) t1)))
- (math-div (nth 2 expr) t1))))
- (and (math-equal-int (nth 2 expr) 1)
- (math-known-integerp (if lin
- (math-mul (nth 1 lin) (nth 2 lin))
- (nth 1 expr)))
- (if lin (math-mod (car lin) 1) 0)))))
- )
-
- (math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt
- calcFunc-gt calcFunc-leq calcFunc-geq)
- (if (= (length expr) 3)
- (math-simplify-ineq)))
-
- (defun math-simplify-ineq ()
- (let ((np (cdr expr))
- n)
- (while (memq (car-safe (setq n (car np))) '(+ -))
- (math-simplify-add-term (cdr (cdr n)) (cdr (cdr expr))
- (eq (car n) '-) nil)
- (setq np (cdr n)))
- (math-simplify-add-term np (cdr (cdr expr)) nil (eq np (cdr expr)))
- (math-simplify-divide)
- (let ((signs (math-possible-signs (cons '- (cdr expr)))))
- (or (cond ((eq (car expr) 'calcFunc-eq)
- (or (and (eq signs 2) 1)
- (and (memq signs '(1 4 5)) 0)))
- ((eq (car expr) 'calcFunc-neq)
- (or (and (eq signs 2) 0)
- (and (memq signs '(1 4 5)) 1)))
- ((eq (car expr) 'calcFunc-lt)
- (or (and (eq signs 1) 1)
- (and (memq signs '(2 4 6)) 0)))
- ((eq (car expr) 'calcFunc-gt)
- (or (and (eq signs 4) 1)
- (and (memq signs '(1 2 3)) 0)))
- ((eq (car expr) 'calcFunc-leq)
- (or (and (eq signs 4) 0)
- (and (memq signs '(1 2 3)) 1)))
- ((eq (car expr) 'calcFunc-geq)
- (or (and (eq signs 1) 0)
- (and (memq signs '(2 4 6)) 1))))
- expr)))
- )
-
- (defun math-simplify-add-term (np dp minus lplain)
- (or (math-vectorp (car np))
- (let ((rplain t)
- n d dd temp)
- (while (memq (car-safe (setq n (car np) d (car dp))) '(+ -))
- (setq rplain nil)
- (if (setq temp (math-combine-sum n (nth 2 d)
- minus (eq (car d) '+) t))
- (if (or lplain (eq (math-looks-negp temp) minus))
- (progn
- (setcar np (setq n (if minus (math-neg temp) temp)))
- (setcar (cdr (cdr d)) 0))
- (progn
- (setcar np 0)
- (setcar (cdr (cdr d)) (setq n (if (eq (car d) '+)
- (math-neg temp)
- temp))))))
- (setq dp (cdr d)))
- (if (setq temp (math-combine-sum n d minus t t))
- (if (or lplain
- (and (not rplain)
- (eq (math-looks-negp temp) minus)))
- (progn
- (setcar np (setq n (if minus (math-neg temp) temp)))
- (setcar dp 0))
- (progn
- (setcar np 0)
- (setcar dp (setq n (math-neg temp))))))))
- )
-
- (math-defsimplify calcFunc-sin
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-sin (math-neg (nth 1 expr)))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
- (and n
- (math-known-sin (car n) (nth 1 n) 120 0))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 expr))))
- (and n
- (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
- (math-div (nth 1 (nth 1 expr))
- (list 'calcFunc-sqrt
- (math-add 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr))))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (list '+
- (list '* (list 'calcFunc-sin (list '* (1- n) a))
- (list 'calcFunc-cos a))
- (list '* (list 'calcFunc-cos (list '* (1- n) a))
- (list 'calcFunc-sin a)))))))
- )
-
- (math-defsimplify calcFunc-cos
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (list 'calcFunc-cos (math-neg (nth 1 expr))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
- (and n
- (math-known-sin (car n) (nth 1 n) 120 300))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 expr))))
- (and n
- (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
- (math-div 1
- (list 'calcFunc-sqrt
- (math-add 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr))))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (list '-
- (list '* (list 'calcFunc-cos (list '* (1- n) a))
- (list 'calcFunc-cos a))
- (list '* (list 'calcFunc-sin (list '* (1- n) a))
- (list 'calcFunc-sin a)))))))
- )
-
- (defun math-should-expand-trig (x &optional hyperbolic)
- (let ((m (math-is-multiple x)))
- (and math-living-dangerously
- m (or (and (integerp (car m)) (> (car m) 1))
- (equal (car m) '(frac 1 2)))
- (or math-integrating
- (memq (car-safe (nth 1 m))
- (if hyperbolic
- '(calcFunc-arcsinh calcFunc-arccosh calcFunc-arctanh)
- '(calcFunc-arcsin calcFunc-arccos calcFunc-arctan)))
- (and (eq (car-safe (nth 1 m)) 'calcFunc-ln)
- (eq hyperbolic 'exp)))
- m))
- )
-
- (defun math-known-sin (plus n mul off)
- (setq n (math-mul n mul))
- (and (math-num-integerp n)
- (setq n (math-mod (math-add (math-trunc n) off) 240))
- (if (>= n 120)
- (and (setq n (math-known-sin plus (- n 120) 1 0))
- (math-neg n))
- (if (> n 60)
- (setq n (- 120 n)))
- (if (math-zerop plus)
- (and (or calc-symbolic-mode
- (memq n '(0 20 60)))
- (cdr (assq n
- '( (0 . 0)
- (10 . (/ (calcFunc-sqrt
- (- 2 (calcFunc-sqrt 3))) 2))
- (12 . (/ (- (calcFunc-sqrt 5) 1) 4))
- (15 . (/ (calcFunc-sqrt
- (- 2 (calcFunc-sqrt 2))) 2))
- (20 . (/ 1 2))
- (24 . (* (^ (/ 1 2) (/ 3 2))
- (calcFunc-sqrt
- (- 5 (calcFunc-sqrt 5)))))
- (30 . (/ (calcFunc-sqrt 2) 2))
- (36 . (/ (+ (calcFunc-sqrt 5) 1) 4))
- (40 . (/ (calcFunc-sqrt 3) 2))
- (45 . (/ (calcFunc-sqrt
- (+ 2 (calcFunc-sqrt 2))) 2))
- (48 . (* (^ (/ 1 2) (/ 3 2))
- (calcFunc-sqrt
- (+ 5 (calcFunc-sqrt 5)))))
- (50 . (/ (calcFunc-sqrt
- (+ 2 (calcFunc-sqrt 3))) 2))
- (60 . 1)))))
- (cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus)))
- ((eq n 60) (math-normalize (list 'calcFunc-cos plus)))
- (t nil)))))
- )
-
- (math-defsimplify calcFunc-tan
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-tan (math-neg (nth 1 expr)))))
- (and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
- (and n
- (math-known-tan (car n) (nth 1 n) 120))))
- (and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 expr))))
- (and n
- (math-known-tan (car n) (nth 1 n) '(frac 2 3)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
- (math-div (nth 1 (nth 1 expr))
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
- (math-div (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))
- (nth 1 (nth 1 expr))))
- (let ((m (math-should-expand-trig (nth 1 expr))))
- (and m
- (if (equal (car m) '(frac 1 2))
- (math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m)))
- (list 'calcFunc-sin (nth 1 m)))
- (math-div (list 'calcFunc-sin (nth 1 expr))
- (list 'calcFunc-cos (nth 1 expr)))))))
- )
-
- (defun math-known-tan (plus n mul)
- (setq n (math-mul n mul))
- (and (math-num-integerp n)
- (setq n (math-mod (math-trunc n) 120))
- (if (> n 60)
- (and (setq n (math-known-tan plus (- 120 n) 1))
- (math-neg n))
- (if (math-zerop plus)
- (and (or calc-symbolic-mode
- (memq n '(0 30 60)))
- (cdr (assq n '( (0 . 0)
- (10 . (- 2 (calcFunc-sqrt 3)))
- (12 . (calcFunc-sqrt
- (- 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
- (15 . (- (calcFunc-sqrt 2) 1))
- (20 . (/ (calcFunc-sqrt 3) 3))
- (24 . (calcFunc-sqrt
- (- 5 (* 2 (calcFunc-sqrt 5)))))
- (30 . 1)
- (36 . (calcFunc-sqrt
- (+ 1 (* (/ 2 5) (calcFunc-sqrt 5)))))
- (40 . (calcFunc-sqrt 3))
- (45 . (+ (calcFunc-sqrt 2) 1))
- (48 . (calcFunc-sqrt
- (+ 5 (* 2 (calcFunc-sqrt 5)))))
- (50 . (+ 2 (calcFunc-sqrt 3)))
- (60 . (var uinf var-uinf))))))
- (cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus)))
- ((eq n 60) (math-normalize (list '/ -1
- (list 'calcFunc-tan plus))))
- (t nil)))))
- )
-
- (math-defsimplify calcFunc-sinh
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-sinh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
- math-living-dangerously
- (list 'calcFunc-sqrt (math-sub (math-sqr (nth 1 (nth 1 expr))) 1)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
- math-living-dangerously
- (math-div (nth 1 (nth 1 expr))
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr) t)))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (if (> n 1)
- (list '+
- (list '* (list 'calcFunc-sinh (list '* (1- n) a))
- (list 'calcFunc-cosh a))
- (list '* (list 'calcFunc-cosh (list '* (1- n) a))
- (list 'calcFunc-sinh a))))))))
- )
-
- (math-defsimplify calcFunc-cosh
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (list 'calcFunc-cosh (math-neg (nth 1 expr))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
- math-living-dangerously
- (list 'calcFunc-sqrt (math-add (math-sqr (nth 1 (nth 1 expr))) 1)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
- math-living-dangerously
- (math-div 1
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr) t)))
- (and m (integerp (car m))
- (let ((n (car m)) (a (nth 1 m)))
- (if (> n 1)
- (list '+
- (list '* (list 'calcFunc-cosh (list '* (1- n) a))
- (list 'calcFunc-cosh a))
- (list '* (list 'calcFunc-sinh (list '* (1- n) a))
- (list 'calcFunc-sinh a))))))))
- )
-
- (math-defsimplify calcFunc-tanh
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-tanh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
- math-living-dangerously
- (math-div (nth 1 (nth 1 expr))
- (list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 (nth 1 expr))) 1))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
- math-living-dangerously
- (math-div (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 (nth 1 expr))) 1))
- (nth 1 (nth 1 expr))))
- (let ((m (math-should-expand-trig (nth 1 expr) t)))
- (and m
- (if (equal (car m) '(frac 1 2))
- (math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1)
- (list 'calcFunc-sinh (nth 1 m)))
- (math-div (list 'calcFunc-sinh (nth 1 expr))
- (list 'calcFunc-cosh (nth 1 expr)))))))
- )
-
- (math-defsimplify calcFunc-arcsin
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 expr)))))
- (and (eq (nth 1 expr) 1)
- (math-quarter-circle t))
- (and (equal (nth 1 expr) '(frac 1 2))
- (math-div (math-half-circle t) 6))
- (and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-sin)
- (nth 1 (nth 1 expr)))
- (and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
- (math-sub (math-quarter-circle t)
- (nth 1 (nth 1 expr)))))
- )
-
- (math-defsimplify calcFunc-arccos
- (or (and (eq (nth 1 expr) 0)
- (math-quarter-circle t))
- (and (eq (nth 1 expr) -1)
- (math-half-circle t))
- (and (equal (nth 1 expr) '(frac 1 2))
- (math-div (math-half-circle t) 3))
- (and (equal (nth 1 expr) '(frac -1 2))
- (math-div (math-mul (math-half-circle t) 2) 3))
- (and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
- (nth 1 (nth 1 expr)))
- (and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-sin)
- (math-sub (math-quarter-circle t)
- (nth 1 (nth 1 expr)))))
- )
-
- (math-defsimplify calcFunc-arctan
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arctan (math-neg (nth 1 expr)))))
- (and (eq (nth 1 expr) 1)
- (math-div (math-half-circle t) 4))
- (and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-tan)
- (nth 1 (nth 1 expr))))
- )
-
- (math-defsimplify calcFunc-arcsinh
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr))))
- )
-
- (math-defsimplify calcFunc-arccosh
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr)))
- )
-
- (math-defsimplify calcFunc-arctanh
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-tanh)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr))))
- )
-
- (math-defsimplify calcFunc-sqrt
- (math-simplify-sqrt)
- )
-
- (defun math-simplify-sqrt ()
- (or (and (eq (car-safe (nth 1 expr)) 'frac)
- (math-div (list 'calcFunc-sqrt (math-mul (nth 1 (nth 1 expr))
- (nth 2 (nth 1 expr))))
- (nth 2 (nth 1 expr))))
- (let ((fac (if (math-objectp (nth 1 expr))
- (math-squared-factor (nth 1 expr))
- (math-common-constant-factor (nth 1 expr)))))
- (and fac (not (eq fac 1))
- (math-mul (math-normalize (list 'calcFunc-sqrt fac))
- (math-normalize
- (list 'calcFunc-sqrt
- (math-cancel-common-factor (nth 1 expr) fac))))))
- (and math-living-dangerously
- (or (and (eq (car-safe (nth 1 expr)) '-)
- (math-equal-int (nth 1 (nth 1 expr)) 1)
- (eq (car-safe (nth 2 (nth 1 expr))) '^)
- (math-equal-int (nth 2 (nth 2 (nth 1 expr))) 2)
- (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
- 'calcFunc-sin)
- (list 'calcFunc-cos
- (nth 1 (nth 1 (nth 2 (nth 1 expr))))))
- (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
- 'calcFunc-cos)
- (list 'calcFunc-sin
- (nth 1 (nth 1 (nth 2 (nth 1 expr))))))))
- (and (eq (car-safe (nth 1 expr)) '-)
- (math-equal-int (nth 2 (nth 1 expr)) 1)
- (eq (car-safe (nth 1 (nth 1 expr))) '^)
- (math-equal-int (nth 2 (nth 1 (nth 1 expr))) 2)
- (and (eq (car-safe (nth 1 (nth 1 (nth 1 expr))))
- 'calcFunc-cosh)
- (list 'calcFunc-sinh
- (nth 1 (nth 1 (nth 1 (nth 1 expr)))))))
- (and (eq (car-safe (nth 1 expr)) '+)
- (let ((a (nth 1 (nth 1 expr)))
- (b (nth 2 (nth 1 expr))))
- (and (or (and (math-equal-int a 1)
- (setq a b b (nth 1 (nth 1 expr))))
- (math-equal-int b 1))
- (eq (car-safe a) '^)
- (math-equal-int (nth 2 a) 2)
- (or (and (eq (car-safe (nth 1 a)) 'calcFunc-sinh)
- (list 'calcFunc-cosh (nth 1 (nth 1 a))))
- (and (eq (car-safe (nth 1 a)) 'calcFunc-tan)
- (list '/ 1 (list 'calcFunc-cos
- (nth 1 (nth 1 a)))))))))
- (and (eq (car-safe (nth 1 expr)) '^)
- (list '^
- (nth 1 (nth 1 expr))
- (math-div (nth 2 (nth 1 expr)) 2)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
- (list '^ (nth 1 (nth 1 expr)) (math-div 1 4)))
- (and (memq (car-safe (nth 1 expr)) '(* /))
- (list (car (nth 1 expr))
- (list 'calcFunc-sqrt (nth 1 (nth 1 expr)))
- (list 'calcFunc-sqrt (nth 2 (nth 1 expr)))))
- (and (memq (car-safe (nth 1 expr)) '(+ -))
- (not (math-any-floats (nth 1 expr)))
- (let ((f (calcFunc-factors (calcFunc-expand
- (nth 1 expr)))))
- (and (math-vectorp f)
- (or (> (length f) 2)
- (> (nth 2 (nth 1 f)) 1))
- (let ((out 1) (rest 1) (sums 1) fac pow)
- (while (setq f (cdr f))
- (setq fac (nth 1 (car f))
- pow (nth 2 (car f)))
- (if (> pow 1)
- (setq out (math-mul out (math-pow
- fac (/ pow 2)))
- pow (% pow 2)))
- (if (> pow 0)
- (if (memq (car-safe fac) '(+ -))
- (setq sums (math-mul-thru sums fac))
- (setq rest (math-mul rest fac)))))
- (and (not (and (eq out 1) (memq rest '(1 -1))))
- (math-mul
- out
- (list 'calcFunc-sqrt
- (math-mul sums rest)))))))))))
- )
-
- ;;; Rather than factoring x into primes, just check for the first ten primes.
- (defun math-squared-factor (x)
- (if (Math-integerp x)
- (let ((prsqr '(4 9 25 49 121 169 289 361 529 841))
- (fac 1)
- res)
- (while prsqr
- (if (eq (cdr (setq res (math-idivmod x (car prsqr)))) 0)
- (setq x (car res)
- fac (math-mul fac (car prsqr)))
- (setq prsqr (cdr prsqr))))
- fac))
- )
-
- (math-defsimplify calcFunc-exp
- (math-simplify-exp (nth 1 expr))
- )
-
- (defun math-simplify-exp (x)
- (or (and (eq (car-safe x) 'calcFunc-ln)
- (nth 1 x))
- (and math-living-dangerously
- (or (and (eq (car-safe x) 'calcFunc-arcsinh)
- (math-add (nth 1 x)
- (list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 x)) 1))))
- (and (eq (car-safe x) 'calcFunc-arccosh)
- (math-add (nth 1 x)
- (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 x)) 1))))
- (and (eq (car-safe x) 'calcFunc-arctanh)
- (math-div (list 'calcFunc-sqrt (math-add 1 (nth 1 x)))
- (list 'calcFunc-sqrt (math-sub 1 (nth 1 x)))))
- (let ((m (math-should-expand-trig x 'exp)))
- (and m (integerp (car m))
- (list '^ (list 'calcFunc-exp (nth 1 m)) (car m))))))
- (and calc-symbolic-mode
- (math-known-imagp x)
- (let* ((ip (calcFunc-im x))
- (n (math-linear-in ip '(var pi var-pi)))
- s c)
- (and n
- (setq s (math-known-sin (car n) (nth 1 n) 120 0))
- (setq c (math-known-sin (car n) (nth 1 n) 120 300))
- (list '+ c (list '* s '(var i var-i)))))))
- )
-
- (math-defsimplify calcFunc-ln
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
- (or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr)))
- (and (eq (car-safe (nth 1 expr)) '^)
- (equal (nth 1 (nth 1 expr)) '(var e var-e))
- (or math-living-dangerously
- (math-known-realp (nth 2 (nth 1 expr))))
- (nth 2 (nth 1 expr)))
- (and calc-symbolic-mode
- (math-known-negp (nth 1 expr))
- (math-add (list 'calcFunc-ln (math-neg (nth 1 expr)))
- '(var pi var-pi)))
- (and calc-symbolic-mode
- (math-known-imagp (nth 1 expr))
- (let* ((ip (calcFunc-im (nth 1 expr)))
- (ips (math-possible-signs ip)))
- (or (and (memq ips '(4 6))
- (math-add (list 'calcFunc-ln ip)
- '(/ (* (var pi var-pi) (var i var-i)) 2)))
- (and (memq ips '(1 3))
- (math-sub (list 'calcFunc-ln (math-neg ip))
- '(/ (* (var pi var-pi) (var i var-i)) 2)))))))
- )
-
- (math-defsimplify ^
- (math-simplify-pow))
-
- (defun math-simplify-pow ()
- (or (and math-living-dangerously
- (or (and (eq (car-safe (nth 1 expr)) '^)
- (list '^
- (nth 1 (nth 1 expr))
- (math-mul (nth 2 expr) (nth 2 (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
- (list '^
- (nth 1 (nth 1 expr))
- (math-div (nth 2 expr) 2)))
- (and (memq (car-safe (nth 1 expr)) '(* /))
- (list (car (nth 1 expr))
- (list '^ (nth 1 (nth 1 expr)) (nth 2 expr))
- (list '^ (nth 2 (nth 1 expr)) (nth 2 expr))))))
- (and (math-equal-int (nth 1 expr) 10)
- (eq (car-safe (nth 2 expr)) 'calcFunc-log10)
- (nth 1 (nth 2 expr)))
- (and (equal (nth 1 expr) '(var e var-e))
- (math-simplify-exp (nth 2 expr)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
- (not math-integrating)
- (list 'calcFunc-exp (math-mul (nth 1 (nth 1 expr)) (nth 2 expr))))
- (and (equal (nth 1 expr) '(var i var-i))
- (math-imaginary-i)
- (math-num-integerp (nth 2 expr))
- (let ((x (math-mod (math-trunc (nth 2 expr)) 4)))
- (cond ((eq x 0) 1)
- ((eq x 1) (nth 1 expr))
- ((eq x 2) -1)
- ((eq x 3) (math-neg (nth 1 expr))))))
- (and math-integrating
- (integerp (nth 2 expr))
- (>= (nth 2 expr) 2)
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
- (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2))
- (math-sub 1
- (math-sqr
- (list 'calcFunc-sin
- (nth 1 (nth 1 expr)))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
- (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2))
- (math-add 1
- (math-sqr
- (list 'calcFunc-sinh
- (nth 1 (nth 1 expr)))))))))
- (and (eq (car-safe (nth 2 expr)) 'frac)
- (Math-ratp (nth 1 expr))
- (Math-posp (nth 1 expr))
- (if (equal (nth 2 expr) '(frac 1 2))
- (list 'calcFunc-sqrt (nth 1 expr))
- (let ((flr (math-floor (nth 2 expr))))
- (and (not (Math-zerop flr))
- (list '* (list '^ (nth 1 expr) flr)
- (list '^ (nth 1 expr)
- (math-sub (nth 2 expr) flr)))))))
- (and (eq (math-quarter-integer (nth 2 expr)) 2)
- (let ((temp (math-simplify-sqrt)))
- (and temp
- (list '^ temp (math-mul (nth 2 expr) 2))))))
- )
-
- (math-defsimplify calcFunc-log10
- (and (eq (car-safe (nth 1 expr)) '^)
- (math-equal-int (nth 1 (nth 1 expr)) 10)
- (or math-living-dangerously
- (math-known-realp (nth 2 (nth 1 expr))))
- (nth 2 (nth 1 expr)))
- )
-
-
- (math-defsimplify calcFunc-erf
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-erf (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
- (list 'calcFunc-conj (list 'calcFunc-erf (nth 1 (nth 1 expr))))))
- )
-
- (math-defsimplify calcFunc-erfc
- (or (and (math-looks-negp (nth 1 expr))
- (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
- (list 'calcFunc-conj (list 'calcFunc-erfc (nth 1 (nth 1 expr))))))
- )
-
-
- (defun math-linear-in (expr term &optional always)
- (if (math-expr-contains expr term)
- (let* ((calc-prefer-frac t)
- (p (math-is-polynomial expr term 1)))
- (and (cdr p)
- p))
- (and always (list expr 0)))
- )
-
- (defun math-multiple-of (expr term)
- (let ((p (math-linear-in expr term)))
- (and p
- (math-zerop (car p))
- (nth 1 p)))
- )
-
- (defun math-integer-plus (expr)
- (cond ((Math-integerp expr)
- (list 0 expr))
- ((and (memq (car expr) '(+ -))
- (Math-integerp (nth 1 expr)))
- (list (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))
- (nth 1 expr)))
- ((and (memq (car expr) '(+ -))
- (Math-integerp (nth 2 expr)))
- (list (nth 1 expr)
- (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))))
- (t nil)) ; not perfect, but it'll do
- )
-
- (defun math-is-linear (expr &optional always)
- (let ((offset nil)
- (coef nil))
- (if (eq (car-safe expr) '+)
- (if (Math-objectp (nth 1 expr))
- (setq offset (nth 1 expr)
- expr (nth 2 expr))
- (if (Math-objectp (nth 2 expr))
- (setq offset (nth 2 expr)
- expr (nth 1 expr))))
- (if (eq (car-safe expr) '-)
- (if (Math-objectp (nth 1 expr))
- (setq offset (nth 1 expr)
- expr (math-neg (nth 2 expr)))
- (if (Math-objectp (nth 2 expr))
- (setq offset (math-neg (nth 2 expr))
- expr (nth 1 expr))))))
- (setq coef (math-is-multiple expr always))
- (if offset
- (list offset (or (car coef) 1) (or (nth 1 coef) expr))
- (if coef
- (cons 0 coef))))
- )
-
- (defun math-is-multiple (expr &optional always)
- (or (if (eq (car-safe expr) '*)
- (if (Math-objectp (nth 1 expr))
- (list (nth 1 expr) (nth 2 expr)))
- (if (eq (car-safe expr) '/)
- (if (and (Math-objectp (nth 1 expr))
- (not (math-equal-int (nth 1 expr) 1)))
- (list (nth 1 expr) (math-div 1 (nth 2 expr)))
- (if (Math-objectp (nth 2 expr))
- (list (math-div 1 (nth 2 expr)) (nth 1 expr))
- (let ((res (math-is-multiple (nth 1 expr))))
- (if res
- (list (car res)
- (math-div (nth 2 (nth 1 expr)) (nth 2 expr)))
- (setq res (math-is-multiple (nth 2 expr)))
- (if res
- (list (math-div 1 (car res))
- (math-div (nth 1 expr)
- (nth 2 (nth 2 expr)))))))))
- (if (eq (car-safe expr) 'neg)
- (list -1 (nth 1 expr)))))
- (if (Math-objvecp expr)
- (and (eq always 1)
- (list expr 1))
- (and always
- (list 1 expr))))
- )
-
- (defun calcFunc-lin (expr &optional var)
- (if var
- (let ((res (math-linear-in expr var t)))
- (or res (math-reject-arg expr "Linear term expected"))
- (list 'vec (car res) (nth 1 res) var))
- (let ((res (math-is-linear expr t)))
- (or res (math-reject-arg expr "Linear term expected"))
- (cons 'vec res)))
- )
-
- (defun calcFunc-linnt (expr &optional var)
- (if var
- (let ((res (math-linear-in expr var)))
- (or res (math-reject-arg expr "Linear term expected"))
- (list 'vec (car res) (nth 1 res) var))
- (let ((res (math-is-linear expr)))
- (or res (math-reject-arg expr "Linear term expected"))
- (cons 'vec res)))
- )
-
- (defun calcFunc-islin (expr &optional var)
- (if (and (Math-objvecp expr) (not var))
- 0
- (calcFunc-lin expr var)
- 1)
- )
-
- (defun calcFunc-islinnt (expr &optional var)
- (if (Math-objvecp expr)
- 0
- (calcFunc-linnt expr var)
- 1)
- )
-
-
-
-
- ;;; Simple operations on expressions.
-
- ;;; Return number of ocurrences of thing in expr, or nil if none.
- (defun math-expr-contains-count (expr thing)
- (cond ((equal expr thing) 1)
- ((Math-primp expr) nil)
- (t
- (let ((num 0))
- (while (setq expr (cdr expr))
- (setq num (+ num (or (math-expr-contains-count
- (car expr) thing) 0))))
- (and (> num 0)
- num))))
- )
-
- (defun math-expr-contains (expr thing)
- (cond ((equal expr thing) 1)
- ((Math-primp expr) nil)
- (t
- (while (and (setq expr (cdr expr))
- (not (math-expr-contains (car expr) thing))))
- expr))
- )
-
- ;;; Return non-nil if any variable of thing occurs in expr.
- (defun math-expr-depends (expr thing)
- (if (Math-primp thing)
- (and (eq (car-safe thing) 'var)
- (math-expr-contains expr thing))
- (while (and (setq thing (cdr thing))
- (not (math-expr-depends expr (car thing)))))
- thing)
- )
-
- ;;; Substitute all occurrences of old for new in expr (non-destructive).
- (defun math-expr-subst (expr old new)
- (math-expr-subst-rec expr)
- )
- (fset 'calcFunc-subst (symbol-function 'math-expr-subst))
-
- (defun math-expr-subst-rec (expr)
- (cond ((equal expr old) new)
- ((Math-primp expr) expr)
- ((memq (car expr) '(calcFunc-deriv
- calcFunc-tderiv))
- (if (= (length expr) 2)
- (if (equal (nth 1 expr) old)
- (append expr (list new))
- expr)
- (list (car expr) (nth 1 expr)
- (math-expr-subst-rec (nth 2 expr)))))
- (t
- (cons (car expr)
- (mapcar 'math-expr-subst-rec (cdr expr)))))
- )
-
- ;;; Various measures of the size of an expression.
- (defun math-expr-weight (expr)
- (if (Math-primp expr)
- 1
- (let ((w 1))
- (while (setq expr (cdr expr))
- (setq w (+ w (math-expr-weight (car expr)))))
- w))
- )
-
- (defun math-expr-height (expr)
- (if (Math-primp expr)
- 0
- (let ((h 0))
- (while (setq expr (cdr expr))
- (setq h (max h (math-expr-height (car expr)))))
- (1+ h)))
- )
-
-
-
-
- ;;; Polynomial operations (to support the integrator and solve-for).
-
- (defun calcFunc-collect (expr base)
- (let ((p (math-is-polynomial expr base 50 t)))
- (if (cdr p)
- (math-normalize ; fix selection bug
- (math-build-polynomial-expr p base))
- expr))
- )
-
- ;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...),
- ;;; else return nil if not in polynomial form. If "loose", coefficients
- ;;; may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x.
- (defun math-is-polynomial (expr var &optional degree loose)
- (let* ((math-poly-base-variable (if loose
- (if (eq loose 'gen) var '(var XXX XXX))
- math-poly-base-variable))
- (poly (math-is-poly-rec expr math-poly-neg-powers)))
- (and (or (null degree)
- (<= (length poly) (1+ degree)))
- poly))
- )
-
- (defun math-is-poly-rec (expr negpow)
- (math-poly-simplify
- (or (cond ((or (equal expr var)
- (eq (car-safe expr) '^))
- (let ((pow 1)
- (expr expr))
- (or (equal expr var)
- (setq pow (nth 2 expr)
- expr (nth 1 expr)))
- (or (eq math-poly-mult-powers 1)
- (setq pow (let ((m (math-is-multiple pow 1)))
- (and (eq (car-safe (car m)) 'cplx)
- (Math-zerop (nth 1 (car m)))
- (setq m (list (nth 2 (car m))
- (math-mul (nth 1 m)
- '(var i var-i)))))
- (and (if math-poly-mult-powers
- (equal math-poly-mult-powers
- (nth 1 m))
- (setq math-poly-mult-powers (nth 1 m)))
- (or (equal expr var)
- (eq math-poly-mult-powers 1))
- (car m)))))
- (if (consp pow)
- (progn
- (setq pow (math-to-simple-fraction pow))
- (and (eq (car-safe pow) 'frac)
- math-poly-frac-powers
- (equal expr var)
- (setq math-poly-frac-powers
- (calcFunc-lcm math-poly-frac-powers
- (nth 2 pow))))))
- (or (memq math-poly-frac-powers '(1 nil))
- (setq pow (math-mul pow math-poly-frac-powers)))
- (if (integerp pow)
- (if (and (= pow 1)
- (equal expr var))
- (list 0 1)
- (if (natnump pow)
- (let ((p1 (if (equal expr var)
- (list 0 1)
- (math-is-poly-rec expr nil)))
- (n pow)
- (accum (list 1)))
- (and p1
- (or (null degree)
- (<= (* (1- (length p1)) n) degree))
- (progn
- (while (>= n 1)
- (setq accum (math-poly-mul accum p1)
- n (1- n)))
- accum)))
- (and negpow
- (math-is-poly-rec expr nil)
- (setq math-poly-neg-powers
- (cons (math-pow expr (- pow))
- math-poly-neg-powers))
- (list (list '^ expr pow))))))))
- ((Math-objectp expr)
- (list expr))
- ((memq (car expr) '(+ -))
- (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
- (and p1
- (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
- (and p2
- (math-poly-mix p1 1 p2
- (if (eq (car expr) '+) 1 -1)))))))
- ((eq (car expr) 'neg)
- (mapcar 'math-neg (math-is-poly-rec (nth 1 expr) negpow)))
- ((eq (car expr) '*)
- (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
- (and p1
- (let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
- (and p2
- (or (null degree)
- (<= (- (+ (length p1) (length p2)) 2) degree))
- (math-poly-mul p1 p2))))))
- ((eq (car expr) '/)
- (and (or (not (math-poly-depends (nth 2 expr) var))
- (and negpow
- (math-is-poly-rec (nth 2 expr) nil)
- (setq math-poly-neg-powers
- (cons (nth 2 expr) math-poly-neg-powers))))
- (not (Math-zerop (nth 2 expr)))
- (let ((p1 (math-is-poly-rec (nth 1 expr) negpow)))
- (mapcar (function (lambda (x) (math-div x (nth 2 expr))))
- p1))))
- ((and (eq (car expr) 'calcFunc-exp)
- (equal var '(var e var-e)))
- (math-is-poly-rec (list '^ var (nth 1 expr)) negpow))
- ((and (eq (car expr) 'calcFunc-sqrt)
- math-poly-frac-powers)
- (math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow))
- (t nil))
- (and (or (not (math-poly-depends expr var))
- loose)
- (not (eq (car expr) 'vec))
- (list expr))))
- )
-
- ;;; Check if expr is a polynomial in var; if so, return its degree.
- (defun math-polynomial-p (expr var)
- (cond ((equal expr var) 1)
- ((Math-primp expr) 0)
- ((memq (car expr) '(+ -))
- (let ((p1 (math-polynomial-p (nth 1 expr) var))
- p2)
- (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
- (max p1 p2))))
- ((eq (car expr) '*)
- (let ((p1 (math-polynomial-p (nth 1 expr) var))
- p2)
- (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var))
- (+ p1 p2))))
- ((eq (car expr) 'neg)
- (math-polynomial-p (nth 1 expr) var))
- ((and (eq (car expr) '/)
- (not (math-poly-depends (nth 2 expr) var)))
- (math-polynomial-p (nth 1 expr) var))
- ((and (eq (car expr) '^)
- (natnump (nth 2 expr)))
- (let ((p1 (math-polynomial-p (nth 1 expr) var)))
- (and p1 (* p1 (nth 2 expr)))))
- ((math-poly-depends expr var) nil)
- (t 0))
- )
-
- (defun math-poly-depends (expr var)
- (if math-poly-base-variable
- (math-expr-contains expr math-poly-base-variable)
- (math-expr-depends expr var))
- )
-
- ;;; Find the variable (or sub-expression) which is the base of polynomial expr.
- (defun math-polynomial-base (mpb-top-expr &optional mpb-pred)
- (or mpb-pred
- (setq mpb-pred (function (lambda (base) (math-polynomial-p
- mpb-top-expr base)))))
- (or (let ((const-ok nil))
- (math-polynomial-base-rec mpb-top-expr))
- (let ((const-ok t))
- (math-polynomial-base-rec mpb-top-expr)))
- )
-
- (defun math-polynomial-base-rec (mpb-expr)
- (and (not (Math-objvecp mpb-expr))
- (or (and (memq (car mpb-expr) '(+ - *))
- (or (math-polynomial-base-rec (nth 1 mpb-expr))
- (math-polynomial-base-rec (nth 2 mpb-expr))))
- (and (memq (car mpb-expr) '(/ neg))
- (math-polynomial-base-rec (nth 1 mpb-expr)))
- (and (eq (car mpb-expr) '^)
- (math-polynomial-base-rec (nth 1 mpb-expr)))
- (and (eq (car mpb-expr) 'calcFunc-exp)
- (math-polynomial-base-rec '(var e var-e)))
- (and (or const-ok (math-expr-contains-vars mpb-expr))
- (funcall mpb-pred mpb-expr)
- mpb-expr)))
- )
-
- ;;; Return non-nil if expr refers to any variables.
- (defun math-expr-contains-vars (expr)
- (or (eq (car-safe expr) 'var)
- (and (not (Math-primp expr))
- (progn
- (while (and (setq expr (cdr expr))
- (not (math-expr-contains-vars (car expr)))))
- expr)))
- )
-
- ;;; Simplify a polynomial in list form by stripping off high-end zeros.
- ;;; This always leaves the constant part, i.e., nil->nil and nonnil->nonnil.
- (defun math-poly-simplify (p)
- (and p
- (if (Math-zerop (nth (1- (length p)) p))
- (let ((pp (copy-sequence p)))
- (while (and (cdr pp)
- (Math-zerop (nth (1- (length pp)) pp)))
- (setcdr (nthcdr (- (length pp) 2) pp) nil))
- pp)
- p))
- )
-
- ;;; Compute ac*a + bc*b for polynomials in list form a, b and
- ;;; coefficients ac, bc. Result may be unsimplified.
- (defun math-poly-mix (a ac b bc)
- (and (or a b)
- (cons (math-add (math-mul (or (car a) 0) ac)
- (math-mul (or (car b) 0) bc))
- (math-poly-mix (cdr a) ac (cdr b) bc)))
- )
-
- (defun math-poly-zerop (a)
- (or (null a)
- (and (null (cdr a)) (Math-zerop (car a))))
- )
-
- ;;; Multiply two polynomials in list form.
- (defun math-poly-mul (a b)
- (and a b
- (math-poly-mix b (car a)
- (math-poly-mul (cdr a) (cons 0 b)) 1))
- )
-
- ;;; Build an expression from a polynomial list.
- (defun math-build-polynomial-expr (p var)
- (if p
- (if (Math-numberp var)
- (math-with-extra-prec 1
- (let* ((rp (reverse p))
- (accum (car rp)))
- (while (setq rp (cdr rp))
- (setq accum (math-add (car rp) (math-mul accum var))))
- accum))
- (let* ((rp (reverse p))
- (n (1- (length rp)))
- (accum (math-mul (car rp) (math-pow var n)))
- term)
- (while (setq rp (cdr rp))
- (setq n (1- n))
- (or (math-zerop (car rp))
- (setq accum (list (if (math-looks-negp (car rp)) '- '+)
- accum
- (math-mul (if (math-looks-negp (car rp))
- (math-neg (car rp))
- (car rp))
- (math-pow var n))))))
- accum))
- 0)
- )
-
-
- (defun math-to-simple-fraction (f)
- (or (and (eq (car-safe f) 'float)
- (or (and (>= (nth 2 f) 0)
- (math-scale-int (nth 1 f) (nth 2 f)))
- (and (integerp (nth 1 f))
- (> (nth 1 f) -1000)
- (< (nth 1 f) 1000)
- (math-make-frac (nth 1 f)
- (math-scale-int 1 (- (nth 2 f)))))))
- f)
- )
-
-