home *** CD-ROM | disk | FTP | other *** search
- ------------------------------------------------------------------------------
- -- --
- -- GNAT RUNTIME COMPONENTS --
- -- --
- -- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S --
- -- --
- -- B o d y --
- -- --
- -- $Revision: 1.4 $ --
- -- --
- -- Copyright (c) 1992,1993,1994 NYU, All Rights Reserved --
- -- --
- -- The GNAT library is free software; you can redistribute it and/or modify --
- -- it under terms of the GNU Library General Public License as published by --
- -- the Free Software Foundation; either version 2, or (at your option) any --
- -- later version. The GNAT library is distributed in the hope that it will --
- -- be useful, but WITHOUT ANY WARRANTY; without even the implied warranty --
- -- of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU --
- -- Library General Public License for more details. You should have --
- -- received a copy of the GNU Library General Public License along with --
- -- the GNAT library; see the file COPYING.LIB. If not, write to the Free --
- -- Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. --
- -- --
- ------------------------------------------------------------------------------
-
- with Ada.Numerics.Aux; use Ada.Numerics.Aux;
- package body Ada.Numerics.Generic_Complex_Types is
-
- subtype R is Real'Base;
-
- ---------
- -- "+" --
- ---------
-
- function "+" (Right : Complex) return Complex is
- begin
- return Right;
- end "+";
-
- function "+" (Left, Right : Complex) return Complex is
- begin
- return Complex'(Left.Re + Right.Re, Left.Im + Right.Im);
- end "+";
-
- function "+" (Right : Imaginary) return Imaginary is
- begin
- return Right;
- end "+";
-
- function "+" (Left, Right : Imaginary) return Imaginary is
- begin
- return Imaginary (R (Left) + R (Right));
- end "+";
-
- function "+" (Left : Complex; Right : Real'Base) return Complex is
- begin
- return Complex'(Left.Re + Right, Left.Im);
- end "+";
-
- function "+" (Left : Real'Base; Right : Complex) return Complex is
- begin
- return Complex'(Left + Right.Re, Right.Im);
- end "+";
-
- function "+" (Left : Complex; Right : Imaginary) return Complex is
- begin
- return Complex'(Left.Re, Left.Im + R (Right));
- end "+";
-
- function "+" (Left : Imaginary; Right : Complex) return Complex is
- begin
- return Complex'(R (Left) + Right.Re, Right.Im);
- end "+";
-
- function "+" (Left : Imaginary; Right : Real'Base) return Complex is
- begin
- return Complex'(Right, R (Left));
- end "+";
-
- function "+" (Left : Real'Base; Right : Imaginary) return Complex is
- begin
- return Complex'(Left, R (Right));
- end "+";
-
- ---------
- -- "-" --
- ---------
-
- function "-" (Right : Complex) return Complex is
- begin
- return (-Right.Re, -Right.Im);
- end "-";
-
- function "-" (Left, Right : Complex) return Complex is
- begin
- return (Left.Re - Right.Re, Left.Im - Right.Im);
- end "-";
-
- function "-" (Right : Imaginary) return Imaginary is
- begin
- return Imaginary (-R (Right));
- end "-";
-
- function "-" (Left, Right : Imaginary) return Imaginary is
- begin
- return Imaginary (R (Left) - R (Right));
- end "-";
-
- function "-" (Left : Complex; Right : Real'Base) return Complex is
- begin
- return Complex'(Left.Re - Right, Left.Im);
- end "-";
-
- function "-" (Left : Real'Base; Right : Complex) return Complex is
- begin
- return Complex'(Left - Right.Re, -Right.Im);
- end "-";
-
- function "-" (Left : Complex; Right : Imaginary) return Complex is
- begin
- return Complex'(Left.Re, Left.Im - R (Right));
- end "-";
-
- function "-" (Left : Imaginary; Right : Complex) return Complex is
- begin
- return Complex'(R (Left) - Right.Re, -Right.Im);
- end "-";
-
- function "-" (Left : Imaginary; Right : Real'Base) return Complex is
- begin
- return Complex'(-Right, R (Left));
- end "-";
-
- function "-" (Left : Real'Base; Right : Imaginary) return Complex is
- begin
- return Complex'(Left, -R (Right));
- end "-";
-
- ---------
- -- "*" --
- ---------
-
- function "*" (Left, Right : Complex) return Complex is
- begin
- return (Re => Left.Re * Right.Re - Left.Im * Right.Im,
- Im => Left.Re * Right.Im + Left.Im * Right.Re);
- end "*";
-
- function "*" (Left, Right : Imaginary) return Real'Base is
- begin
- return -R (Left) * R (Right);
- end "*";
-
- function "*" (Left : Complex; Right : Real'Base) return Complex is
- begin
- return Complex'(Left.Re * Right, Left.Im * Right);
- end "*";
-
- function "*" (Left : Real'Base; Right : Complex) return Complex is
- begin
- return (Left * Right.Re, Left * Right.Im);
- end "*";
-
- function "*" (Left : Complex; Right : Imaginary) return Complex is
- begin
- return Complex'(-(Left.Im * R (Right)), Left.Re * R (Right));
- end "*";
-
- function "*" (Left : Imaginary; Right : Complex) return Complex is
- begin
- return Complex'(-(R (Left) * Right.Im), R (Left) * Right.Re);
- end "*";
-
- function "*" (Left : Imaginary; Right : Real'Base) return Imaginary is
- begin
- return Left * Imaginary (Right);
- end "*";
-
- function "*" (Left : Real'Base; Right : Imaginary) return Imaginary is
- begin
- return Imaginary (Left * R (Right));
- end "*";
-
- ---------
- -- "/" --
- ---------
-
- function "/" (Left, Right : Complex) return Complex is
- a : constant R := Left.Re;
- b : constant R := Left.Im;
- c : constant R := Right.Re;
- d : constant R := Right.Im;
-
- begin
- return Complex'(Re => ((a * c) + (b * d)) / (c ** 2 + d ** 2),
- Im => ((b * c) - (a * d)) / (c ** 2 + d ** 2));
- end "/";
-
- function "/" (Left, Right : Imaginary) return Real'Base is
- begin
- return R (Left) / R (Right);
- end "/";
-
- function "/" (Left : Complex; Right : Real'Base) return Complex is
- begin
- return Complex'(Left.Re / Right, Left.Im / Right);
- end "/";
-
- function "/" (Left : Real'Base; Right : Complex) return Complex is
- a : constant R := Left;
- c : constant R := Right.Re;
- d : constant R := Right.Im;
- begin
- return Complex'(Re => (a * c) / (c ** 2 + d ** 2),
- Im => -(a * d) / (c ** 2 + d ** 2));
- end "/";
-
- function "/" (Left : Complex; Right : Imaginary) return Complex is
- a : constant R := Left.Re;
- b : constant R := Left.Im;
- d : constant R := R (Right);
-
- begin
- return (b / d, -a / d);
- end "/";
-
- function "/" (Left : Imaginary; Right : Complex) return Complex is
- b : constant R := R (Left);
- c : constant R := Right.Re;
- d : constant R := Right.Im;
-
- begin
- return (Re => -b * d / (c ** 2 + d ** 2),
- Im => b * c / (c ** 2 + d ** 2));
- end "/";
-
- function "/" (Left : Imaginary; Right : Real'Base) return Imaginary is
- begin
- return Imaginary (R (Left) / Right);
- end "/";
-
- function "/" (Left : Real'Base; Right : Imaginary) return Imaginary is
- begin
- return Imaginary (-Left / R (Right));
- end "/";
-
- ----------
- -- "**" --
- ----------
-
- function "**" (Left : Complex; Right : Integer) return Complex is
- Result : Complex := (1.0, 0.0);
- Factor : Complex := Left;
- Exp : Natural := Right;
-
- begin
- -- We use the standard logarithmic approach, Exp gets shifted right
- -- testing successive low order bits and Factor is the value of the
- -- base raised to the next power of 2. For positive exponents we
- -- multiply the result by this factor, for negative exponents, we
- -- divide by this factor.
-
- if Exp >= 0 then
-
- -- For a positive exponent, if we get a constraint error during
- -- this loop, it is an overflow, and the constraint error will
- -- simply be passed on to the caller.
-
- while Exp /= 0 loop
- if Exp rem 2 /= 0 then
- Result := Result * Factor;
- end if;
-
- Factor := Factor * Factor;
- Exp := Exp / 2;
- end loop;
-
- return Result;
-
- else -- Exp < 0 then
-
- -- For the negative exponent case, a constraint error during this
- -- calculation happens if Factor gets too large, and the proper
- -- response is to return 0.0, since what we essentially have is
- -- 1.0 / infinity, and the closest model number will be zero.
-
- begin
-
- while Exp /= 0 loop
- if Exp rem 2 /= 0 then
- Result := Result * Factor;
- end if;
-
- Factor := Factor * Factor;
- Exp := Exp / 2;
- end loop;
-
- return R ' (1.0) / Result;
-
- exception
-
- when Constraint_Error =>
- return (0.0, 0.0);
- end;
- end if;
- end "**";
-
- function "**" (Left : Imaginary; Right : Integer) return Complex is
- M : R := R (Left) ** Right;
- begin
- case Right mod 4 is
- when 0 => return (M, 0.0);
- when 1 => return (0.0, M);
- when 2 => return (-M, 0.0);
- when 3 => return (0.0, -M);
- when others => raise Program_Error;
- end case;
- end "**";
-
- ---------
- -- "<" --
- ---------
-
- function "<" (Left, Right : Imaginary) return Boolean is
- begin
- return R (Left) < R (Right);
- end "<";
-
- ----------
- -- "<=" --
- ----------
-
- function "<=" (Left, Right : Imaginary) return Boolean is
- begin
- return R (Left) <= R (Right);
- end "<=";
-
- ---------
- -- ">" --
- ---------
-
- function ">" (Left, Right : Imaginary) return Boolean is
- begin
- return R (Left) > R (Right);
- end ">";
-
- ----------
- -- ">=" --
- ----------
-
- function ">=" (Left, Right : Imaginary) return Boolean is
- begin
- return R (Left) >= R (Right);
- end ">=";
-
- -----------
- -- "abs" --
- -----------
-
- function "abs" (Right : Imaginary) return Real'Base is
- begin
- return R (Right);
- end "abs";
-
- --------------
- -- Argument --
- --------------
-
- function Argument (X : Complex) return Real'Base is
- a : constant R := X.Re;
- b : constant R := X.Im;
-
- begin
- if b = 0.0 then
- if a >= 0.0 then
- return 0.0;
- else
- return Pi;
- end if;
- else
- return R (Atan (Double (a / b)));
- end if;
-
- exception
- when Constraint_Error =>
- if a > 0.0 then
- return 0.0;
- else
- return Pi;
- end if;
- end Argument;
-
- function Argument (X : Complex; Cycle : Real'Base) return Real'Base is
- begin
- if Cycle > 0.0 then
- return Argument (X) * Cycle / (2.0 * Pi);
- else
- raise Constraint_Error;
- end if;
- end Argument;
-
- ----------------------------
- -- Compose_From_Cartesian --
- ----------------------------
-
- function Compose_From_Cartesian (Re, Im : Real'Base) return Complex is
- begin
- return (Re, Im);
- end Compose_From_Cartesian;
-
- function Compose_From_Cartesian (Re : Real'Base) return Complex is
- begin
- return (Re, 0.0);
- end Compose_From_Cartesian;
-
- function Compose_From_Cartesian (Im : Imaginary) return Complex is
- begin
- return (0.0, R (Im));
- end Compose_From_Cartesian;
-
- ------------------------
- -- Compose_From_Polar --
- ------------------------
-
- function Compose_From_Polar (
- Modulus, Argument : Real'Base)
- return Complex
- is
- begin
- if Modulus = 0.0 then
- return (0.0, 0.0);
- else
- return (Modulus * R (Cos (Double (Argument))),
- Modulus * R (Sin (Double (Argument))));
- end if;
- end Compose_From_Polar;
-
- function Compose_From_Polar (
- Modulus, Argument, Cycle : Real'Base)
- return Complex
- is
- Arg : Real'Base;
-
- begin
- if Modulus = 0.0 then
- return (0.0, 0.0);
-
- elsif Cycle > 0.0 then
- if Argument = 0.0 then
- return (Modulus, 0.0);
-
- elsif Argument = Cycle / 4.0 then
- return (0.0, Modulus);
-
- elsif Argument = Cycle / 2.0 then
- return (-Modulus, 0.0);
-
- elsif Argument = 3.0 * Cycle / 4.0 then
- return (0.0, -Modulus);
- else
- Arg := 2.0 * Pi * Argument / Cycle;
- return (Modulus * R (Cos (Double (Arg))),
- Modulus * R (Sin (Double (Arg))));
- end if;
- else
- raise Constraint_Error;
- end if;
- end Compose_From_Polar;
-
- ---------------
- -- Conjugate --
- ---------------
-
- function Conjugate (X : Complex) return Complex is
- begin
- return Complex'(X.Re, -X.Im);
- end Conjugate;
-
- --------
- -- Im --
- --------
-
- function Im (X : Complex) return Real'Base is
- begin
- return X.Im;
- end Im;
-
- function Im (X : Imaginary) return Real'Base is
- begin
- return R (X);
- end Im;
-
- -------------
- -- Modulus --
- -------------
-
- function Modulus (X : Complex) return Real'Base is
- begin
- return R (Sqrt (Double (X.Re ** 2 + X.Im ** 2)));
- end Modulus;
-
- --------
- -- Re --
- --------
-
- function Re (X : Complex) return Real'Base is
- begin
- return X.Re;
- end Re;
-
- ------------
- -- Set_Im --
- ------------
-
- procedure Set_Im (X : in out Complex; Im : in Real'Base) is
- begin
- X.Im := Im;
- end Set_Im;
-
- procedure Set_Im (X : out Imaginary; Im : in Real'Base) is
- begin
- X := Imaginary (Im);
- end Set_Im;
-
- ------------
- -- Set_Re --
- ------------
-
- procedure Set_Re (X : in out Complex; Re : in Real'Base) is
- begin
- X.Re := Re;
- end Set_Re;
-
- end Ada.Numerics.Generic_Complex_Types;
-