home *** CD-ROM | disk | FTP | other *** search
Text File | 1996-10-12 | 108.8 KB | 3,508 lines |
- ;; Calculator for GNU Emacs, part II [calc-alg-2.el]
- ;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
- ;; Written by Dave Gillespie, daveg@synaptics.com.
-
- ;; This file is part of GNU Emacs.
-
- ;; GNU Emacs is distributed in the hope that it will be useful,
- ;; but WITHOUT ANY WARRANTY. No author or distributor
- ;; accepts responsibility to anyone for the consequences of using it
- ;; or for whether it serves any particular purpose or works at all,
- ;; unless he says so in writing. Refer to the GNU Emacs General Public
- ;; License for full details.
-
- ;; Everyone is granted permission to copy, modify and redistribute
- ;; GNU Emacs, but only under the conditions described in the
- ;; GNU Emacs General Public License. A copy of this license is
- ;; supposed to have been given to you along with GNU Emacs so you
- ;; can know your rights and responsibilities. It should be in a
- ;; file named COPYING. Among other things, the copyright notice
- ;; and this notice must be preserved on all copies.
-
-
-
- ;; This file is autoloaded from calc-ext.el.
- (require 'calc-ext)
-
- (require 'calc-macs)
-
- (defun calc-Need-calc-alg-2 () nil)
-
-
- (defun calc-derivative (var num)
- (interactive "sDifferentiate with respect to: \np")
- (calc-slow-wrapper
- (and (< num 0) (error "Order of derivative must be positive"))
- (let ((func (if (calc-is-hyperbolic) 'calcFunc-tderiv 'calcFunc-deriv))
- n expr)
- (if (or (equal var "") (equal var "$"))
- (setq n 2
- expr (calc-top-n 2)
- var (calc-top-n 1))
- (setq var (math-read-expr var))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (setq n 1
- expr (calc-top-n 1)))
- (while (>= (setq num (1- num)) 0)
- (setq expr (list func expr var)))
- (calc-enter-result n "derv" expr)))
- )
-
- (defun calc-integral (var)
- (interactive "sIntegration variable: ")
- (calc-slow-wrapper
- (if (or (equal var "") (equal var "$"))
- (calc-enter-result 2 "intg" (list 'calcFunc-integ
- (calc-top-n 2)
- (calc-top-n 1)))
- (let ((var (math-read-expr var)))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (calc-enter-result 1 "intg" (list 'calcFunc-integ
- (calc-top-n 1)
- var)))))
- )
-
- (defun calc-num-integral (&optional varname lowname highname)
- (interactive "sIntegration variable: ")
- (calc-tabular-command 'calcFunc-ninteg "Integration" "nint"
- nil varname lowname highname)
- )
-
- (defun calc-summation (arg &optional varname lowname highname)
- (interactive "P\nsSummation variable: ")
- (calc-tabular-command 'calcFunc-sum "Summation" "sum"
- arg varname lowname highname)
- )
-
- (defun calc-alt-summation (arg &optional varname lowname highname)
- (interactive "P\nsSummation variable: ")
- (calc-tabular-command 'calcFunc-asum "Summation" "asum"
- arg varname lowname highname)
- )
-
- (defun calc-product (arg &optional varname lowname highname)
- (interactive "P\nsIndex variable: ")
- (calc-tabular-command 'calcFunc-prod "Index" "prod"
- arg varname lowname highname)
- )
-
- (defun calc-tabulate (arg &optional varname lowname highname)
- (interactive "P\nsIndex variable: ")
- (calc-tabular-command 'calcFunc-table "Index" "tabl"
- arg varname lowname highname)
- )
-
- (defun calc-tabular-command (func prompt prefix arg varname lowname highname)
- (calc-slow-wrapper
- (let (var (low nil) (high nil) (step nil) stepname stepnum (num 1) expr)
- (if (consp arg)
- (setq stepnum 1)
- (setq stepnum 0))
- (if (or (equal varname "") (equal varname "$") (null varname))
- (setq high (calc-top-n (+ stepnum 1))
- low (calc-top-n (+ stepnum 2))
- var (calc-top-n (+ stepnum 3))
- num (+ stepnum 4))
- (setq var (if (stringp varname) (math-read-expr varname) varname))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (or lowname
- (setq lowname (read-string (concat prompt " variable: " varname
- ", from: "))))
- (if (or (equal lowname "") (equal lowname "$"))
- (setq high (calc-top-n (+ stepnum 1))
- low (calc-top-n (+ stepnum 2))
- num (+ stepnum 3))
- (setq low (if (stringp lowname) (math-read-expr lowname) lowname))
- (if (eq (car-safe low) 'error)
- (error "Bad format in expression: %s" (nth 1 low)))
- (or highname
- (setq highname (read-string (concat prompt " variable: " varname
- ", from: " lowname
- ", to: "))))
- (if (or (equal highname "") (equal highname "$"))
- (setq high (calc-top-n (+ stepnum 1))
- num (+ stepnum 2))
- (setq high (if (stringp highname) (math-read-expr highname)
- highname))
- (if (eq (car-safe high) 'error)
- (error "Bad format in expression: %s" (nth 1 high)))
- (if (consp arg)
- (progn
- (setq stepname (read-string (concat prompt " variable: "
- varname
- ", from: " lowname
- ", to: " highname
- ", step: ")))
- (if (or (equal stepname "") (equal stepname "$"))
- (setq step (calc-top-n 1)
- num 2)
- (setq step (math-read-expr stepname))
- (if (eq (car-safe step) 'error)
- (error "Bad format in expression: %s"
- (nth 1 step)))))))))
- (or step
- (if (consp arg)
- (setq step (calc-top-n 1))
- (if arg
- (setq step (prefix-numeric-value arg)))))
- (setq expr (calc-top-n num))
- (calc-enter-result num prefix (append (list func expr var low high)
- (and step (list step))))))
- )
-
- (defun calc-solve-for (var)
- (interactive "sVariable to solve for: ")
- (calc-slow-wrapper
- (let ((func (if (calc-is-inverse)
- (if (calc-is-hyperbolic) 'calcFunc-ffinv 'calcFunc-finv)
- (if (calc-is-hyperbolic) 'calcFunc-fsolve 'calcFunc-solve))))
- (if (or (equal var "") (equal var "$"))
- (calc-enter-result 2 "solv" (list func
- (calc-top-n 2)
- (calc-top-n 1)))
- (let ((var (if (and (string-match ",\\|[^ ] +[^ ]" var)
- (not (string-match "\\[" var)))
- (math-read-expr (concat "[" var "]"))
- (math-read-expr var))))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (calc-enter-result 1 "solv" (list func
- (calc-top-n 1)
- var))))))
- )
-
- (defun calc-poly-roots (var)
- (interactive "sVariable to solve for: ")
- (calc-slow-wrapper
- (if (or (equal var "") (equal var "$"))
- (calc-enter-result 2 "prts" (list 'calcFunc-roots
- (calc-top-n 2)
- (calc-top-n 1)))
- (let ((var (if (and (string-match ",\\|[^ ] +[^ ]" var)
- (not (string-match "\\[" var)))
- (math-read-expr (concat "[" var "]"))
- (math-read-expr var))))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (calc-enter-result 1 "prts" (list 'calcFunc-roots
- (calc-top-n 1)
- var)))))
- )
-
- (defun calc-taylor (var nterms)
- (interactive "sTaylor expansion variable: \nNNumber of terms: ")
- (calc-slow-wrapper
- (let ((var (math-read-expr var)))
- (if (eq (car-safe var) 'error)
- (error "Bad format in expression: %s" (nth 1 var)))
- (calc-enter-result 1 "tylr" (list 'calcFunc-taylor
- (calc-top-n 1)
- var
- (prefix-numeric-value nterms)))))
- )
-
-
- (defun math-derivative (expr) ; uses global values: deriv-var, deriv-total.
- (cond ((equal expr deriv-var)
- 1)
- ((or (Math-scalarp expr)
- (eq (car expr) 'sdev)
- (and (eq (car expr) 'var)
- (or (not deriv-total)
- (math-const-var expr)
- (progn
- (math-setup-declarations)
- (memq 'const (nth 1 (or (assq (nth 2 expr)
- math-decls-cache)
- math-decls-all)))))))
- 0)
- ((eq (car expr) '+)
- (math-add (math-derivative (nth 1 expr))
- (math-derivative (nth 2 expr))))
- ((eq (car expr) '-)
- (math-sub (math-derivative (nth 1 expr))
- (math-derivative (nth 2 expr))))
- ((memq (car expr) '(calcFunc-eq calcFunc-neq calcFunc-lt
- calcFunc-gt calcFunc-leq calcFunc-geq))
- (list (car expr)
- (math-derivative (nth 1 expr))
- (math-derivative (nth 2 expr))))
- ((eq (car expr) 'neg)
- (math-neg (math-derivative (nth 1 expr))))
- ((eq (car expr) '*)
- (math-add (math-mul (nth 2 expr)
- (math-derivative (nth 1 expr)))
- (math-mul (nth 1 expr)
- (math-derivative (nth 2 expr)))))
- ((eq (car expr) '/)
- (math-sub (math-div (math-derivative (nth 1 expr))
- (nth 2 expr))
- (math-div (math-mul (nth 1 expr)
- (math-derivative (nth 2 expr)))
- (math-sqr (nth 2 expr)))))
- ((eq (car expr) '^)
- (let ((du (math-derivative (nth 1 expr)))
- (dv (math-derivative (nth 2 expr))))
- (or (Math-zerop du)
- (setq du (math-mul (nth 2 expr)
- (math-mul (math-normalize
- (list '^
- (nth 1 expr)
- (math-add (nth 2 expr) -1)))
- du))))
- (or (Math-zerop dv)
- (setq dv (math-mul (math-normalize
- (list 'calcFunc-ln (nth 1 expr)))
- (math-mul expr dv))))
- (math-add du dv)))
- ((eq (car expr) '%)
- (math-derivative (nth 1 expr))) ; a reasonable definition
- ((eq (car expr) 'vec)
- (math-map-vec 'math-derivative expr))
- ((and (memq (car expr) '(calcFunc-conj calcFunc-re calcFunc-im))
- (= (length expr) 2))
- (list (car expr) (math-derivative (nth 1 expr))))
- ((and (memq (car expr) '(calcFunc-subscr calcFunc-mrow calcFunc-mcol))
- (= (length expr) 3))
- (let ((d (math-derivative (nth 1 expr))))
- (if (math-numberp d)
- 0 ; assume x and x_1 are independent vars
- (list (car expr) d (nth 2 expr)))))
- (t (or (and (symbolp (car expr))
- (if (= (length expr) 2)
- (let ((handler (get (car expr) 'math-derivative)))
- (and handler
- (let ((deriv (math-derivative (nth 1 expr))))
- (if (Math-zerop deriv)
- deriv
- (math-mul (funcall handler (nth 1 expr))
- deriv)))))
- (let ((handler (get (car expr) 'math-derivative-n)))
- (and handler
- (funcall handler expr)))))
- (and (not (eq deriv-symb 'pre-expand))
- (let ((exp (math-expand-formula expr)))
- (and exp
- (or (let ((deriv-symb 'pre-expand))
- (catch 'math-deriv (math-derivative expr)))
- (math-derivative exp)))))
- (if (or (Math-objvecp expr)
- (eq (car expr) 'var)
- (not (symbolp (car expr))))
- (if deriv-symb
- (throw 'math-deriv nil)
- (list (if deriv-total 'calcFunc-tderiv 'calcFunc-deriv)
- expr
- deriv-var))
- (let ((accum 0)
- (arg expr)
- (n 1)
- derv)
- (while (setq arg (cdr arg))
- (or (Math-zerop (setq derv (math-derivative (car arg))))
- (let ((func (intern (concat (symbol-name (car expr))
- "'"
- (if (> n 1)
- (int-to-string n)
- ""))))
- (prop (cond ((= (length expr) 2)
- 'math-derivative-1)
- ((= (length expr) 3)
- 'math-derivative-2)
- ((= (length expr) 4)
- 'math-derivative-3)
- ((= (length expr) 5)
- 'math-derivative-4)
- ((= (length expr) 6)
- 'math-derivative-5))))
- (setq accum
- (math-add
- accum
- (math-mul
- derv
- (let ((handler (get func prop)))
- (or (and prop handler
- (apply handler (cdr expr)))
- (if (and deriv-symb
- (not (get func
- 'calc-user-defn)))
- (throw 'math-deriv nil)
- (cons func (cdr expr))))))))))
- (setq n (1+ n)))
- accum)))))
- )
-
- (defun calcFunc-deriv (expr deriv-var &optional deriv-value deriv-symb)
- (let* ((deriv-total nil)
- (res (catch 'math-deriv (math-derivative expr))))
- (or (eq (car-safe res) 'calcFunc-deriv)
- (null res)
- (setq res (math-normalize res)))
- (and res
- (if deriv-value
- (math-expr-subst res deriv-var deriv-value)
- res)))
- )
-
- (defun calcFunc-tderiv (expr deriv-var &optional deriv-value deriv-symb)
- (math-setup-declarations)
- (let* ((deriv-total t)
- (res (catch 'math-deriv (math-derivative expr))))
- (or (eq (car-safe res) 'calcFunc-tderiv)
- (null res)
- (setq res (math-normalize res)))
- (and res
- (if deriv-value
- (math-expr-subst res deriv-var deriv-value)
- res)))
- )
-
- (put 'calcFunc-inv\' 'math-derivative-1
- (function (lambda (u) (math-neg (math-div 1 (math-sqr u))))))
-
- (put 'calcFunc-sqrt\' 'math-derivative-1
- (function (lambda (u) (math-div 1 (math-mul 2 (list 'calcFunc-sqrt u))))))
-
- (put 'calcFunc-deg\' 'math-derivative-1
- (function (lambda (u) (math-div-float '(float 18 1) (math-pi)))))
-
- (put 'calcFunc-rad\' 'math-derivative-1
- (function (lambda (u) (math-pi-over-180))))
-
- (put 'calcFunc-ln\' 'math-derivative-1
- (function (lambda (u) (math-div 1 u))))
-
- (put 'calcFunc-log10\' 'math-derivative-1
- (function (lambda (u)
- (math-div (math-div 1 (math-normalize '(calcFunc-ln 10)))
- u))))
-
- (put 'calcFunc-lnp1\' 'math-derivative-1
- (function (lambda (u) (math-div 1 (math-add u 1)))))
-
- (put 'calcFunc-log\' 'math-derivative-2
- (function (lambda (x b)
- (and (not (Math-zerop b))
- (let ((lnv (math-normalize
- (list 'calcFunc-ln b))))
- (math-div 1 (math-mul lnv x)))))))
-
- (put 'calcFunc-log\'2 'math-derivative-2
- (function (lambda (x b)
- (let ((lnv (list 'calcFunc-ln b)))
- (math-neg (math-div (list 'calcFunc-log x b)
- (math-mul lnv b)))))))
-
- (put 'calcFunc-exp\' 'math-derivative-1
- (function (lambda (u) (math-normalize (list 'calcFunc-exp u)))))
-
- (put 'calcFunc-expm1\' 'math-derivative-1
- (function (lambda (u) (math-normalize (list 'calcFunc-expm1 u)))))
-
- (put 'calcFunc-sin\' 'math-derivative-1
- (function (lambda (u) (math-to-radians-2 (math-normalize
- (list 'calcFunc-cos u))))))
-
- (put 'calcFunc-cos\' 'math-derivative-1
- (function (lambda (u) (math-neg (math-to-radians-2
- (math-normalize
- (list 'calcFunc-sin u)))))))
-
- (put 'calcFunc-tan\' 'math-derivative-1
- (function (lambda (u) (math-to-radians-2
- (math-div 1 (math-sqr
- (math-normalize
- (list 'calcFunc-cos u))))))))
-
- (put 'calcFunc-arcsin\' 'math-derivative-1
- (function (lambda (u)
- (math-from-radians-2
- (math-div 1 (math-normalize
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr u)))))))))
-
- (put 'calcFunc-arccos\' 'math-derivative-1
- (function (lambda (u)
- (math-from-radians-2
- (math-div -1 (math-normalize
- (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr u)))))))))
-
- (put 'calcFunc-arctan\' 'math-derivative-1
- (function (lambda (u) (math-from-radians-2
- (math-div 1 (math-add 1 (math-sqr u)))))))
-
- (put 'calcFunc-sinh\' 'math-derivative-1
- (function (lambda (u) (math-normalize (list 'calcFunc-cosh u)))))
-
- (put 'calcFunc-cosh\' 'math-derivative-1
- (function (lambda (u) (math-normalize (list 'calcFunc-sinh u)))))
-
- (put 'calcFunc-tanh\' 'math-derivative-1
- (function (lambda (u) (math-div 1 (math-sqr
- (math-normalize
- (list 'calcFunc-cosh u)))))))
-
- (put 'calcFunc-arcsinh\' 'math-derivative-1
- (function (lambda (u)
- (math-div 1 (math-normalize
- (list 'calcFunc-sqrt
- (math-add (math-sqr u) 1)))))))
-
- (put 'calcFunc-arccosh\' 'math-derivative-1
- (function (lambda (u)
- (math-div 1 (math-normalize
- (list 'calcFunc-sqrt
- (math-add (math-sqr u) -1)))))))
-
- (put 'calcFunc-arctanh\' 'math-derivative-1
- (function (lambda (u) (math-div 1 (math-sub 1 (math-sqr u))))))
-
- (put 'calcFunc-bern\'2 'math-derivative-2
- (function (lambda (n x)
- (math-mul n (list 'calcFunc-bern (math-add n -1) x)))))
-
- (put 'calcFunc-euler\'2 'math-derivative-2
- (function (lambda (n x)
- (math-mul n (list 'calcFunc-euler (math-add n -1) x)))))
-
- (put 'calcFunc-gammag\'2 'math-derivative-2
- (function (lambda (a x) (math-deriv-gamma a x 1))))
-
- (put 'calcFunc-gammaG\'2 'math-derivative-2
- (function (lambda (a x) (math-deriv-gamma a x -1))))
-
- (put 'calcFunc-gammaP\'2 'math-derivative-2
- (function (lambda (a x) (math-deriv-gamma a x
- (math-div
- 1 (math-normalize
- (list 'calcFunc-gamma
- a)))))))
-
- (put 'calcFunc-gammaQ\'2 'math-derivative-2
- (function (lambda (a x) (math-deriv-gamma a x
- (math-div
- -1 (math-normalize
- (list 'calcFunc-gamma
- a)))))))
-
- (defun math-deriv-gamma (a x scale)
- (math-mul scale
- (math-mul (math-pow x (math-add a -1))
- (list 'calcFunc-exp (math-neg x))))
- )
-
- (put 'calcFunc-betaB\' 'math-derivative-3
- (function (lambda (x a b) (math-deriv-beta x a b 1))))
-
- (put 'calcFunc-betaI\' 'math-derivative-3
- (function (lambda (x a b) (math-deriv-beta x a b
- (math-div
- 1 (list 'calcFunc-beta
- a b))))))
-
- (defun math-deriv-beta (x a b scale)
- (math-mul (math-mul (math-pow x (math-add a -1))
- (math-pow (math-sub 1 x) (math-add b -1)))
- scale)
- )
-
- (put 'calcFunc-erf\' 'math-derivative-1
- (function (lambda (x) (math-div 2
- (math-mul (list 'calcFunc-exp
- (math-sqr x))
- (if calc-symbolic-mode
- '(calcFunc-sqrt
- (var pi var-pi))
- (math-sqrt-pi)))))))
-
- (put 'calcFunc-erfc\' 'math-derivative-1
- (function (lambda (x) (math-div -2
- (math-mul (list 'calcFunc-exp
- (math-sqr x))
- (if calc-symbolic-mode
- '(calcFunc-sqrt
- (var pi var-pi))
- (math-sqrt-pi)))))))
-
- (put 'calcFunc-besJ\'2 'math-derivative-2
- (function (lambda (v z) (math-div (math-sub (list 'calcFunc-besJ
- (math-add v -1)
- z)
- (list 'calcFunc-besJ
- (math-add v 1)
- z))
- 2))))
-
- (put 'calcFunc-besY\'2 'math-derivative-2
- (function (lambda (v z) (math-div (math-sub (list 'calcFunc-besY
- (math-add v -1)
- z)
- (list 'calcFunc-besY
- (math-add v 1)
- z))
- 2))))
-
- (put 'calcFunc-sum 'math-derivative-n
- (function
- (lambda (expr)
- (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var)
- (throw 'math-deriv nil)
- (cons 'calcFunc-sum
- (cons (math-derivative (nth 1 expr))
- (cdr (cdr expr))))))))
-
- (put 'calcFunc-prod 'math-derivative-n
- (function
- (lambda (expr)
- (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var)
- (throw 'math-deriv nil)
- (math-mul expr
- (cons 'calcFunc-sum
- (cons (math-div (math-derivative (nth 1 expr))
- (nth 1 expr))
- (cdr (cdr expr)))))))))
-
- (put 'calcFunc-integ 'math-derivative-n
- (function
- (lambda (expr)
- (if (= (length expr) 3)
- (if (equal (nth 2 expr) deriv-var)
- (nth 1 expr)
- (math-normalize
- (list 'calcFunc-integ
- (math-derivative (nth 1 expr))
- (nth 2 expr))))
- (if (= (length expr) 5)
- (let ((lower (math-expr-subst (nth 1 expr) (nth 2 expr)
- (nth 3 expr)))
- (upper (math-expr-subst (nth 1 expr) (nth 2 expr)
- (nth 4 expr))))
- (math-add (math-sub (math-mul upper
- (math-derivative (nth 4 expr)))
- (math-mul lower
- (math-derivative (nth 3 expr))))
- (if (equal (nth 2 expr) deriv-var)
- 0
- (math-normalize
- (list 'calcFunc-integ
- (math-derivative (nth 1 expr)) (nth 2 expr)
- (nth 3 expr) (nth 4 expr)))))))))))
-
- (put 'calcFunc-if 'math-derivative-n
- (function
- (lambda (expr)
- (and (= (length expr) 4)
- (list 'calcFunc-if (nth 1 expr)
- (math-derivative (nth 2 expr))
- (math-derivative (nth 3 expr)))))))
-
- (put 'calcFunc-subscr 'math-derivative-n
- (function
- (lambda (expr)
- (and (= (length expr) 3)
- (list 'calcFunc-subscr (nth 1 expr)
- (math-derivative (nth 2 expr)))))))
-
-
-
-
-
- (setq math-integ-var '(var X ---))
- (setq math-integ-var-2 '(var Y ---))
- (setq math-integ-vars (list 'f math-integ-var math-integ-var-2))
- (setq math-integ-var-list (list math-integ-var))
- (setq math-integ-var-list-list (list math-integ-var-list))
-
- (defmacro math-tracing-integral (&rest parts)
- (list 'and
- 'trace-buffer
- (list 'save-excursion
- '(set-buffer trace-buffer)
- '(goto-char (point-max))
- (list 'and
- '(bolp)
- '(insert (make-string (- math-integral-limit
- math-integ-level) 32)
- (format "%2d " math-integ-depth)
- (make-string math-integ-level 32)))
- ;;(list 'condition-case 'err
- (cons 'insert parts)
- ;; '(error (insert (prin1-to-string err))))
- '(sit-for 0)))
- )
-
- ;;; The following wrapper caches results and avoids infinite recursion.
- ;;; Each cache entry is: ( A B ) Integral of A is B;
- ;;; ( A N ) Integral of A failed at level N;
- ;;; ( A busy ) Currently working on integral of A;
- ;;; ( A parts ) Currently working, integ-by-parts;
- ;;; ( A parts2 ) Currently working, integ-by-parts;
- ;;; ( A cancelled ) Ignore this cache entry;
- ;;; ( A [B] ) Same result as for cur-record = B.
- (defun math-integral (expr &optional simplify same-as-above)
- (let* ((simp cur-record)
- (cur-record (assoc expr math-integral-cache))
- (math-integ-depth (1+ math-integ-depth))
- (val 'cancelled))
- (math-tracing-integral "Integrating "
- (math-format-value expr 1000)
- "...\n")
- (and cur-record
- (progn
- (math-tracing-integral "Found "
- (math-format-value (nth 1 cur-record) 1000))
- (and (consp (nth 1 cur-record))
- (math-replace-integral-parts cur-record))
- (math-tracing-integral " => "
- (math-format-value (nth 1 cur-record) 1000)
- "\n")))
- (or (and cur-record
- (not (eq (nth 1 cur-record) 'cancelled))
- (or (not (integerp (nth 1 cur-record)))
- (>= (nth 1 cur-record) math-integ-level)))
- (and (math-integral-contains-parts expr)
- (progn
- (setq val nil)
- t))
- (unwind-protect
- (progn
- (let (math-integ-msg)
- (if (eq calc-display-working-message 'lots)
- (progn
- (calc-set-command-flag 'clear-message)
- (setq math-integ-msg (format
- "Working... Integrating %s"
- (math-format-flat-expr expr 0)))
- (message math-integ-msg)))
- (if cur-record
- (setcar (cdr cur-record)
- (if same-as-above (vector simp) 'busy))
- (setq cur-record
- (list expr (if same-as-above (vector simp) 'busy))
- math-integral-cache (cons cur-record
- math-integral-cache)))
- (if (eq simplify 'yes)
- (progn
- (math-tracing-integral "Simplifying...")
- (setq simp (math-simplify expr))
- (setq val (if (equal simp expr)
- (progn
- (math-tracing-integral " no change\n")
- (math-do-integral expr))
- (math-tracing-integral " simplified\n")
- (math-integral simp 'no t))))
- (or (setq val (math-do-integral expr))
- (eq simplify 'no)
- (let ((simp (math-simplify expr)))
- (or (equal simp expr)
- (progn
- (math-tracing-integral "Trying again after "
- "simplification...\n")
- (setq val (math-integral simp 'no t))))))))
- (if (eq calc-display-working-message 'lots)
- (message math-integ-msg)))
- (setcar (cdr cur-record) (or val
- (if (or math-enable-subst
- (not math-any-substs))
- math-integ-level
- 'cancelled)))))
- (setq val cur-record)
- (while (vectorp (nth 1 val))
- (setq val (aref (nth 1 val) 0)))
- (setq val (if (memq (nth 1 val) '(parts parts2))
- (progn
- (setcar (cdr val) 'parts2)
- (list 'var 'PARTS val))
- (and (consp (nth 1 val))
- (nth 1 val))))
- (math-tracing-integral "Integral of "
- (math-format-value expr 1000)
- " is "
- (math-format-value val 1000)
- "\n")
- val)
- )
- (defvar math-integral-cache nil)
- (defvar math-integral-cache-state nil)
-
- (defun math-integral-contains-parts (expr)
- (if (Math-primp expr)
- (and (eq (car-safe expr) 'var)
- (eq (nth 1 expr) 'PARTS)
- (listp (nth 2 expr)))
- (while (and (setq expr (cdr expr))
- (not (math-integral-contains-parts (car expr)))))
- expr)
- )
-
- (defun math-replace-integral-parts (expr)
- (or (Math-primp expr)
- (while (setq expr (cdr expr))
- (and (consp (car expr))
- (if (eq (car (car expr)) 'var)
- (and (eq (nth 1 (car expr)) 'PARTS)
- (consp (nth 2 (car expr)))
- (if (listp (nth 1 (nth 2 (car expr))))
- (progn
- (setcar expr (nth 1 (nth 2 (car expr))))
- (math-replace-integral-parts (cons 'foo expr)))
- (setcar (cdr cur-record) 'cancelled)))
- (math-replace-integral-parts (car expr))))))
- )
-
- (defun math-do-integral (expr)
- (let (t1 t2)
- (or (cond ((not (math-expr-contains expr math-integ-var))
- (math-mul expr math-integ-var))
- ((equal expr math-integ-var)
- (math-div (math-sqr expr) 2))
- ((eq (car expr) '+)
- (and (setq t1 (math-integral (nth 1 expr)))
- (setq t2 (math-integral (nth 2 expr)))
- (math-add t1 t2)))
- ((eq (car expr) '-)
- (and (setq t1 (math-integral (nth 1 expr)))
- (setq t2 (math-integral (nth 2 expr)))
- (math-sub t1 t2)))
- ((eq (car expr) 'neg)
- (and (setq t1 (math-integral (nth 1 expr)))
- (math-neg t1)))
- ((eq (car expr) '*)
- (cond ((not (math-expr-contains (nth 1 expr) math-integ-var))
- (and (setq t1 (math-integral (nth 2 expr)))
- (math-mul (nth 1 expr) t1)))
- ((not (math-expr-contains (nth 2 expr) math-integ-var))
- (and (setq t1 (math-integral (nth 1 expr)))
- (math-mul t1 (nth 2 expr))))
- ((memq (car-safe (nth 1 expr)) '(+ -))
- (math-integral (list (car (nth 1 expr))
- (math-mul (nth 1 (nth 1 expr))
- (nth 2 expr))
- (math-mul (nth 2 (nth 1 expr))
- (nth 2 expr)))
- 'yes t))
- ((memq (car-safe (nth 2 expr)) '(+ -))
- (math-integral (list (car (nth 2 expr))
- (math-mul (nth 1 (nth 2 expr))
- (nth 1 expr))
- (math-mul (nth 2 (nth 2 expr))
- (nth 1 expr)))
- 'yes t))))
- ((eq (car expr) '/)
- (cond ((and (not (math-expr-contains (nth 1 expr)
- math-integ-var))
- (not (math-equal-int (nth 1 expr) 1)))
- (and (setq t1 (math-integral (math-div 1 (nth 2 expr))))
- (math-mul (nth 1 expr) t1)))
- ((not (math-expr-contains (nth 2 expr) math-integ-var))
- (and (setq t1 (math-integral (nth 1 expr)))
- (math-div t1 (nth 2 expr))))
- ((and (eq (car-safe (nth 1 expr)) '*)
- (not (math-expr-contains (nth 1 (nth 1 expr))
- math-integ-var)))
- (and (setq t1 (math-integral
- (math-div (nth 2 (nth 1 expr))
- (nth 2 expr))))
- (math-mul t1 (nth 1 (nth 1 expr)))))
- ((and (eq (car-safe (nth 1 expr)) '*)
- (not (math-expr-contains (nth 2 (nth 1 expr))
- math-integ-var)))
- (and (setq t1 (math-integral
- (math-div (nth 1 (nth 1 expr))
- (nth 2 expr))))
- (math-mul t1 (nth 2 (nth 1 expr)))))
- ((and (eq (car-safe (nth 2 expr)) '*)
- (not (math-expr-contains (nth 1 (nth 2 expr))
- math-integ-var)))
- (and (setq t1 (math-integral
- (math-div (nth 1 expr)
- (nth 2 (nth 2 expr)))))
- (math-div t1 (nth 1 (nth 2 expr)))))
- ((and (eq (car-safe (nth 2 expr)) '*)
- (not (math-expr-contains (nth 2 (nth 2 expr))
- math-integ-var)))
- (and (setq t1 (math-integral
- (math-div (nth 1 expr)
- (nth 1 (nth 2 expr)))))
- (math-div t1 (nth 2 (nth 2 expr)))))
- ((eq (car-safe (nth 2 expr)) 'calcFunc-exp)
- (math-integral
- (math-mul (nth 1 expr)
- (list 'calcFunc-exp
- (math-neg (nth 1 (nth 2 expr)))))))))
- ((eq (car expr) '^)
- (cond ((not (math-expr-contains (nth 1 expr) math-integ-var))
- (or (and (setq t1 (math-is-polynomial (nth 2 expr)
- math-integ-var 1))
- (math-div expr
- (math-mul (nth 1 t1)
- (math-normalize
- (list 'calcFunc-ln
- (nth 1 expr))))))
- (math-integral
- (list 'calcFunc-exp
- (math-mul (nth 2 expr)
- (math-normalize
- (list 'calcFunc-ln
- (nth 1 expr)))))
- 'yes t)))
- ((not (math-expr-contains (nth 2 expr) math-integ-var))
- (if (and (integerp (nth 2 expr)) (< (nth 2 expr) 0))
- (math-integral
- (list '/ 1 (math-pow (nth 1 expr) (- (nth 2 expr))))
- nil t)
- (or (and (setq t1 (math-is-polynomial (nth 1 expr)
- math-integ-var
- 1))
- (setq t2 (math-add (nth 2 expr) 1))
- (math-div (math-pow (nth 1 expr) t2)
- (math-mul t2 (nth 1 t1))))
- (and (Math-negp (nth 2 expr))
- (math-integral
- (math-div 1
- (math-pow (nth 1 expr)
- (math-neg
- (nth 2 expr))))
- nil t))
- nil))))))
-
- ;; Integral of a polynomial.
- (and (setq t1 (math-is-polynomial expr math-integ-var 20))
- (let ((accum 0)
- (n 1))
- (while t1
- (if (setq accum (math-add accum
- (math-div (math-mul (car t1)
- (math-pow
- math-integ-var
- n))
- n))
- t1 (cdr t1))
- (setq n (1+ n))))
- accum))
-
- ;; Try looking it up!
- (cond ((= (length expr) 2)
- (and (symbolp (car expr))
- (setq t1 (get (car expr) 'math-integral))
- (progn
- (while (and t1
- (not (setq t2 (funcall (car t1)
- (nth 1 expr)))))
- (setq t1 (cdr t1)))
- (and t2 (math-normalize t2)))))
- ((= (length expr) 3)
- (and (symbolp (car expr))
- (setq t1 (get (car expr) 'math-integral-2))
- (progn
- (while (and t1
- (not (setq t2 (funcall (car t1)
- (nth 1 expr)
- (nth 2 expr)))))
- (setq t1 (cdr t1)))
- (and t2 (math-normalize t2))))))
-
- ;; Integral of a rational function.
- (and (math-ratpoly-p expr math-integ-var)
- (setq t1 (calcFunc-apart expr math-integ-var))
- (not (equal t1 expr))
- (math-integral t1))
-
- ;; Try user-defined integration rules.
- (and has-rules
- (let ((math-old-integ (symbol-function 'calcFunc-integ))
- (input (list 'calcFunc-integtry expr math-integ-var))
- res part)
- (unwind-protect
- (progn
- (fset 'calcFunc-integ 'math-sub-integration)
- (setq res (math-rewrite input
- '(var IntegRules var-IntegRules)
- 1))
- (fset 'calcFunc-integ math-old-integ)
- (and (not (equal res input))
- (if (setq part (math-expr-calls
- res '(calcFunc-integsubst)))
- (and (memq (length part) '(3 4 5))
- (let ((parts (mapcar
- (function
- (lambda (x)
- (math-expr-subst
- x (nth 2 part)
- math-integ-var)))
- (cdr part))))
- (math-integrate-by-substitution
- expr (car parts) t
- (or (nth 2 parts)
- (list 'calcFunc-integfailed
- math-integ-var))
- (nth 3 parts))))
- (if (not (math-expr-calls res
- '(calcFunc-integtry
- calcFunc-integfailed)))
- res))))
- (fset 'calcFunc-integ math-old-integ))))
-
- ;; See if the function is a symbolic derivative.
- (and (string-match "'" (symbol-name (car expr)))
- (let ((name (symbol-name (car expr)))
- (p expr) (n 0) (which nil) (bad nil))
- (while (setq n (1+ n) p (cdr p))
- (if (equal (car p) math-integ-var)
- (if which (setq bad t) (setq which n))
- (if (math-expr-contains (car p) math-integ-var)
- (setq bad t))))
- (and which (not bad)
- (let ((prime (if (= which 1) "'" (format "'%d" which))))
- (and (string-match (concat prime "\\('['0-9]*\\|$\\)")
- name)
- (cons (intern
- (concat
- (substring name 0 (match-beginning 0))
- (substring name (+ (match-beginning 0)
- (length prime)))))
- (cdr expr)))))))
-
- ;; Try transformation methods (parts, substitutions).
- (and (> math-integ-level 0)
- (math-do-integral-methods expr))
-
- ;; Try expanding the function's definition.
- (let ((res (math-expand-formula expr)))
- (and res
- (math-integral res)))))
- )
-
- (defun math-sub-integration (expr &rest rest)
- (or (if (or (not rest)
- (and (< math-integ-level math-integral-limit)
- (eq (car rest) math-integ-var)))
- (math-integral expr)
- (let ((res (apply math-old-integ expr rest)))
- (and (or (= math-integ-level math-integral-limit)
- (not (math-expr-calls res 'calcFunc-integ)))
- res)))
- (list 'calcFunc-integfailed expr))
- )
-
- (defun math-do-integral-methods (expr)
- (let ((so-far math-integ-var-list-list)
- rat-in)
-
- ;; Integration by substitution, for various likely sub-expressions.
- ;; (In first pass, we look only for sub-exprs that are linear in X.)
- (or (if math-enable-subst
- (math-integ-try-substitutions expr)
- (math-integ-try-linear-substitutions expr))
-
- ;; If function has sines and cosines, try tan(x/2) substitution.
- (and (let ((p (setq rat-in (math-expr-rational-in expr))))
- (while (and p
- (memq (car (car p)) '(calcFunc-sin
- calcFunc-cos
- calcFunc-tan))
- (equal (nth 1 (car p)) math-integ-var))
- (setq p (cdr p)))
- (null p))
- (or (and (math-integ-parts-easy expr)
- (math-integ-try-parts expr t))
- (math-integrate-by-good-substitution
- expr (list 'calcFunc-tan (math-div math-integ-var 2)))))
-
- ;; If function has sinh and cosh, try tanh(x/2) substitution.
- (and (let ((p rat-in))
- (while (and p
- (memq (car (car p)) '(calcFunc-sinh
- calcFunc-cosh
- calcFunc-tanh
- calcFunc-exp))
- (equal (nth 1 (car p)) math-integ-var))
- (setq p (cdr p)))
- (null p))
- (or (and (math-integ-parts-easy expr)
- (math-integ-try-parts expr t))
- (math-integrate-by-good-substitution
- expr (list 'calcFunc-tanh (math-div math-integ-var 2)))))
-
- ;; If function has square roots, try sin, tan, or sec substitution.
- (and (let ((p rat-in))
- (setq t1 nil)
- (while (and p
- (or (equal (car p) math-integ-var)
- (and (eq (car (car p)) 'calcFunc-sqrt)
- (setq t1 (math-is-polynomial
- (nth 1 (setq t2 (car p)))
- math-integ-var 2)))))
- (setq p (cdr p)))
- (and (null p) t1))
- (if (cdr (cdr t1))
- (if (math-guess-if-neg (nth 2 t1))
- (let* ((c (math-sqrt (math-neg (nth 2 t1))))
- (d (math-div (nth 1 t1) (math-mul -2 c)))
- (a (math-sqrt (math-add (car t1) (math-sqr d)))))
- (math-integrate-by-good-substitution
- expr (list 'calcFunc-arcsin
- (math-div-thru
- (math-add (math-mul c math-integ-var) d)
- a))))
- (let* ((c (math-sqrt (nth 2 t1)))
- (d (math-div (nth 1 t1) (math-mul 2 c)))
- (aa (math-sub (car t1) (math-sqr d))))
- (if (and nil (not (and (eq d 0) (eq c 1))))
- (math-integrate-by-good-substitution
- expr (math-add (math-mul c math-integ-var) d))
- (if (math-guess-if-neg aa)
- (math-integrate-by-good-substitution
- expr (list 'calcFunc-arccosh
- (math-div-thru
- (math-add (math-mul c math-integ-var)
- d)
- (math-sqrt (math-neg aa)))))
- (math-integrate-by-good-substitution
- expr (list 'calcFunc-arcsinh
- (math-div-thru
- (math-add (math-mul c math-integ-var)
- d)
- (math-sqrt aa))))))))
- (math-integrate-by-good-substitution expr t2)) )
-
- ;; Try integration by parts.
- (math-integ-try-parts expr)
-
- ;; Give up.
- nil))
- )
-
- (defun math-integ-parts-easy (expr)
- (cond ((Math-primp expr) t)
- ((memq (car expr) '(+ - *))
- (and (math-integ-parts-easy (nth 1 expr))
- (math-integ-parts-easy (nth 2 expr))))
- ((eq (car expr) '/)
- (and (math-integ-parts-easy (nth 1 expr))
- (math-atomic-factorp (nth 2 expr))))
- ((eq (car expr) '^)
- (and (natnump (nth 2 expr))
- (math-integ-parts-easy (nth 1 expr))))
- ((eq (car expr) 'neg)
- (math-integ-parts-easy (nth 1 expr)))
- (t t))
- )
-
- (defun math-integ-try-parts (expr &optional math-good-parts)
- ;; Integration by parts:
- ;; integ(f(x) g(x),x) = f(x) h(x) - integ(h(x) f'(x),x)
- ;; where h(x) = integ(g(x),x).
- (or (let ((exp (calcFunc-expand expr)))
- (and (not (equal exp expr))
- (math-integral exp)))
- (and (eq (car expr) '*)
- (let ((first-bad (or (math-polynomial-p (nth 1 expr)
- math-integ-var)
- (equal (nth 2 expr) math-prev-parts-v))))
- (or (and first-bad ; so try this one first
- (math-integrate-by-parts (nth 1 expr) (nth 2 expr)))
- (math-integrate-by-parts (nth 2 expr) (nth 1 expr))
- (and (not first-bad)
- (math-integrate-by-parts (nth 1 expr) (nth 2 expr))))))
- (and (eq (car expr) '/)
- (math-expr-contains (nth 1 expr) math-integ-var)
- (let ((recip (math-div 1 (nth 2 expr))))
- (or (math-integrate-by-parts (nth 1 expr) recip)
- (math-integrate-by-parts recip (nth 1 expr)))))
- (and (eq (car expr) '^)
- (math-integrate-by-parts (math-pow (nth 1 expr)
- (math-sub (nth 2 expr) 1))
- (nth 1 expr))))
- )
-
- (defun math-integrate-by-parts (u vprime)
- (let ((math-integ-level (if (or math-good-parts
- (math-polynomial-p u math-integ-var))
- math-integ-level
- (1- math-integ-level)))
- (math-doing-parts t)
- v temp)
- (and (>= math-integ-level 0)
- (unwind-protect
- (progn
- (setcar (cdr cur-record) 'parts)
- (math-tracing-integral "Integrating by parts, u = "
- (math-format-value u 1000)
- ", v' = "
- (math-format-value vprime 1000)
- "\n")
- (and (setq v (math-integral vprime))
- (setq temp (calcFunc-deriv u math-integ-var nil t))
- (setq temp (let ((math-prev-parts-v v))
- (math-integral (math-mul v temp) 'yes)))
- (setq temp (math-sub (math-mul u v) temp))
- (if (eq (nth 1 cur-record) 'parts)
- (calcFunc-expand temp)
- (setq v (list 'var 'PARTS cur-record)
- var-thing (list 'vec (math-sub v temp) v)
- temp (let (calc-next-why)
- (math-solve-for (math-sub v temp) 0 v nil)))
- (and temp (not (integerp temp))
- (math-simplify-extended temp)))))
- (setcar (cdr cur-record) 'busy))))
- )
-
- ;;; This tries two different formulations, hoping the algebraic simplifier
- ;;; will be strong enough to handle at least one.
- (defun math-integrate-by-substitution (expr u &optional user uinv uinvprime)
- (and (> math-integ-level 0)
- (let ((math-integ-level (max (- math-integ-level 2) 0)))
- (math-integrate-by-good-substitution expr u user uinv uinvprime)))
- )
-
- (defun math-integrate-by-good-substitution (expr u &optional user
- uinv uinvprime)
- (let ((math-living-dangerously t)
- deriv temp)
- (and (setq uinv (if uinv
- (math-expr-subst uinv math-integ-var
- math-integ-var-2)
- (let (calc-next-why)
- (math-solve-for u
- math-integ-var-2
- math-integ-var nil))))
- (progn
- (math-tracing-integral "Integrating by substitution, u = "
- (math-format-value u 1000)
- "\n")
- (or (and (setq deriv (calcFunc-deriv u
- math-integ-var nil
- (not user)))
- (setq temp (math-integral (math-expr-subst
- (math-expr-subst
- (math-expr-subst
- (math-div expr deriv)
- u
- math-integ-var-2)
- math-integ-var
- uinv)
- math-integ-var-2
- math-integ-var)
- 'yes)))
- (and (setq deriv (or uinvprime
- (calcFunc-deriv uinv
- math-integ-var-2
- math-integ-var
- (not user))))
- (setq temp (math-integral (math-mul
- (math-expr-subst
- (math-expr-subst
- (math-expr-subst
- expr
- u
- math-integ-var-2)
- math-integ-var
- uinv)
- math-integ-var-2
- math-integ-var)
- deriv)
- 'yes)))))
- (math-simplify-extended
- (math-expr-subst temp math-integ-var u))))
- )
-
- ;;; Look for substitutions of the form u = a x + b.
- (defun math-integ-try-linear-substitutions (sub-expr)
- (and (not (Math-primp sub-expr))
- (or (and (not (memq (car sub-expr) '(+ - * / neg)))
- (not (and (eq (car sub-expr) '^)
- (integerp (nth 2 sub-expr))))
- (math-expr-contains sub-expr math-integ-var)
- (let ((res nil))
- (while (and (setq sub-expr (cdr sub-expr))
- (or (not (math-linear-in (car sub-expr)
- math-integ-var))
- (assoc (car sub-expr) so-far)
- (progn
- (setq so-far (cons (list (car sub-expr))
- so-far))
- (not (setq res
- (math-integrate-by-substitution
- expr (car sub-expr))))))))
- res))
- (let ((res nil))
- (while (and (setq sub-expr (cdr sub-expr))
- (not (setq res (math-integ-try-linear-substitutions
- (car sub-expr))))))
- res)))
- )
-
- ;;; Recursively try different substitutions based on various sub-expressions.
- (defun math-integ-try-substitutions (sub-expr &optional allow-rat)
- (and (not (Math-primp sub-expr))
- (not (assoc sub-expr so-far))
- (math-expr-contains sub-expr math-integ-var)
- (or (and (if (and (not (memq (car sub-expr) '(+ - * / neg)))
- (not (and (eq (car sub-expr) '^)
- (integerp (nth 2 sub-expr)))))
- (setq allow-rat t)
- (prog1 allow-rat (setq allow-rat nil)))
- (not (eq sub-expr expr))
- (or (math-integrate-by-substitution expr sub-expr)
- (and (eq (car sub-expr) '^)
- (integerp (nth 2 sub-expr))
- (< (nth 2 sub-expr) 0)
- (math-integ-try-substitutions
- (math-pow (nth 1 sub-expr) (- (nth 2 sub-expr)))
- t))))
- (let ((res nil))
- (setq so-far (cons (list sub-expr) so-far))
- (while (and (setq sub-expr (cdr sub-expr))
- (not (setq res (math-integ-try-substitutions
- (car sub-expr) allow-rat)))))
- res)))
- )
-
- (defun math-expr-rational-in (expr)
- (let ((parts nil))
- (math-expr-rational-in-rec expr)
- (mapcar 'car parts))
- )
-
- (defun math-expr-rational-in-rec (expr)
- (cond ((Math-primp expr)
- (and (equal expr math-integ-var)
- (not (assoc expr parts))
- (setq parts (cons (list expr) parts))))
- ((or (memq (car expr) '(+ - * / neg))
- (and (eq (car expr) '^) (integerp (nth 2 expr))))
- (math-expr-rational-in-rec (nth 1 expr))
- (and (nth 2 expr) (math-expr-rational-in-rec (nth 2 expr))))
- ((and (eq (car expr) '^)
- (eq (math-quarter-integer (nth 2 expr)) 2))
- (math-expr-rational-in-rec (list 'calcFunc-sqrt (nth 1 expr))))
- (t
- (and (not (assoc expr parts))
- (math-expr-contains expr math-integ-var)
- (setq parts (cons (list expr) parts)))))
- )
-
- (defun math-expr-calls (expr funcs &optional arg-contains)
- (if (consp expr)
- (if (or (memq (car expr) funcs)
- (and (eq (car expr) '^) (eq (car funcs) 'calcFunc-sqrt)
- (eq (math-quarter-integer (nth 2 expr)) 2)))
- (and (or (not arg-contains)
- (math-expr-contains expr arg-contains))
- expr)
- (and (not (Math-primp expr))
- (let ((res nil))
- (while (and (setq expr (cdr expr))
- (not (setq res (math-expr-calls
- (car expr) funcs arg-contains)))))
- res))))
- )
-
- (defun math-fix-const-terms (expr except-vars)
- (cond ((not (math-expr-depends expr except-vars)) 0)
- ((Math-primp expr) expr)
- ((eq (car expr) '+)
- (math-add (math-fix-const-terms (nth 1 expr) except-vars)
- (math-fix-const-terms (nth 2 expr) except-vars)))
- ((eq (car expr) '-)
- (math-sub (math-fix-const-terms (nth 1 expr) except-vars)
- (math-fix-const-terms (nth 2 expr) except-vars)))
- (t expr))
- )
-
- ;; Command for debugging the Calculator's symbolic integrator.
- (defun calc-dump-integral-cache (&optional arg)
- (interactive "P")
- (let ((buf (current-buffer)))
- (unwind-protect
- (let ((p math-integral-cache)
- cur-record)
- (display-buffer (get-buffer-create "*Integral Cache*"))
- (set-buffer (get-buffer "*Integral Cache*"))
- (erase-buffer)
- (while p
- (setq cur-record (car p))
- (or arg (math-replace-integral-parts cur-record))
- (insert (math-format-flat-expr (car cur-record) 0)
- " --> "
- (if (symbolp (nth 1 cur-record))
- (concat "(" (symbol-name (nth 1 cur-record)) ")")
- (math-format-flat-expr (nth 1 cur-record) 0))
- "\n")
- (setq p (cdr p)))
- (goto-char (point-min)))
- (set-buffer buf)))
- )
-
- (defun math-try-integral (expr)
- (let ((math-integ-level math-integral-limit)
- (math-integ-depth 0)
- (math-integ-msg "Working...done")
- (cur-record nil) ; a technicality
- (math-integrating t)
- (calc-prefer-frac t)
- (calc-symbolic-mode t)
- (has-rules (calc-has-rules 'var-IntegRules)))
- (or (math-integral expr 'yes)
- (and math-any-substs
- (setq math-enable-subst t)
- (math-integral expr 'yes))
- (and (> math-max-integral-limit math-integral-limit)
- (setq math-integral-limit math-max-integral-limit
- math-integ-level math-integral-limit)
- (math-integral expr 'yes))))
- )
-
- (defun calcFunc-integ (expr var &optional low high)
- (cond
- ;; Do these even if the parts turn out not to be integrable.
- ((eq (car-safe expr) '+)
- (math-add (calcFunc-integ (nth 1 expr) var low high)
- (calcFunc-integ (nth 2 expr) var low high)))
- ((eq (car-safe expr) '-)
- (math-sub (calcFunc-integ (nth 1 expr) var low high)
- (calcFunc-integ (nth 2 expr) var low high)))
- ((eq (car-safe expr) 'neg)
- (math-neg (calcFunc-integ (nth 1 expr) var low high)))
- ((and (eq (car-safe expr) '*)
- (not (math-expr-contains (nth 1 expr) var)))
- (math-mul (nth 1 expr) (calcFunc-integ (nth 2 expr) var low high)))
- ((and (eq (car-safe expr) '*)
- (not (math-expr-contains (nth 2 expr) var)))
- (math-mul (calcFunc-integ (nth 1 expr) var low high) (nth 2 expr)))
- ((and (eq (car-safe expr) '/)
- (not (math-expr-contains (nth 1 expr) var))
- (not (math-equal-int (nth 1 expr) 1)))
- (math-mul (nth 1 expr)
- (calcFunc-integ (math-div 1 (nth 2 expr)) var low high)))
- ((and (eq (car-safe expr) '/)
- (not (math-expr-contains (nth 2 expr) var)))
- (math-div (calcFunc-integ (nth 1 expr) var low high) (nth 2 expr)))
- ((and (eq (car-safe expr) '/)
- (eq (car-safe (nth 1 expr)) '*)
- (not (math-expr-contains (nth 1 (nth 1 expr)) var)))
- (math-mul (nth 1 (nth 1 expr))
- (calcFunc-integ (math-div (nth 2 (nth 1 expr)) (nth 2 expr))
- var low high)))
- ((and (eq (car-safe expr) '/)
- (eq (car-safe (nth 1 expr)) '*)
- (not (math-expr-contains (nth 2 (nth 1 expr)) var)))
- (math-mul (nth 2 (nth 1 expr))
- (calcFunc-integ (math-div (nth 1 (nth 1 expr)) (nth 2 expr))
- var low high)))
- ((and (eq (car-safe expr) '/)
- (eq (car-safe (nth 2 expr)) '*)
- (not (math-expr-contains (nth 1 (nth 2 expr)) var)))
- (math-div (calcFunc-integ (math-div (nth 1 expr) (nth 2 (nth 2 expr)))
- var low high)
- (nth 1 (nth 2 expr))))
- ((and (eq (car-safe expr) '/)
- (eq (car-safe (nth 2 expr)) '*)
- (not (math-expr-contains (nth 2 (nth 2 expr)) var)))
- (math-div (calcFunc-integ (math-div (nth 1 expr) (nth 1 (nth 2 expr)))
- var low high)
- (nth 2 (nth 2 expr))))
- ((eq (car-safe expr) 'vec)
- (cons 'vec (mapcar (function (lambda (x) (calcFunc-integ x var low high)))
- (cdr expr))))
- (t
- (let ((state (list calc-angle-mode
- ;;calc-symbolic-mode
- ;;calc-prefer-frac
- calc-internal-prec
- (calc-var-value 'var-IntegRules)
- (calc-var-value 'var-IntegSimpRules))))
- (or (equal state math-integral-cache-state)
- (setq math-integral-cache-state state
- math-integral-cache nil)))
- (let* ((math-max-integral-limit (or (and (boundp 'var-IntegLimit)
- (natnump var-IntegLimit)
- var-IntegLimit)
- 3))
- (math-integral-limit 1)
- (sexpr (math-expr-subst expr var math-integ-var))
- (trace-buffer (get-buffer "*Trace*"))
- (calc-language (if (eq calc-language 'big) nil calc-language))
- (math-any-substs t)
- (math-enable-subst nil)
- (math-prev-parts-v nil)
- (math-doing-parts nil)
- (math-good-parts nil)
- (res
- (if trace-buffer
- (let ((calcbuf (current-buffer))
- (calcwin (selected-window)))
- (unwind-protect
- (progn
- (if (get-buffer-window trace-buffer)
- (select-window (get-buffer-window trace-buffer)))
- (set-buffer trace-buffer)
- (goto-char (point-max))
- (or (assq 'scroll-stop (buffer-local-variables))
- (progn
- (make-local-variable 'scroll-step)
- (setq scroll-step 3)))
- (insert "\n\n\n")
- (set-buffer calcbuf)
- (math-try-integral sexpr))
- (select-window calcwin)
- (set-buffer calcbuf)))
- (math-try-integral sexpr))))
- (if res
- (progn
- (if (calc-has-rules 'var-IntegAfterRules)
- (setq res (math-rewrite res '(var IntegAfterRules
- var-IntegAfterRules))))
- (math-simplify
- (if (and low high)
- (math-sub (math-expr-subst res math-integ-var high)
- (math-expr-subst res math-integ-var low))
- (setq res (math-fix-const-terms res math-integ-vars))
- (if low
- (math-expr-subst res math-integ-var low)
- (math-expr-subst res math-integ-var var)))))
- (append (list 'calcFunc-integ expr var)
- (and low (list low))
- (and high (list high)))))))
- )
-
-
- (math-defintegral calcFunc-inv
- (math-integral (math-div 1 u)))
-
- (math-defintegral calcFunc-conj
- (let ((int (math-integral u)))
- (and int
- (list 'calcFunc-conj int))))
-
- (math-defintegral calcFunc-deg
- (let ((int (math-integral u)))
- (and int
- (list 'calcFunc-deg int))))
-
- (math-defintegral calcFunc-rad
- (let ((int (math-integral u)))
- (and int
- (list 'calcFunc-rad int))))
-
- (math-defintegral calcFunc-re
- (let ((int (math-integral u)))
- (and int
- (list 'calcFunc-re int))))
-
- (math-defintegral calcFunc-im
- (let ((int (math-integral u)))
- (and int
- (list 'calcFunc-im int))))
-
- (math-defintegral calcFunc-sqrt
- (and (equal u math-integ-var)
- (math-mul '(frac 2 3)
- (list 'calcFunc-sqrt (math-pow u 3)))))
-
- (math-defintegral calcFunc-exp
- (or (and (equal u math-integ-var)
- (list 'calcFunc-exp u))
- (let ((p (math-is-polynomial u math-integ-var 2)))
- (and (nth 2 p)
- (let ((sqa (math-sqrt (math-neg (nth 2 p)))))
- (math-div
- (math-mul
- (math-mul (math-div (list 'calcFunc-sqrt '(var pi var-pi))
- sqa)
- (math-normalize
- (list 'calcFunc-exp
- (math-div (math-sub (math-mul (car p)
- (nth 2 p))
- (math-div
- (math-sqr (nth 1 p))
- 4))
- (nth 2 p)))))
- (list 'calcFunc-erf
- (math-sub (math-mul sqa math-integ-var)
- (math-div (nth 1 p) (math-mul 2 sqa)))))
- 2))))))
-
- (math-defintegral calcFunc-ln
- (or (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-ln u)) u))
- (and (eq (car u) '*)
- (math-integral (math-add (list 'calcFunc-ln (nth 1 u))
- (list 'calcFunc-ln (nth 2 u)))))
- (and (eq (car u) '/)
- (math-integral (math-sub (list 'calcFunc-ln (nth 1 u))
- (list 'calcFunc-ln (nth 2 u)))))
- (and (eq (car u) '^)
- (math-integral (math-mul (nth 2 u)
- (list 'calcFunc-ln (nth 1 u)))))))
-
- (math-defintegral calcFunc-log10
- (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-ln u))
- (math-div u (list 'calcFunc-ln 10)))))
-
- (math-defintegral-2 calcFunc-log
- (math-integral (math-div (list 'calcFunc-ln u)
- (list 'calcFunc-ln v))))
-
- (math-defintegral calcFunc-sin
- (or (and (equal u math-integ-var)
- (math-neg (math-from-radians-2 (list 'calcFunc-cos u))))
- (and (nth 2 (math-is-polynomial u math-integ-var 2))
- (math-integral (math-to-exponentials (list 'calcFunc-sin u))))))
-
- (math-defintegral calcFunc-cos
- (or (and (equal u math-integ-var)
- (math-from-radians-2 (list 'calcFunc-sin u)))
- (and (nth 2 (math-is-polynomial u math-integ-var 2))
- (math-integral (math-to-exponentials (list 'calcFunc-cos u))))))
-
- (math-defintegral calcFunc-tan
- (and (equal u math-integ-var)
- (math-neg (math-from-radians-2
- (list 'calcFunc-ln (list 'calcFunc-cos u))))))
-
- (math-defintegral calcFunc-arcsin
- (and (equal u math-integ-var)
- (math-add (math-mul u (list 'calcFunc-arcsin u))
- (math-from-radians-2
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr u)))))))
-
- (math-defintegral calcFunc-arccos
- (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-arccos u))
- (math-from-radians-2
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr u)))))))
-
- (math-defintegral calcFunc-arctan
- (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-arctan u))
- (math-from-radians-2
- (math-div (list 'calcFunc-ln (math-add 1 (math-sqr u)))
- 2)))))
-
- (math-defintegral calcFunc-sinh
- (and (equal u math-integ-var)
- (list 'calcFunc-cosh u)))
-
- (math-defintegral calcFunc-cosh
- (and (equal u math-integ-var)
- (list 'calcFunc-sinh u)))
-
- (math-defintegral calcFunc-tanh
- (and (equal u math-integ-var)
- (list 'calcFunc-ln (list 'calcFunc-cosh u))))
-
- (math-defintegral calcFunc-arcsinh
- (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-arcsinh u))
- (list 'calcFunc-sqrt (math-add (math-sqr u) 1)))))
-
- (math-defintegral calcFunc-arccosh
- (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-arccosh u))
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr u))))))
-
- (math-defintegral calcFunc-arctanh
- (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-arctan u))
- (math-div (list 'calcFunc-ln
- (math-add 1 (math-sqr u)))
- 2))))
-
- ;;; (Ax + B) / (ax^2 + bx + c)^n forms.
- (math-defintegral-2 /
- (math-integral-rational-funcs u v))
-
- (defun math-integral-rational-funcs (u v)
- (let ((pu (math-is-polynomial u math-integ-var 1))
- (vpow 1) pv)
- (and pu
- (catch 'int-rat
- (if (and (eq (car-safe v) '^) (natnump (nth 2 v)))
- (setq vpow (nth 2 v)
- v (nth 1 v)))
- (and (setq pv (math-is-polynomial v math-integ-var 2))
- (let ((int (math-mul-thru
- (car pu)
- (math-integral-q02 (car pv) (nth 1 pv)
- (nth 2 pv) v vpow))))
- (if (cdr pu)
- (setq int (math-add int
- (math-mul-thru
- (nth 1 pu)
- (math-integral-q12
- (car pv) (nth 1 pv)
- (nth 2 pv) v vpow)))))
- int))))))
-
- (defun math-integral-q12 (a b c v vpow)
- (let (q)
- (cond ((not c)
- (cond ((= vpow 1)
- (math-sub (math-div math-integ-var b)
- (math-mul (math-div a (math-sqr b))
- (list 'calcFunc-ln v))))
- ((= vpow 2)
- (math-div (math-add (list 'calcFunc-ln v)
- (math-div a v))
- (math-sqr b)))
- (t
- (let ((nm1 (math-sub vpow 1))
- (nm2 (math-sub vpow 2)))
- (math-div (math-sub
- (math-div a (math-mul nm1 (math-pow v nm1)))
- (math-div 1 (math-mul nm2 (math-pow v nm2))))
- (math-sqr b))))))
- ((math-zerop
- (setq q (math-sub (math-mul 4 (math-mul a c)) (math-sqr b))))
- (let ((part (math-div b (math-mul 2 c))))
- (math-mul-thru (math-pow c vpow)
- (math-integral-q12 part 1 nil
- (math-add math-integ-var part)
- (* vpow 2)))))
- ((= vpow 1)
- (and (math-ratp q) (math-negp q)
- (let ((calc-symbolic-mode t))
- (math-ratp (math-sqrt (math-neg q))))
- (throw 'int-rat nil)) ; should have used calcFunc-apart first
- (math-sub (math-div (list 'calcFunc-ln v) (math-mul 2 c))
- (math-mul-thru (math-div b (math-mul 2 c))
- (math-integral-q02 a b c v 1))))
- (t
- (let ((n (1- vpow)))
- (math-sub (math-neg (math-div
- (math-add (math-mul b math-integ-var)
- (math-mul 2 a))
- (math-mul n (math-mul q (math-pow v n)))))
- (math-mul-thru (math-div (math-mul b (1- (* 2 n)))
- (math-mul n q))
- (math-integral-q02 a b c v n)))))))
- )
-
- (defun math-integral-q02 (a b c v vpow)
- (let (q rq part)
- (cond ((not c)
- (cond ((= vpow 1)
- (math-div (list 'calcFunc-ln v) b))
- (t
- (math-div (math-pow v (- 1 vpow))
- (math-mul (- 1 vpow) b)))))
- ((math-zerop
- (setq q (math-sub (math-mul 4 (math-mul a c)) (math-sqr b))))
- (let ((part (math-div b (math-mul 2 c))))
- (math-mul-thru (math-pow c vpow)
- (math-integral-q02 part 1 nil
- (math-add math-integ-var part)
- (* vpow 2)))))
- ((progn
- (setq part (math-add (math-mul 2 (math-mul c math-integ-var)) b))
- (> vpow 1))
- (let ((n (1- vpow)))
- (math-add (math-div part (math-mul n (math-mul q (math-pow v n))))
- (math-mul-thru (math-div (math-mul (- (* 4 n) 2) c)
- (math-mul n q))
- (math-integral-q02 a b c v n)))))
- ((math-guess-if-neg q)
- (setq rq (list 'calcFunc-sqrt (math-neg q)))
- ;;(math-div-thru (list 'calcFunc-ln
- ;; (math-div (math-sub part rq)
- ;; (math-add part rq)))
- ;; rq)
- (math-div (math-mul -2 (list 'calcFunc-arctanh
- (math-div part rq)))
- rq))
- (t
- (setq rq (list 'calcFunc-sqrt q))
- (math-div (math-mul 2 (math-to-radians-2
- (list 'calcFunc-arctan
- (math-div part rq))))
- rq))))
- )
-
-
- (math-defintegral calcFunc-erf
- (and (equal u math-integ-var)
- (math-add (math-mul u (list 'calcFunc-erf u))
- (math-div 1 (math-mul (list 'calcFunc-exp (math-sqr u))
- (list 'calcFunc-sqrt
- '(var pi var-pi)))))))
-
- (math-defintegral calcFunc-erfc
- (and (equal u math-integ-var)
- (math-sub (math-mul u (list 'calcFunc-erfc u))
- (math-div 1 (math-mul (list 'calcFunc-exp (math-sqr u))
- (list 'calcFunc-sqrt
- '(var pi var-pi)))))))
-
-
-
-
- (defun calcFunc-table (expr var &optional low high step)
- (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf)))
- (or high (setq high low low 1))
- (and (or (math-infinitep low) (math-infinitep high))
- (not step)
- (math-scan-for-limits expr))
- (and step (math-zerop step) (math-reject-arg step 'nonzerop))
- (let ((known (+ (if (Math-objectp low) 1 0)
- (if (Math-objectp high) 1 0)
- (if (or (null step) (Math-objectp step)) 1 0)))
- (count '(var inf var-inf))
- vec)
- (or (= known 2) ; handy optimization
- (equal high '(var inf var-inf))
- (progn
- (setq count (math-div (math-sub high low) (or step 1)))
- (or (Math-objectp count)
- (setq count (math-simplify count)))
- (if (Math-messy-integerp count)
- (setq count (math-trunc count)))))
- (if (Math-negp count)
- (setq count -1))
- (if (integerp count)
- (let ((var-DUMMY nil)
- (vec math-tabulate-initial)
- (math-working-step-2 (1+ count))
- (math-working-step 0))
- (setq expr (math-evaluate-expr
- (math-expr-subst expr var '(var DUMMY var-DUMMY))))
- (while (>= count 0)
- (setq math-working-step (1+ math-working-step)
- var-DUMMY low
- vec (cond ((eq math-tabulate-function 'calcFunc-sum)
- (math-add vec (math-evaluate-expr expr)))
- ((eq math-tabulate-function 'calcFunc-prod)
- (math-mul vec (math-evaluate-expr expr)))
- (t
- (cons (math-evaluate-expr expr) vec)))
- low (math-add low (or step 1))
- count (1- count)))
- (if math-tabulate-function
- vec
- (cons 'vec (nreverse vec))))
- (if (Math-integerp count)
- (calc-record-why 'fixnump high)
- (if (Math-num-integerp low)
- (if (Math-num-integerp high)
- (calc-record-why 'integerp step)
- (calc-record-why 'integerp high))
- (calc-record-why 'integerp low)))
- (append (list (or math-tabulate-function 'calcFunc-table)
- expr var)
- (and (not (and (equal low '(neg (var inf var-inf)))
- (equal high '(var inf var-inf))))
- (list low high))
- (and step (list step)))))
- )
-
- (setq math-tabulate-initial nil)
- (setq math-tabulate-function nil)
-
- (defun math-scan-for-limits (x)
- (cond ((Math-primp x))
- ((and (eq (car x) 'calcFunc-subscr)
- (Math-vectorp (nth 1 x))
- (math-expr-contains (nth 2 x) var))
- (let* ((calc-next-why nil)
- (low-val (math-solve-for (nth 2 x) 1 var nil))
- (high-val (math-solve-for (nth 2 x) (1- (length (nth 1 x)))
- var nil))
- temp)
- (and low-val (math-realp low-val)
- high-val (math-realp high-val))
- (and (Math-lessp high-val low-val)
- (setq temp low-val low-val high-val high-val temp))
- (setq low (math-max low (math-ceiling low-val))
- high (math-min high (math-floor high-val)))))
- (t
- (while (setq x (cdr x))
- (math-scan-for-limits (car x)))))
- )
-
-
- (defun calcFunc-sum (expr var &optional low high step)
- (if math-disable-sums (math-reject-arg))
- (let* ((res (let* ((calc-internal-prec (+ calc-internal-prec 2)))
- (math-sum-rec expr var low high step)))
- (math-disable-sums t))
- (math-normalize res))
- )
- (setq math-disable-sums nil)
-
- (defun math-sum-rec (expr var &optional low high step)
- (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf)))
- (and low (not high) (setq high low low 1))
- (let (t1 t2 val)
- (setq val
- (cond
- ((not (math-expr-contains expr var))
- (math-mul expr (math-add (math-div (math-sub high low) (or step 1))
- 1)))
- ((and step (not (math-equal-int step 1)))
- (if (math-negp step)
- (math-sum-rec expr var high low (math-neg step))
- (let ((lo (math-simplify (math-div low step))))
- (if (math-known-num-integerp lo)
- (math-sum-rec (math-normalize
- (math-expr-subst expr var
- (math-mul step var)))
- var lo (math-simplify (math-div high step)))
- (math-sum-rec (math-normalize
- (math-expr-subst expr var
- (math-add (math-mul step var)
- low)))
- var 0
- (math-simplify (math-div (math-sub high low)
- step)))))))
- ((memq (setq t1 (math-compare low high)) '(0 1))
- (if (eq t1 0)
- (math-expr-subst expr var low)
- 0))
- ((setq t1 (math-is-polynomial expr var 20))
- (let ((poly nil)
- (n 0))
- (while t1
- (setq poly (math-poly-mix poly 1
- (math-sum-integer-power n) (car t1))
- n (1+ n)
- t1 (cdr t1)))
- (setq n (math-build-polynomial-expr poly high))
- (if (memq low '(0 1))
- n
- (math-sub n (math-build-polynomial-expr poly
- (math-sub low 1))))))
- ((and (memq (car expr) '(+ -))
- (setq t1 (math-sum-rec (nth 1 expr) var low high)
- t2 (math-sum-rec (nth 2 expr) var low high))
- (not (and (math-expr-calls t1 '(calcFunc-sum))
- (math-expr-calls t2 '(calcFunc-sum)))))
- (list (car expr) t1 t2))
- ((and (eq (car expr) '*)
- (setq t1 (math-sum-const-factors expr var)))
- (math-mul (car t1) (math-sum-rec (cdr t1) var low high)))
- ((and (eq (car expr) '*) (memq (car-safe (nth 1 expr)) '(+ -)))
- (math-sum-rec (math-add-or-sub (math-mul (nth 1 (nth 1 expr))
- (nth 2 expr))
- (math-mul (nth 2 (nth 1 expr))
- (nth 2 expr))
- nil (eq (car (nth 1 expr)) '-))
- var low high))
- ((and (eq (car expr) '*) (memq (car-safe (nth 2 expr)) '(+ -)))
- (math-sum-rec (math-add-or-sub (math-mul (nth 1 expr)
- (nth 1 (nth 2 expr)))
- (math-mul (nth 1 expr)
- (nth 2 (nth 2 expr)))
- nil (eq (car (nth 2 expr)) '-))
- var low high))
- ((and (eq (car expr) '/)
- (not (math-primp (nth 1 expr)))
- (setq t1 (math-sum-const-factors (nth 1 expr) var)))
- (math-mul (car t1)
- (math-sum-rec (math-div (cdr t1) (nth 2 expr))
- var low high)))
- ((and (eq (car expr) '/)
- (setq t1 (math-sum-const-factors (nth 2 expr) var)))
- (math-div (math-sum-rec (math-div (nth 1 expr) (cdr t1))
- var low high)
- (car t1)))
- ((eq (car expr) 'neg)
- (math-neg (math-sum-rec (nth 1 expr) var low high)))
- ((and (eq (car expr) '^)
- (not (math-expr-contains (nth 1 expr) var))
- (setq t1 (math-is-polynomial (nth 2 expr) var 1)))
- (let ((x (math-pow (nth 1 expr) (nth 1 t1))))
- (math-div (math-mul (math-sub (math-pow x (math-add 1 high))
- (math-pow x low))
- (math-pow (nth 1 expr) (car t1)))
- (math-sub x 1))))
- ((and (setq t1 (math-to-exponentials expr))
- (setq t1 (math-sum-rec t1 var low high))
- (not (math-expr-calls t1 '(calcFunc-sum))))
- (math-to-exps t1))
- ((memq (car expr) '(calcFunc-ln calcFunc-log10))
- (list (car expr) (calcFunc-prod (nth 1 expr) var low high)))
- ((and (eq (car expr) 'calcFunc-log)
- (= (length expr) 3)
- (not (math-expr-contains (nth 2 expr) var)))
- (list 'calcFunc-log
- (calcFunc-prod (nth 1 expr) var low high)
- (nth 2 expr)))))
- (if (equal val '(var nan var-nan)) (setq val nil))
- (or val
- (let* ((math-tabulate-initial 0)
- (math-tabulate-function 'calcFunc-sum))
- (calcFunc-table expr var low high))))
- )
-
- (defun calcFunc-asum (expr var low &optional high step no-mul-flag)
- (or high (setq high low low 1))
- (if (and step (not (math-equal-int step 1)))
- (if (math-negp step)
- (math-mul (math-pow -1 low)
- (calcFunc-asum expr var high low (math-neg step) t))
- (let ((lo (math-simplify (math-div low step))))
- (if (math-num-integerp lo)
- (calcFunc-asum (math-normalize
- (math-expr-subst expr var
- (math-mul step var)))
- var lo (math-simplify (math-div high step)))
- (calcFunc-asum (math-normalize
- (math-expr-subst expr var
- (math-add (math-mul step var)
- low)))
- var 0
- (math-simplify (math-div (math-sub high low)
- step))))))
- (math-mul (if no-mul-flag 1 (math-pow -1 low))
- (calcFunc-sum (math-mul (math-pow -1 var) expr) var low high)))
- )
-
- (defun math-sum-const-factors (expr var)
- (let ((const nil)
- (not-const nil)
- (p expr))
- (while (eq (car-safe p) '*)
- (if (math-expr-contains (nth 1 p) var)
- (setq not-const (cons (nth 1 p) not-const))
- (setq const (cons (nth 1 p) const)))
- (setq p (nth 2 p)))
- (if (math-expr-contains p var)
- (setq not-const (cons p not-const))
- (setq const (cons p const)))
- (and const
- (cons (let ((temp (car const)))
- (while (setq const (cdr const))
- (setq temp (list '* (car const) temp)))
- temp)
- (let ((temp (or (car not-const) 1)))
- (while (setq not-const (cdr not-const))
- (setq temp (list '* (car not-const) temp)))
- temp))))
- )
-
- ;; Following is from CRC Math Tables, 27th ed, pp. 52-53.
- (defun math-sum-integer-power (pow)
- (let ((calc-prefer-frac t)
- (n (length math-sum-int-pow-cache)))
- (while (<= n pow)
- (let* ((new (list 0 0))
- (lin new)
- (pp (cdr (nth (1- n) math-sum-int-pow-cache)))
- (p 2)
- (sum 0)
- q)
- (while pp
- (setq q (math-div (car pp) p)
- new (cons (math-mul q n) new)
- sum (math-add sum q)
- p (1+ p)
- pp (cdr pp)))
- (setcar lin (math-sub 1 (math-mul n sum)))
- (setq math-sum-int-pow-cache
- (nconc math-sum-int-pow-cache (list (nreverse new)))
- n (1+ n))))
- (nth pow math-sum-int-pow-cache))
- )
- (setq math-sum-int-pow-cache (list '(0 1)))
-
- (defun math-to-exponentials (expr)
- (and (consp expr)
- (= (length expr) 2)
- (let ((x (nth 1 expr))
- (pi (if calc-symbolic-mode '(var pi var-pi) (math-pi)))
- (i (if calc-symbolic-mode '(var i var-i) '(cplx 0 1))))
- (cond ((eq (car expr) 'calcFunc-exp)
- (list '^ '(var e var-e) x))
- ((eq (car expr) 'calcFunc-sin)
- (or (eq calc-angle-mode 'rad)
- (setq x (list '/ (list '* x pi) 180)))
- (list '/ (list '-
- (list '^ '(var e var-e) (list '* x i))
- (list '^ '(var e var-e)
- (list 'neg (list '* x i))))
- (list '* 2 i)))
- ((eq (car expr) 'calcFunc-cos)
- (or (eq calc-angle-mode 'rad)
- (setq x (list '/ (list '* x pi) 180)))
- (list '/ (list '+
- (list '^ '(var e var-e)
- (list '* x i))
- (list '^ '(var e var-e)
- (list 'neg (list '* x i))))
- 2))
- ((eq (car expr) 'calcFunc-sinh)
- (list '/ (list '-
- (list '^ '(var e var-e) x)
- (list '^ '(var e var-e) (list 'neg x)))
- 2))
- ((eq (car expr) 'calcFunc-cosh)
- (list '/ (list '+
- (list '^ '(var e var-e) x)
- (list '^ '(var e var-e) (list 'neg x)))
- 2))
- (t nil))))
- )
-
- (defun math-to-exps (expr)
- (cond (calc-symbolic-mode expr)
- ((Math-primp expr)
- (if (equal expr '(var e var-e)) (math-e) expr))
- ((and (eq (car expr) '^)
- (equal (nth 1 expr) '(var e var-e)))
- (list 'calcFunc-exp (nth 2 expr)))
- (t
- (cons (car expr) (mapcar 'math-to-exps (cdr expr)))))
- )
-
-
- (defun calcFunc-prod (expr var &optional low high step)
- (if math-disable-prods (math-reject-arg))
- (let* ((res (let* ((calc-internal-prec (+ calc-internal-prec 2)))
- (math-prod-rec expr var low high step)))
- (math-disable-prods t))
- (math-normalize res))
- )
- (setq math-disable-prods nil)
-
- (defun math-prod-rec (expr var &optional low high step)
- (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf)))
- (and low (not high) (setq high '(var inf var-inf)))
- (let (t1 t2 t3 val)
- (setq val
- (cond
- ((not (math-expr-contains expr var))
- (math-pow expr (math-add (math-div (math-sub high low) (or step 1))
- 1)))
- ((and step (not (math-equal-int step 1)))
- (if (math-negp step)
- (math-prod-rec expr var high low (math-neg step))
- (let ((lo (math-simplify (math-div low step))))
- (if (math-known-num-integerp lo)
- (math-prod-rec (math-normalize
- (math-expr-subst expr var
- (math-mul step var)))
- var lo (math-simplify (math-div high step)))
- (math-prod-rec (math-normalize
- (math-expr-subst expr var
- (math-add (math-mul step
- var)
- low)))
- var 0
- (math-simplify (math-div (math-sub high low)
- step)))))))
- ((and (memq (car expr) '(* /))
- (setq t1 (math-prod-rec (nth 1 expr) var low high)
- t2 (math-prod-rec (nth 2 expr) var low high))
- (not (and (math-expr-calls t1 '(calcFunc-prod))
- (math-expr-calls t2 '(calcFunc-prod)))))
- (list (car expr) t1 t2))
- ((and (eq (car expr) '^)
- (not (math-expr-contains (nth 2 expr) var)))
- (math-pow (math-prod-rec (nth 1 expr) var low high)
- (nth 2 expr)))
- ((and (eq (car expr) '^)
- (not (math-expr-contains (nth 1 expr) var)))
- (math-pow (nth 1 expr)
- (calcFunc-sum (nth 2 expr) var low high)))
- ((eq (car expr) 'sqrt)
- (math-normalize (list 'calcFunc-sqrt
- (list 'calcFunc-prod (nth 1 expr)
- var low high))))
- ((eq (car expr) 'neg)
- (math-mul (math-pow -1 (math-add (math-sub high low) 1))
- (math-prod-rec (nth 1 expr) var low high)))
- ((eq (car expr) 'calcFunc-exp)
- (list 'calcFunc-exp (calcFunc-sum (nth 1 expr) var low high)))
- ((and (setq t1 (math-is-polynomial expr var 1))
- (setq t2
- (cond
- ((or (and (math-equal-int (nth 1 t1) 1)
- (setq low (math-simplify
- (math-add low (car t1)))
- high (math-simplify
- (math-add high (car t1)))))
- (and (math-equal-int (nth 1 t1) -1)
- (setq t2 low
- low (math-simplify
- (math-sub (car t1) high))
- high (math-simplify
- (math-sub (car t1) t2)))))
- (if (or (math-zerop low) (math-zerop high))
- 0
- (if (and (or (math-negp low) (math-negp high))
- (or (math-num-integerp low)
- (math-num-integerp high)))
- (if (math-posp high)
- 0
- (math-mul (math-pow -1
- (math-add
- (math-add low high) 1))
- (list '/
- (list 'calcFunc-fact
- (math-neg low))
- (list 'calcFunc-fact
- (math-sub -1 high)))))
- (list '/
- (list 'calcFunc-fact high)
- (list 'calcFunc-fact (math-sub low 1))))))
- ((and (or (and (math-equal-int (nth 1 t1) 2)
- (setq t2 (math-simplify
- (math-add (math-mul low 2)
- (car t1)))
- t3 (math-simplify
- (math-add (math-mul high 2)
- (car t1)))))
- (and (math-equal-int (nth 1 t1) -2)
- (setq t2 (math-simplify
- (math-sub (car t1)
- (math-mul high 2)))
- t3 (math-simplify
- (math-sub (car t1)
- (math-mul low
- 2))))))
- (or (math-integerp t2)
- (and (math-messy-integerp t2)
- (setq t2 (math-trunc t2)))
- (math-integerp t3)
- (and (math-messy-integerp t3)
- (setq t3 (math-trunc t3)))))
- (if (or (math-zerop t2) (math-zerop t3))
- 0
- (if (or (math-evenp t2) (math-evenp t3))
- (if (or (math-negp t2) (math-negp t3))
- (if (math-posp high)
- 0
- (list '/
- (list 'calcFunc-dfact
- (math-neg t2))
- (list 'calcFunc-dfact
- (math-sub -2 t3))))
- (list '/
- (list 'calcFunc-dfact t3)
- (list 'calcFunc-dfact
- (math-sub t2 2))))
- (if (math-negp t3)
- (list '*
- (list '^ -1
- (list '/ (list '- (list '- t2 t3)
- 2)
- 2))
- (list '/
- (list 'calcFunc-dfact
- (math-neg t2))
- (list 'calcFunc-dfact
- (math-sub -2 t3))))
- (if (math-posp t2)
- (list '/
- (list 'calcFunc-dfact t3)
- (list 'calcFunc-dfact
- (math-sub t2 2)))
- nil))))))))
- t2)))
- (if (equal val '(var nan var-nan)) (setq val nil))
- (or val
- (let* ((math-tabulate-initial 1)
- (math-tabulate-function 'calcFunc-prod))
- (calcFunc-table expr var low high))))
- )
-
-
-
-
- ;;; Attempt to reduce lhs = rhs to solve-var = rhs', where solve-var appears
- ;;; in lhs but not in rhs or rhs'; return rhs'.
- ;;; Uses global values: solve-*.
- (defun math-try-solve-for (lhs rhs &optional sign no-poly)
- (let (t1 t2 t3)
- (cond ((equal lhs solve-var)
- (setq math-solve-sign sign)
- (if (eq solve-full 'all)
- (let ((vec (list 'vec (math-evaluate-expr rhs)))
- newvec var p)
- (while math-solve-ranges
- (setq p (car math-solve-ranges)
- var (car p)
- newvec (list 'vec))
- (while (setq p (cdr p))
- (setq newvec (nconc newvec
- (cdr (math-expr-subst
- vec var (car p))))))
- (setq vec newvec
- math-solve-ranges (cdr math-solve-ranges)))
- (math-normalize vec))
- rhs))
- ((Math-primp lhs)
- nil)
- ((and (eq (car lhs) '-)
- (eq (car-safe (nth 1 lhs)) (car-safe (nth 2 lhs)))
- (Math-zerop rhs)
- (= (length (nth 1 lhs)) 2)
- (= (length (nth 2 lhs)) 2)
- (setq t1 (get (car (nth 1 lhs)) 'math-inverse))
- (setq t2 (funcall t1 '(var SOLVEDUM SOLVEDUM)))
- (eq (math-expr-contains-count t2 '(var SOLVEDUM SOLVEDUM)) 1)
- (setq t3 (math-solve-above-dummy t2))
- (setq t1 (math-try-solve-for (math-sub (nth 1 (nth 1 lhs))
- (math-expr-subst
- t2 t3
- (nth 1 (nth 2 lhs))))
- 0)))
- t1)
- ((eq (car lhs) 'neg)
- (math-try-solve-for (nth 1 lhs) (math-neg rhs)
- (and sign (- sign))))
- ((and (not (eq solve-full 't)) (math-try-solve-prod)))
- ((and (not no-poly)
- (setq t2 (math-decompose-poly lhs solve-var 15 rhs)))
- (setq t1 (cdr (nth 1 t2))
- t1 (let ((math-solve-ranges math-solve-ranges))
- (cond ((= (length t1) 5)
- (apply 'math-solve-quartic (car t2) t1))
- ((= (length t1) 4)
- (apply 'math-solve-cubic (car t2) t1))
- ((= (length t1) 3)
- (apply 'math-solve-quadratic (car t2) t1))
- ((= (length t1) 2)
- (apply 'math-solve-linear (car t2) sign t1))
- (solve-full
- (math-poly-all-roots (car t2) t1))
- (calc-symbolic-mode nil)
- (t
- (math-try-solve-for
- (car t2)
- (math-poly-any-root (reverse t1) 0 t)
- nil t)))))
- (if t1
- (if (eq (nth 2 t2) 1)
- t1
- (math-solve-prod t1 (math-try-solve-for (nth 2 t2) 0 nil t)))
- (calc-record-why "*Unable to find a symbolic solution")
- nil))
- ((and (math-solve-find-root-term lhs nil)
- (eq (math-expr-contains-count lhs t1) 1)) ; just in case
- (math-try-solve-for (math-simplify
- (math-sub (if (or t3 (math-evenp t2))
- (math-pow t1 t2)
- (math-neg (math-pow t1 t2)))
- (math-expand-power
- (math-sub (math-normalize
- (math-expr-subst
- lhs t1 0))
- rhs)
- t2 solve-var)))
- 0))
- ((eq (car lhs) '+)
- (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
- (math-try-solve-for (nth 2 lhs)
- (math-sub rhs (nth 1 lhs))
- sign))
- ((not (math-expr-contains (nth 2 lhs) solve-var))
- (math-try-solve-for (nth 1 lhs)
- (math-sub rhs (nth 2 lhs))
- sign))))
- ((eq (car lhs) 'calcFunc-eq)
- (math-try-solve-for (math-sub (nth 1 lhs) (nth 2 lhs))
- rhs sign no-poly))
- ((eq (car lhs) '-)
- (cond ((or (and (eq (car-safe (nth 1 lhs)) 'calcFunc-sin)
- (eq (car-safe (nth 2 lhs)) 'calcFunc-cos))
- (and (eq (car-safe (nth 1 lhs)) 'calcFunc-cos)
- (eq (car-safe (nth 2 lhs)) 'calcFunc-sin)))
- (math-try-solve-for (math-sub (nth 1 lhs)
- (list (car (nth 1 lhs))
- (math-sub
- (math-quarter-circle t)
- (nth 1 (nth 2 lhs)))))
- rhs))
- ((not (math-expr-contains (nth 1 lhs) solve-var))
- (math-try-solve-for (nth 2 lhs)
- (math-sub (nth 1 lhs) rhs)
- (and sign (- sign))))
- ((not (math-expr-contains (nth 2 lhs) solve-var))
- (math-try-solve-for (nth 1 lhs)
- (math-add rhs (nth 2 lhs))
- sign))))
- ((and (eq solve-full 't) (math-try-solve-prod)))
- ((and (eq (car lhs) '%)
- (not (math-expr-contains (nth 2 lhs) solve-var)))
- (math-try-solve-for (nth 1 lhs) (math-add rhs
- (math-solve-get-int
- (nth 2 lhs)))))
- ((eq (car lhs) 'calcFunc-log)
- (cond ((not (math-expr-contains (nth 2 lhs) solve-var))
- (math-try-solve-for (nth 1 lhs) (math-pow (nth 2 lhs) rhs)))
- ((not (math-expr-contains (nth 1 lhs) solve-var))
- (math-try-solve-for (nth 2 lhs) (math-pow
- (nth 1 lhs)
- (math-div 1 rhs))))))
- ((and (= (length lhs) 2)
- (symbolp (car lhs))
- (setq t1 (get (car lhs) 'math-inverse))
- (setq t2 (funcall t1 rhs)))
- (setq t1 (get (car lhs) 'math-inverse-sign))
- (math-try-solve-for (nth 1 lhs) (math-normalize t2)
- (and sign t1
- (if (integerp t1)
- (* t1 sign)
- (funcall t1 lhs sign)))))
- ((and (symbolp (car lhs))
- (setq t1 (get (car lhs) 'math-inverse-n))
- (setq t2 (funcall t1 lhs rhs)))
- t2)
- ((setq t1 (math-expand-formula lhs))
- (math-try-solve-for t1 rhs sign))
- (t
- (calc-record-why "*No inverse known" lhs)
- nil)))
- )
-
- (setq math-solve-ranges nil)
-
- (defun math-try-solve-prod ()
- (cond ((eq (car lhs) '*)
- (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
- (math-try-solve-for (nth 2 lhs)
- (math-div rhs (nth 1 lhs))
- (math-solve-sign sign (nth 1 lhs))))
- ((not (math-expr-contains (nth 2 lhs) solve-var))
- (math-try-solve-for (nth 1 lhs)
- (math-div rhs (nth 2 lhs))
- (math-solve-sign sign (nth 2 lhs))))
- ((Math-zerop rhs)
- (math-solve-prod (let ((math-solve-ranges math-solve-ranges))
- (math-try-solve-for (nth 2 lhs) 0))
- (math-try-solve-for (nth 1 lhs) 0)))))
- ((eq (car lhs) '/)
- (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
- (math-try-solve-for (nth 2 lhs)
- (math-div (nth 1 lhs) rhs)
- (math-solve-sign sign (nth 1 lhs))))
- ((not (math-expr-contains (nth 2 lhs) solve-var))
- (math-try-solve-for (nth 1 lhs)
- (math-mul rhs (nth 2 lhs))
- (math-solve-sign sign (nth 2 lhs))))
- ((setq t1 (math-try-solve-for (math-sub (nth 1 lhs)
- (math-mul (nth 2 lhs)
- rhs))
- 0))
- t1)))
- ((eq (car lhs) '^)
- (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
- (math-try-solve-for
- (nth 2 lhs)
- (math-add (math-normalize
- (list 'calcFunc-log rhs (nth 1 lhs)))
- (math-div
- (math-mul 2
- (math-mul '(var pi var-pi)
- (math-solve-get-int
- '(var i var-i))))
- (math-normalize
- (list 'calcFunc-ln (nth 1 lhs)))))))
- ((not (math-expr-contains (nth 2 lhs) solve-var))
- (cond ((and (integerp (nth 2 lhs))
- (>= (nth 2 lhs) 2)
- (setq t1 (math-integer-log2 (nth 2 lhs))))
- (setq t2 rhs)
- (if (and (eq solve-full t)
- (math-known-realp (nth 1 lhs)))
- (progn
- (while (>= (setq t1 (1- t1)) 0)
- (setq t2 (list 'calcFunc-sqrt t2)))
- (setq t2 (math-solve-get-sign t2)))
- (while (>= (setq t1 (1- t1)) 0)
- (setq t2 (math-solve-get-sign
- (math-normalize
- (list 'calcFunc-sqrt t2))))))
- (math-try-solve-for
- (nth 1 lhs)
- (math-normalize t2)))
- ((math-looks-negp (nth 2 lhs))
- (math-try-solve-for
- (list '^ (nth 1 lhs) (math-neg (nth 2 lhs)))
- (math-div 1 rhs)))
- ((and (eq solve-full t)
- (Math-integerp (nth 2 lhs))
- (math-known-realp (nth 1 lhs)))
- (setq t1 (math-normalize
- (list 'calcFunc-nroot rhs (nth 2 lhs))))
- (if (math-evenp (nth 2 lhs))
- (setq t1 (math-solve-get-sign t1)))
- (math-try-solve-for
- (nth 1 lhs) t1
- (and sign
- (math-oddp (nth 2 lhs))
- (math-solve-sign sign (nth 2 lhs)))))
- (t (math-try-solve-for
- (nth 1 lhs)
- (math-mul
- (math-normalize
- (list 'calcFunc-exp
- (if (Math-realp (nth 2 lhs))
- (math-div (math-mul
- '(var pi var-pi)
- (math-solve-get-int
- '(var i var-i)
- (and (integerp (nth 2 lhs))
- (math-abs
- (nth 2 lhs)))))
- (math-div (nth 2 lhs) 2))
- (math-div (math-mul
- 2
- (math-mul
- '(var pi var-pi)
- (math-solve-get-int
- '(var i var-i)
- (and (integerp (nth 2 lhs))
- (math-abs
- (nth 2 lhs))))))
- (nth 2 lhs)))))
- (math-normalize
- (list 'calcFunc-nroot
- rhs
- (nth 2 lhs))))
- (and sign
- (math-oddp (nth 2 lhs))
- (math-solve-sign sign (nth 2 lhs)))))))))
- (t nil))
- )
-
- (defun math-solve-prod (lsoln rsoln)
- (cond ((null lsoln)
- rsoln)
- ((null rsoln)
- lsoln)
- ((eq solve-full 'all)
- (cons 'vec (append (cdr lsoln) (cdr rsoln))))
- (solve-full
- (list 'calcFunc-if
- (list 'calcFunc-gt (math-solve-get-sign 1) 0)
- lsoln
- rsoln))
- (t lsoln))
- )
-
- ;;; This deals with negative, fractional, and symbolic powers of "x".
- (defun math-solve-poly-funny-powers (sub-rhs) ; uses "t1", "t2"
- (setq t1 lhs)
- (let ((pp math-poly-neg-powers)
- fac)
- (while pp
- (setq fac (math-pow (car pp) (or math-poly-mult-powers 1))
- t1 (math-mul t1 fac)
- rhs (math-mul rhs fac)
- pp (cdr pp))))
- (if sub-rhs (setq t1 (math-sub t1 rhs)))
- (let ((math-poly-neg-powers nil))
- (setq t2 (math-mul (or math-poly-mult-powers 1)
- (let ((calc-prefer-frac t))
- (math-div 1 math-poly-frac-powers)))
- t1 (math-is-polynomial (math-simplify (calcFunc-expand t1)) b 50)))
- )
-
- ;;; This converts "a x^8 + b x^5 + c x^2" to "(a (x^3)^2 + b (x^3) + c) * x^2".
- (defun math-solve-crunch-poly (max-degree) ; uses "t1", "t3"
- (let ((count 0))
- (while (and t1 (Math-zerop (car t1)))
- (setq t1 (cdr t1)
- count (1+ count)))
- (and t1
- (let* ((degree (1- (length t1)))
- (scale degree))
- (while (and (> scale 1) (= (car t3) 1))
- (and (= (% degree scale) 0)
- (let ((p t1)
- (n 0)
- (new-t1 nil)
- (okay t))
- (while (and p okay)
- (if (= (% n scale) 0)
- (setq new-t1 (nconc new-t1 (list (car p))))
- (or (Math-zerop (car p))
- (setq okay nil)))
- (setq p (cdr p)
- n (1+ n)))
- (if okay
- (setq t3 (cons scale (cdr t3))
- t1 new-t1))))
- (setq scale (1- scale)))
- (setq t3 (list (math-mul (car t3) t2) (math-mul count t2)))
- (<= (1- (length t1)) max-degree))))
- )
-
- (defun calcFunc-poly (expr var &optional degree)
- (if degree
- (or (natnump degree) (math-reject-arg degree 'fixnatnump))
- (setq degree 50))
- (let ((p (math-is-polynomial expr var degree 'gen)))
- (if p
- (if (equal p '(0))
- (list 'vec)
- (cons 'vec p))
- (math-reject-arg expr "Expected a polynomial")))
- )
-
- (defun calcFunc-gpoly (expr var &optional degree)
- (if degree
- (or (natnump degree) (math-reject-arg degree 'fixnatnump))
- (setq degree 50))
- (let* ((math-poly-base-variable var)
- (d (math-decompose-poly expr var degree nil)))
- (if d
- (cons 'vec d)
- (math-reject-arg expr "Expected a polynomial")))
- )
-
- (defun math-decompose-poly (lhs solve-var degree sub-rhs)
- (let ((rhs (or sub-rhs 1))
- t1 t2 t3)
- (setq t2 (math-polynomial-base
- lhs
- (function
- (lambda (b)
- (let ((math-poly-neg-powers '(1))
- (math-poly-mult-powers nil)
- (math-poly-frac-powers 1)
- (math-poly-exp-base t))
- (and (not (equal b lhs))
- (or (not (memq (car-safe b) '(+ -))) sub-rhs)
- (setq t3 '(1 0) t2 1
- t1 (math-is-polynomial lhs b 50))
- (if (and (equal math-poly-neg-powers '(1))
- (memq math-poly-mult-powers '(nil 1))
- (eq math-poly-frac-powers 1)
- sub-rhs)
- (setq t1 (cons (math-sub (car t1) rhs)
- (cdr t1)))
- (math-solve-poly-funny-powers sub-rhs))
- (math-solve-crunch-poly degree)
- (or (math-expr-contains b solve-var)
- (math-expr-contains (car t3) solve-var))))))))
- (if t2
- (list (math-pow t2 (car t3))
- (cons 'vec t1)
- (if sub-rhs
- (math-pow t2 (nth 1 t3))
- (math-div (math-pow t2 (nth 1 t3)) rhs)))))
- )
-
- (defun math-solve-linear (var sign b a)
- (math-try-solve-for var
- (math-div (math-neg b) a)
- (math-solve-sign sign a)
- t)
- )
-
- (defun math-solve-quadratic (var c b a)
- (math-try-solve-for
- var
- (if (math-looks-evenp b)
- (let ((halfb (math-div b 2)))
- (math-div
- (math-add
- (math-neg halfb)
- (math-solve-get-sign
- (math-normalize
- (list 'calcFunc-sqrt
- (math-add (math-sqr halfb)
- (math-mul (math-neg c) a))))))
- a))
- (math-div
- (math-add
- (math-neg b)
- (math-solve-get-sign
- (math-normalize
- (list 'calcFunc-sqrt
- (math-add (math-sqr b)
- (math-mul 4 (math-mul (math-neg c) a)))))))
- (math-mul 2 a)))
- nil t)
- )
-
- (defun math-solve-cubic (var d c b a)
- (let* ((p (math-div b a))
- (q (math-div c a))
- (r (math-div d a))
- (psqr (math-sqr p))
- (aa (math-sub q (math-div psqr 3)))
- (bb (math-add r
- (math-div (math-sub (math-mul 2 (math-mul psqr p))
- (math-mul 9 (math-mul p q)))
- 27)))
- m)
- (if (Math-zerop aa)
- (math-try-solve-for (math-pow (math-add var (math-div p 3)) 3)
- (math-neg bb) nil t)
- (if (Math-zerop bb)
- (math-try-solve-for
- (math-mul (math-add var (math-div p 3))
- (math-add (math-sqr (math-add var (math-div p 3)))
- aa))
- 0 nil t)
- (setq m (math-mul 2 (list 'calcFunc-sqrt (math-div aa -3))))
- (math-try-solve-for
- var
- (math-sub
- (math-normalize
- (math-mul
- m
- (list 'calcFunc-cos
- (math-div
- (math-sub (list 'calcFunc-arccos
- (math-div (math-mul 3 bb)
- (math-mul aa m)))
- (math-mul 2
- (math-mul
- (math-add 1 (math-solve-get-int
- 1 3))
- (math-half-circle
- calc-symbolic-mode))))
- 3))))
- (math-div p 3))
- nil t))))
- )
-
- (defun math-solve-quartic (var d c b a aa)
- (setq a (math-div a aa))
- (setq b (math-div b aa))
- (setq c (math-div c aa))
- (setq d (math-div d aa))
- (math-try-solve-for
- var
- (let* ((asqr (math-sqr a))
- (asqr4 (math-div asqr 4))
- (y (let ((solve-full nil)
- calc-next-why)
- (math-solve-cubic solve-var
- (math-sub (math-sub
- (math-mul 4 (math-mul b d))
- (math-mul asqr d))
- (math-sqr c))
- (math-sub (math-mul a c)
- (math-mul 4 d))
- (math-neg b)
- 1)))
- (rsqr (math-add (math-sub asqr4 b) y))
- (r (list 'calcFunc-sqrt rsqr))
- (sign1 (math-solve-get-sign 1))
- (de (list 'calcFunc-sqrt
- (math-add
- (math-sub (math-mul 3 asqr4)
- (math-mul 2 b))
- (if (Math-zerop rsqr)
- (math-mul
- 2
- (math-mul sign1
- (list 'calcFunc-sqrt
- (math-sub (math-sqr y)
- (math-mul 4 d)))))
- (math-sub
- (math-mul sign1
- (math-div
- (math-sub (math-sub
- (math-mul 4 (math-mul a b))
- (math-mul 8 c))
- (math-mul asqr a))
- (math-mul 4 r)))
- rsqr))))))
- (math-normalize
- (math-sub (math-add (math-mul sign1 (math-div r 2))
- (math-solve-get-sign (math-div de 2)))
- (math-div a 4))))
- nil t)
- )
-
- (defun math-poly-all-roots (var p &optional math-factoring)
- (catch 'ouch
- (let* ((math-symbolic-solve calc-symbolic-mode)
- (roots nil)
- (deg (1- (length p)))
- (orig-p (reverse p))
- (math-int-coefs nil)
- (math-int-scale nil)
- (math-double-roots nil)
- (math-int-factors nil)
- (math-int-threshold nil)
- (pp p))
- ;; If rational coefficients, look for exact rational factors.
- (while (and pp (Math-ratp (car pp)))
- (setq pp (cdr pp)))
- (if pp
- (if (or math-factoring math-symbolic-solve)
- (throw 'ouch nil))
- (let ((lead (car orig-p))
- (calc-prefer-frac t)
- (scale (apply 'math-lcm-denoms p)))
- (setq math-int-scale (math-abs (math-mul scale lead))
- math-int-threshold (math-div '(float 5 -2) math-int-scale)
- math-int-coefs (cdr (math-div (cons 'vec orig-p) lead)))))
- (if (> deg 4)
- (let ((calc-prefer-frac nil)
- (calc-symbolic-mode nil)
- (pp p)
- (def-p (copy-sequence orig-p)))
- (while pp
- (if (Math-numberp (car pp))
- (setq pp (cdr pp))
- (throw 'ouch nil)))
- (while (> deg (if math-symbolic-solve 2 4))
- (let* ((x (math-poly-any-root def-p '(float 0 0) nil))
- b c pp)
- (if (and (eq (car-safe x) 'cplx)
- (math-nearly-zerop (nth 2 x) (nth 1 x)))
- (setq x (calcFunc-re x)))
- (or math-factoring
- (setq roots (cons x roots)))
- (or (math-numberp x)
- (setq x (math-evaluate-expr x)))
- (setq pp def-p
- b (car def-p))
- (while (setq pp (cdr pp))
- (setq c (car pp))
- (setcar pp b)
- (setq b (math-add (math-mul x b) c)))
- (setq def-p (cdr def-p)
- deg (1- deg))))
- (setq p (reverse def-p))))
- (if (> deg 1)
- (let ((solve-var '(var DUMMY var-DUMMY))
- (math-solve-sign nil)
- (math-solve-ranges nil)
- (solve-full 'all))
- (if (= (length p) (length math-int-coefs))
- (setq p (reverse math-int-coefs)))
- (setq roots (append (cdr (apply (cond ((= deg 2)
- 'math-solve-quadratic)
- ((= deg 3)
- 'math-solve-cubic)
- (t
- 'math-solve-quartic))
- solve-var p))
- roots)))
- (if (> deg 0)
- (setq roots (cons (math-div (math-neg (car p)) (nth 1 p))
- roots))))
- (if math-factoring
- (progn
- (while roots
- (math-poly-integer-root (car roots))
- (setq roots (cdr roots)))
- (list math-int-factors (nreverse math-int-coefs) math-int-scale))
- (let ((vec nil) res)
- (while roots
- (let ((root (car roots))
- (solve-full (and solve-full 'all)))
- (if (math-floatp root)
- (setq root (math-poly-any-root orig-p root t)))
- (setq vec (append vec
- (cdr (or (math-try-solve-for var root nil t)
- (throw 'ouch nil))))))
- (setq roots (cdr roots)))
- (setq vec (cons 'vec (nreverse vec)))
- (if math-symbolic-solve
- (setq vec (math-normalize vec)))
- (if (eq solve-full t)
- (list 'calcFunc-subscr
- vec
- (math-solve-get-int 1 (1- (length orig-p)) 1))
- vec)))))
- )
- (setq math-symbolic-solve nil)
-
- (defun math-lcm-denoms (&rest fracs)
- (let ((den 1))
- (while fracs
- (if (eq (car-safe (car fracs)) 'frac)
- (setq den (calcFunc-lcm den (nth 2 (car fracs)))))
- (setq fracs (cdr fracs)))
- den)
- )
-
- (defun math-poly-any-root (p x polish) ; p is a reverse poly coeff list
- (let* ((newt (if (math-zerop x)
- (math-poly-newton-root
- p '(cplx (float 123 -6) (float 1 -4)) 4)
- (math-poly-newton-root p x 4)))
- (res (if (math-zerop (cdr newt))
- (car newt)
- (if (and (math-lessp (cdr newt) '(float 1 -3)) (not polish))
- (setq newt (math-poly-newton-root p (car newt) 30)))
- (if (math-zerop (cdr newt))
- (car newt)
- (math-poly-laguerre-root p x polish)))))
- (and math-symbolic-solve (math-floatp res)
- (throw 'ouch nil))
- res)
- )
-
- (defun math-poly-newton-root (p x iters)
- (let* ((calc-prefer-frac nil)
- (calc-symbolic-mode nil)
- (try-integer math-int-coefs)
- (dx x) b d)
- (while (and (> (setq iters (1- iters)) 0)
- (let ((pp p))
- (math-working "newton" x)
- (setq b (car p)
- d 0)
- (while (setq pp (cdr pp))
- (setq d (math-add (math-mul x d) b)
- b (math-add (math-mul x b) (car pp))))
- (not (math-zerop d)))
- (progn
- (setq dx (math-div b d)
- x (math-sub x dx))
- (if try-integer
- (let ((adx (math-abs-approx dx)))
- (and (math-lessp adx math-int-threshold)
- (let ((iroot (math-poly-integer-root x)))
- (if iroot
- (setq x iroot dx 0)
- (setq try-integer nil))))))
- (or (not (or (eq dx 0)
- (math-nearly-zerop dx (math-abs-approx x))))
- (progn (setq dx 0) nil)))))
- (cons x (if (math-zerop x)
- 1 (math-div (math-abs-approx dx) (math-abs-approx x)))))
- )
-
- (defun math-poly-integer-root (x)
- (and (math-lessp (calcFunc-xpon (math-abs-approx x)) calc-internal-prec)
- math-int-coefs
- (let* ((calc-prefer-frac t)
- (xre (calcFunc-re x))
- (xim (calcFunc-im x))
- (xresq (math-sqr xre))
- (ximsq (math-sqr xim)))
- (if (math-lessp ximsq (calcFunc-scf xresq -1))
- ;; Look for linear factor
- (let* ((rnd (math-div (math-round (math-mul xre math-int-scale))
- math-int-scale))
- (icp math-int-coefs)
- (rem (car icp))
- (newcoef nil))
- (while (setq icp (cdr icp))
- (setq newcoef (cons rem newcoef)
- rem (math-add (car icp)
- (math-mul rem rnd))))
- (and (math-zerop rem)
- (progn
- (setq math-int-coefs (nreverse newcoef)
- math-int-factors (cons (list (math-neg rnd))
- math-int-factors))
- rnd)))
- ;; Look for irreducible quadratic factor
- (let* ((rnd1 (math-div (math-round
- (math-mul xre (math-mul -2 math-int-scale)))
- math-int-scale))
- (sqscale (math-sqr math-int-scale))
- (rnd0 (math-div (math-round (math-mul (math-add xresq ximsq)
- sqscale))
- sqscale))
- (rem1 (car math-int-coefs))
- (icp (cdr math-int-coefs))
- (rem0 (car icp))
- (newcoef nil)
- (found (assoc (list rnd0 rnd1 (math-posp xim))
- math-double-roots))
- this)
- (if found
- (setq math-double-roots (delq found math-double-roots)
- rem0 0 rem1 0)
- (while (setq icp (cdr icp))
- (setq this rem1
- newcoef (cons rem1 newcoef)
- rem1 (math-sub rem0 (math-mul this rnd1))
- rem0 (math-sub (car icp) (math-mul this rnd0)))))
- (and (math-zerop rem0)
- (math-zerop rem1)
- (let ((aa (math-div rnd1 -2)))
- (or found (setq math-int-coefs (reverse newcoef)
- math-double-roots (cons (list
- (list
- rnd0 rnd1
- (math-negp xim)))
- math-double-roots)
- math-int-factors (cons (cons rnd0 rnd1)
- math-int-factors)))
- (math-add aa
- (let ((calc-symbolic-mode math-symbolic-solve))
- (math-mul (math-sqrt (math-sub (math-sqr aa)
- rnd0))
- (if (math-negp xim) -1 1))))))))))
- )
- (setq math-int-coefs nil)
-
- ;;; The following routine is from Numerical Recipes, section 9.5.
- (defun math-poly-laguerre-root (p x polish)
- (let* ((calc-prefer-frac nil)
- (calc-symbolic-mode nil)
- (iters 0)
- (m (1- (length p)))
- (try-newt (not polish))
- (tried-newt nil)
- b d f x1 dx dxold)
- (while
- (and (or (< (setq iters (1+ iters)) 50)
- (math-reject-arg x "*Laguerre's method failed to converge"))
- (let ((err (math-abs-approx (car p)))
- (abx (math-abs-approx x))
- (pp p))
- (setq b (car p)
- d 0 f 0)
- (while (setq pp (cdr pp))
- (setq f (math-add (math-mul x f) d)
- d (math-add (math-mul x d) b)
- b (math-add (math-mul x b) (car pp))
- err (math-add (math-abs-approx b) (math-mul abx err))))
- (math-lessp (calcFunc-scf err (- -2 calc-internal-prec))
- (math-abs-approx b)))
- (or (not (math-zerop d))
- (not (math-zerop f))
- (progn
- (setq x (math-pow (math-neg b) (list 'frac 1 m)))
- nil))
- (let* ((g (math-div d b))
- (g2 (math-sqr g))
- (h (math-sub g2 (math-mul 2 (math-div f b))))
- (sq (math-sqrt
- (math-mul (1- m) (math-sub (math-mul m h) g2))))
- (gp (math-add g sq))
- (gm (math-sub g sq)))
- (if (math-lessp (calcFunc-abssqr gp) (calcFunc-abssqr gm))
- (setq gp gm))
- (setq dx (math-div m gp)
- x1 (math-sub x dx))
- (if (and try-newt
- (math-lessp (math-abs-approx dx)
- (calcFunc-scf (math-abs-approx x) -3)))
- (let ((newt (math-poly-newton-root p x1 7)))
- (setq tried-newt t
- try-newt nil)
- (if (math-zerop (cdr newt))
- (setq x (car newt) x1 x)
- (if (math-lessp (cdr newt) '(float 1 -6))
- (let ((newt2 (math-poly-newton-root
- p (car newt) 20)))
- (if (math-zerop (cdr newt2))
- (setq x (car newt2) x1 x)
- (setq x (car newt))))))))
- (not (or (eq x x1)
- (math-nearly-equal x x1))))
- (let ((cdx (math-abs-approx dx)))
- (setq x x1
- tried-newt nil)
- (prog1
- (or (<= iters 6)
- (math-lessp cdx dxold)
- (progn
- (if polish
- (let ((digs (calcFunc-xpon
- (math-div (math-abs-approx x) cdx))))
- (calc-record-why
- "*Could not attain full precision")
- (if (natnump digs)
- (let ((calc-internal-prec (max 3 digs)))
- (setq x (math-normalize x))))))
- nil))
- (setq dxold cdx)))
- (or polish
- (math-lessp (calcFunc-scf (math-abs-approx x)
- (- calc-internal-prec))
- dxold))))
- (or (and (math-floatp x)
- (math-poly-integer-root x))
- x))
- )
-
- (defun math-solve-above-dummy (x)
- (and (not (Math-primp x))
- (if (and (equal (nth 1 x) '(var SOLVEDUM SOLVEDUM))
- (= (length x) 2))
- x
- (let ((res nil))
- (while (and (setq x (cdr x))
- (not (setq res (math-solve-above-dummy (car x))))))
- res)))
- )
-
- (defun math-solve-find-root-term (x neg) ; sets "t2", "t3"
- (if (math-solve-find-root-in-prod x)
- (setq t3 neg
- t1 x)
- (and (memq (car-safe x) '(+ -))
- (or (math-solve-find-root-term (nth 1 x) neg)
- (math-solve-find-root-term (nth 2 x)
- (if (eq (car x) '-) (not neg) neg)))))
- )
-
- (defun math-solve-find-root-in-prod (x)
- (and (consp x)
- (math-expr-contains x solve-var)
- (or (and (eq (car x) 'calcFunc-sqrt)
- (setq t2 2))
- (and (eq (car x) '^)
- (or (and (memq (math-quarter-integer (nth 2 x)) '(1 2 3))
- (setq t2 2))
- (and (eq (car-safe (nth 2 x)) 'frac)
- (eq (nth 2 (nth 2 x)) 3)
- (setq t2 3))))
- (and (memq (car x) '(* /))
- (or (and (not (math-expr-contains (nth 1 x) solve-var))
- (math-solve-find-root-in-prod (nth 2 x)))
- (and (not (math-expr-contains (nth 2 x) solve-var))
- (math-solve-find-root-in-prod (nth 1 x)))))))
- )
-
-
- (defun math-solve-system (exprs solve-vars solve-full)
- (setq exprs (mapcar 'list (if (Math-vectorp exprs)
- (cdr exprs)
- (list exprs)))
- solve-vars (if (Math-vectorp solve-vars)
- (cdr solve-vars)
- (list solve-vars)))
- (or (let ((math-solve-simplifying nil))
- (math-solve-system-rec exprs solve-vars nil))
- (let ((math-solve-simplifying t))
- (math-solve-system-rec exprs solve-vars nil)))
- )
-
- ;;; The following backtracking solver works by choosing a variable
- ;;; and equation, and trying to solve the equation for the variable.
- ;;; If it succeeds it calls itself recursively with that variable and
- ;;; equation removed from their respective lists, and with the solution
- ;;; added to solns as well as being substituted into all existing
- ;;; equations. The algorithm terminates when any solution path
- ;;; manages to remove all the variables from var-list.
-
- ;;; To support calcFunc-roots, entries in eqn-list and solns are
- ;;; actually lists of equations.
-
- (defun math-solve-system-rec (eqn-list var-list solns)
- (if var-list
- (let ((v var-list)
- (res nil))
-
- ;; Try each variable in turn.
- (while
- (and
- v
- (let* ((vv (car v))
- (e eqn-list)
- (elim (eq (car-safe vv) 'calcFunc-elim)))
- (if elim
- (setq vv (nth 1 vv)))
-
- ;; Try each equation in turn.
- (while
- (and
- e
- (let ((e2 (car e))
- (eprev nil)
- res2)
- (setq res nil)
-
- ;; Try to solve for vv the list of equations e2.
- (while (and e2
- (setq res2 (or (and (eq (car e2) eprev)
- res2)
- (math-solve-for (car e2) 0 vv
- solve-full))))
- (setq eprev (car e2)
- res (cons (if (eq solve-full 'all)
- (cdr res2)
- (list res2))
- res)
- e2 (cdr e2)))
- (if e2
- (setq res nil)
-
- ;; Found a solution. Now try other variables.
- (setq res (nreverse res)
- res (math-solve-system-rec
- (mapcar
- 'math-solve-system-subst
- (delq (car e)
- (copy-sequence eqn-list)))
- (delq (car v) (copy-sequence var-list))
- (let ((math-solve-simplifying nil)
- (s (mapcar
- (function
- (lambda (x)
- (cons
- (car x)
- (math-solve-system-subst
- (cdr x)))))
- solns)))
- (if elim
- s
- (cons (cons vv (apply 'append res))
- s)))))
- (not res))))
- (setq e (cdr e)))
- (not res)))
- (setq v (cdr v)))
- res)
-
- ;; Eliminated all variables, so now put solution into the proper format.
- (setq solns (sort solns
- (function
- (lambda (x y)
- (not (memq (car x) (memq (car y) solve-vars)))))))
- (if (eq solve-full 'all)
- (math-transpose
- (math-normalize
- (cons 'vec
- (if solns
- (mapcar (function (lambda (x) (cons 'vec (cdr x)))) solns)
- (mapcar (function (lambda (x) (cons 'vec x))) eqn-list)))))
- (math-normalize
- (cons 'vec
- (if solns
- (mapcar (function (lambda (x) (cons 'calcFunc-eq x))) solns)
- (mapcar 'car eqn-list))))))
- )
-
- (defun math-solve-system-subst (x) ; uses "res" and "v"
- (let ((accum nil)
- (res2 res))
- (while x
- (setq accum (nconc accum
- (mapcar (function
- (lambda (r)
- (if math-solve-simplifying
- (math-simplify
- (math-expr-subst (car x) vv r))
- (math-expr-subst (car x) vv r))))
- (car res2)))
- x (cdr x)
- res2 (cdr res2)))
- accum)
- )
-
-
- (defun math-get-from-counter (name)
- (let ((ctr (assq name calc-command-flags)))
- (if ctr
- (setcdr ctr (1+ (cdr ctr)))
- (setq ctr (cons name 1)
- calc-command-flags (cons ctr calc-command-flags)))
- (cdr ctr))
- )
-
- (defun math-solve-get-sign (val)
- (setq val (math-simplify val))
- (if (and (eq (car-safe val) '*)
- (Math-numberp (nth 1 val)))
- (list '* (nth 1 val) (math-solve-get-sign (nth 2 val)))
- (and (eq (car-safe val) 'calcFunc-sqrt)
- (eq (car-safe (nth 1 val)) '^)
- (setq val (math-normalize (list '^
- (nth 1 (nth 1 val))
- (math-div (nth 2 (nth 1 val)) 2)))))
- (if solve-full
- (if (and (calc-var-value 'var-GenCount)
- (Math-natnump var-GenCount)
- (not (eq solve-full 'all)))
- (prog1
- (math-mul (list 'calcFunc-as var-GenCount) val)
- (setq var-GenCount (math-add var-GenCount 1))
- (calc-refresh-evaltos 'var-GenCount))
- (let* ((var (concat "s" (math-get-from-counter 'solve-sign)))
- (var2 (list 'var (intern var) (intern (concat "var-" var)))))
- (if (eq solve-full 'all)
- (setq math-solve-ranges (cons (list var2 1 -1)
- math-solve-ranges)))
- (math-mul var2 val)))
- (calc-record-why "*Choosing positive solution")
- val))
- )
-
- (defun math-solve-get-int (val &optional range first)
- (if solve-full
- (if (and (calc-var-value 'var-GenCount)
- (Math-natnump var-GenCount)
- (not (eq solve-full 'all)))
- (prog1
- (math-mul val (list 'calcFunc-an var-GenCount))
- (setq var-GenCount (math-add var-GenCount 1))
- (calc-refresh-evaltos 'var-GenCount))
- (let* ((var (concat "n" (math-get-from-counter 'solve-int)))
- (var2 (list 'var (intern var) (intern (concat "var-" var)))))
- (if (and range (eq solve-full 'all))
- (setq math-solve-ranges (cons (cons var2
- (cdr (calcFunc-index
- range (or first 0))))
- math-solve-ranges)))
- (math-mul val var2)))
- (calc-record-why "*Choosing 0 for arbitrary integer in solution")
- 0)
- )
-
- (defun math-solve-sign (sign expr)
- (and sign
- (let ((s1 (math-possible-signs expr)))
- (cond ((memq s1 '(4 6))
- sign)
- ((memq s1 '(1 3))
- (- sign)))))
- )
-
- (defun math-looks-evenp (expr)
- (if (Math-integerp expr)
- (math-evenp expr)
- (if (memq (car expr) '(* /))
- (math-looks-evenp (nth 1 expr))))
- )
-
- (defun math-solve-for (lhs rhs solve-var solve-full &optional sign)
- (if (math-expr-contains rhs solve-var)
- (math-solve-for (math-sub lhs rhs) 0 solve-var solve-full)
- (and (math-expr-contains lhs solve-var)
- (math-with-extra-prec 1
- (let* ((math-poly-base-variable solve-var)
- (res (math-try-solve-for lhs rhs sign)))
- (if (and (eq solve-full 'all)
- (math-known-realp solve-var))
- (let ((old-len (length res))
- new-len)
- (setq res (delq nil
- (mapcar (function
- (lambda (x)
- (and (not (memq (car-safe x)
- '(cplx polar)))
- x)))
- res))
- new-len (length res))
- (if (< new-len old-len)
- (calc-record-why (if (= new-len 1)
- "*All solutions were complex"
- (format
- "*Omitted %d complex solutions"
- (- old-len new-len)))))))
- res))))
- )
-
- (defun math-solve-eqn (expr var full)
- (if (memq (car-safe expr) '(calcFunc-neq calcFunc-lt calcFunc-gt
- calcFunc-leq calcFunc-geq))
- (let ((res (math-solve-for (cons '- (cdr expr))
- 0 var full
- (if (eq (car expr) 'calcFunc-neq) nil 1))))
- (and res
- (if (eq math-solve-sign 1)
- (list (car expr) var res)
- (if (eq math-solve-sign -1)
- (list (car expr) res var)
- (or (eq (car expr) 'calcFunc-neq)
- (calc-record-why
- "*Can't determine direction of inequality"))
- (and (memq (car expr) '(calcFunc-neq calcFunc-lt calcFunc-gt))
- (list 'calcFunc-neq var res))))))
- (let ((res (math-solve-for expr 0 var full)))
- (and res
- (list 'calcFunc-eq var res))))
- )
-
- (defun math-reject-solution (expr var func)
- (if (math-expr-contains expr var)
- (or (equal (car calc-next-why) '(* "Unable to find a symbolic solution"))
- (calc-record-why "*Unable to find a solution")))
- (list func expr var)
- )
-
- (defun calcFunc-solve (expr var)
- (or (if (or (Math-vectorp expr) (Math-vectorp var))
- (math-solve-system expr var nil)
- (math-solve-eqn expr var nil))
- (math-reject-solution expr var 'calcFunc-solve))
- )
-
- (defun calcFunc-fsolve (expr var)
- (or (if (or (Math-vectorp expr) (Math-vectorp var))
- (math-solve-system expr var t)
- (math-solve-eqn expr var t))
- (math-reject-solution expr var 'calcFunc-fsolve))
- )
-
- (defun calcFunc-roots (expr var)
- (let ((math-solve-ranges nil))
- (or (if (or (Math-vectorp expr) (Math-vectorp var))
- (math-solve-system expr var 'all)
- (math-solve-for expr 0 var 'all))
- (math-reject-solution expr var 'calcFunc-roots)))
- )
-
- (defun calcFunc-finv (expr var)
- (let ((res (math-solve-for expr math-integ-var var nil)))
- (if res
- (math-normalize (math-expr-subst res math-integ-var var))
- (math-reject-solution expr var 'calcFunc-finv)))
- )
-
- (defun calcFunc-ffinv (expr var)
- (let ((res (math-solve-for expr math-integ-var var t)))
- (if res
- (math-normalize (math-expr-subst res math-integ-var var))
- (math-reject-solution expr var 'calcFunc-finv)))
- )
-
-
- (put 'calcFunc-inv 'math-inverse
- (function (lambda (x) (math-div 1 x))))
- (put 'calcFunc-inv 'math-inverse-sign -1)
-
- (put 'calcFunc-sqrt 'math-inverse
- (function (lambda (x) (math-sqr x))))
-
- (put 'calcFunc-conj 'math-inverse
- (function (lambda (x) (list 'calcFunc-conj x))))
-
- (put 'calcFunc-abs 'math-inverse
- (function (lambda (x) (math-solve-get-sign x))))
-
- (put 'calcFunc-deg 'math-inverse
- (function (lambda (x) (list 'calcFunc-rad x))))
- (put 'calcFunc-deg 'math-inverse-sign 1)
-
- (put 'calcFunc-rad 'math-inverse
- (function (lambda (x) (list 'calcFunc-deg x))))
- (put 'calcFunc-rad 'math-inverse-sign 1)
-
- (put 'calcFunc-ln 'math-inverse
- (function (lambda (x) (list 'calcFunc-exp x))))
- (put 'calcFunc-ln 'math-inverse-sign 1)
-
- (put 'calcFunc-log10 'math-inverse
- (function (lambda (x) (list 'calcFunc-exp10 x))))
- (put 'calcFunc-log10 'math-inverse-sign 1)
-
- (put 'calcFunc-lnp1 'math-inverse
- (function (lambda (x) (list 'calcFunc-expm1 x))))
- (put 'calcFunc-lnp1 'math-inverse-sign 1)
-
- (put 'calcFunc-exp 'math-inverse
- (function (lambda (x) (math-add (math-normalize (list 'calcFunc-ln x))
- (math-mul 2
- (math-mul '(var pi var-pi)
- (math-solve-get-int
- '(var i var-i))))))))
- (put 'calcFunc-exp 'math-inverse-sign 1)
-
- (put 'calcFunc-expm1 'math-inverse
- (function (lambda (x) (math-add (math-normalize (list 'calcFunc-lnp1 x))
- (math-mul 2
- (math-mul '(var pi var-pi)
- (math-solve-get-int
- '(var i var-i))))))))
- (put 'calcFunc-expm1 'math-inverse-sign 1)
-
- (put 'calcFunc-sin 'math-inverse
- (function (lambda (x) (let ((n (math-solve-get-int 1)))
- (math-add (math-mul (math-normalize
- (list 'calcFunc-arcsin x))
- (math-pow -1 n))
- (math-mul (math-half-circle t)
- n))))))
-
- (put 'calcFunc-cos 'math-inverse
- (function (lambda (x) (math-add (math-solve-get-sign
- (math-normalize
- (list 'calcFunc-arccos x)))
- (math-solve-get-int
- (math-full-circle t))))))
-
- (put 'calcFunc-tan 'math-inverse
- (function (lambda (x) (math-add (math-normalize (list 'calcFunc-arctan x))
- (math-solve-get-int
- (math-half-circle t))))))
-
- (put 'calcFunc-arcsin 'math-inverse
- (function (lambda (x) (math-normalize (list 'calcFunc-sin x)))))
-
- (put 'calcFunc-arccos 'math-inverse
- (function (lambda (x) (math-normalize (list 'calcFunc-cos x)))))
-
- (put 'calcFunc-arctan 'math-inverse
- (function (lambda (x) (math-normalize (list 'calcFunc-tan x)))))
-
- (put 'calcFunc-sinh 'math-inverse
- (function (lambda (x) (let ((n (math-solve-get-int 1)))
- (math-add (math-mul (math-normalize
- (list 'calcFunc-arcsinh x))
- (math-pow -1 n))
- (math-mul (math-half-circle t)
- (math-mul
- '(var i var-i)
- n)))))))
- (put 'calcFunc-sinh 'math-inverse-sign 1)
-
- (put 'calcFunc-cosh 'math-inverse
- (function (lambda (x) (math-add (math-solve-get-sign
- (math-normalize
- (list 'calcFunc-arccosh x)))
- (math-mul (math-full-circle t)
- (math-solve-get-int
- '(var i var-i)))))))
-
- (put 'calcFunc-tanh 'math-inverse
- (function (lambda (x) (math-add (math-normalize
- (list 'calcFunc-arctanh x))
- (math-mul (math-half-circle t)
- (math-solve-get-int
- '(var i var-i)))))))
- (put 'calcFunc-tanh 'math-inverse-sign 1)
-
- (put 'calcFunc-arcsinh 'math-inverse
- (function (lambda (x) (math-normalize (list 'calcFunc-sinh x)))))
- (put 'calcFunc-arcsinh 'math-inverse-sign 1)
-
- (put 'calcFunc-arccosh 'math-inverse
- (function (lambda (x) (math-normalize (list 'calcFunc-cosh x)))))
-
- (put 'calcFunc-arctanh 'math-inverse
- (function (lambda (x) (math-normalize (list 'calcFunc-tanh x)))))
- (put 'calcFunc-arctanh 'math-inverse-sign 1)
-
-
-
- (defun calcFunc-taylor (expr var num)
- (let ((x0 0) (v var))
- (if (memq (car-safe var) '(+ - calcFunc-eq))
- (setq x0 (if (eq (car var) '+) (math-neg (nth 2 var)) (nth 2 var))
- v (nth 1 var)))
- (or (and (eq (car-safe v) 'var)
- (math-expr-contains expr v)
- (natnump num)
- (let ((accum (math-expr-subst expr v x0))
- (var2 (if (eq (car var) 'calcFunc-eq)
- (cons '- (cdr var))
- var))
- (n 0)
- (nfac 1)
- (fprime expr))
- (while (and (<= (setq n (1+ n)) num)
- (setq fprime (calcFunc-deriv fprime v nil t)))
- (setq fprime (math-simplify fprime)
- nfac (math-mul nfac n)
- accum (math-add accum
- (math-div (math-mul (math-pow var2 n)
- (math-expr-subst
- fprime v x0))
- nfac))))
- (and fprime
- (math-normalize accum))))
- (list 'calcFunc-taylor expr var num)))
- )
-
-
-
-
-