home *** CD-ROM | disk | FTP | other *** search
- 81
- êêïSUBTRACTING FRACTIONS, INTERMEDIATE LEVEL
-
- è In this section we will be looking at subtracting positive and/or
- negative fractions.ïYou recall in the Elementary Level that when you
- subtracted a smaller positive fraction from a larger positive fraction,
- you always got a positive fraction for an answer.ïIn this section we
- are really considering subtracting any fraction, positive or negative,
- from any other fraction, positive or negative.ïThe good news is that
- there is only one rule to cover all of the possible cases.ïThat rule
- is called rule number three since rules one and two were concerned with
- the addition operation.
-
- êêêêïFractions
-
- #êë ... -╩ï-╔è╚è╔è╩è╦è╠è═è╬ ...
- êêè 1è1è1è1è1è1è1è1è1
-
- #êë ... -╩ï-╔è╚è╔è╩è╦è╠è═è╬ ...
- êêè 2è2è2è2è2è2è2è2è2
-
- #êë ... -╦ï-╔è╚è╔è╩è╦è╠è═è╬ ...
- êêè 3è3è3è3è3è3è3è3è3
- êêêê.
- êêêê.
- êêêê.
-
-
- Rule 3)ïTo subtract two fractions, you should change the subtraction
- operation to the addition operation, change the sign on the second
- fraction, then treat the problem as an addition problem using the
- two rules for the addition operation.
-
- Examples
-
- ï1) Both fractions positive, and both fractions with the same denomi-
- ënator.
- ë 5è11ê 5è-11êï5 + (-11)êï-6êï-1
- #ë── - ──è=è── + ───è =è ─────────è =è ──è =è ──
- ë12è12ê12è 12êë12êë 12êè2
-
-
- 2) Both fractions positive, but different denominators.
-
- ë 1è2ê1è-2ê1è5è-2è3ê 5è-6ê-1
- #ë ─ - ─è=è─ + ──è=è─ ∙ ─ + ── ∙ ─è=è── + ──è=è──
- ë 3è5ê3è 5ê3è5è 5è3ê15è15ê15
-
- 3) Both fractions negative, and both with the same denominator.
-
- êê-2è-3ê-2è 3ê(-2) + 3ê 1
- #êê── - ──è=è── + ──è=è────────è =è─
- êê 7è 7ê 7è 7êè 7êè 7
-
- 4) Both fractions negative, but different denominators.
-
- ï-1è-3ê-1 5è-3 4ê-5è 12ê(-5) + 12êï7
- #ï── - ──è=è──∙─ - ──∙─è=è── + ───è=è─────────è=è ──
- è4è 5ê 4 5è 5 4ê20è 20êè 20êè 20
-
-
- 5)ïOne fraction negative and one fraction positive, and both fractions
- ëwith the same denominator.
- êë2è-5ê2è5ê 2 + 5ê 7
- #ë1)ë─ - ──è=è─ + ─è=è ─────è =è─
- êë9è 9ê9è9êè9êè9
-
- êè -5è 1ê-5è(-1)êï(-5) + (-1)ê-6
- #ë2)è ── - ──è=è── + ────è =è ───────────è=è──
- êë7è 7ê 7ë7êê 7êë 7
-
- 6)ïOne fraction negative and one fraction positive, but with differ-
- ëent denominators.
-
- ë -2è2ê-2 3è2 5ê-6è10ê-6 + (-10)ë -16
- #ïa)ï── - ─è=è──∙─ - ─∙─è=è── - ──è=è──────────è=ï───
- ê5è3ê 5 3è3 5ê15è15êè 15êè 15
-
- ë -4è1ê-4 2è1 5ê-8è 5ê-8 - 5ê -13
- #ïb)ï── - ─è=è──∙─ - ─∙─è=è── - ──è=è──────è =è───
- ê5è2ê 5 2è2 5ê10è10êè10êè10
-
-