home *** CD-ROM | disk | FTP | other *** search
- from __future__ import generators
-
- tutorial_tests = """
- Let's try a simple generator:
-
- >>> def f():
- ... yield 1
- ... yield 2
-
- >>> for i in f():
- ... print i
- 1
- 2
- >>> g = f()
- >>> g.next()
- 1
- >>> g.next()
- 2
-
- "Falling off the end" stops the generator:
-
- >>> g.next()
- Traceback (most recent call last):
- File "<stdin>", line 1, in ?
- File "<stdin>", line 2, in g
- StopIteration
-
- "return" also stops the generator:
-
- >>> def f():
- ... yield 1
- ... return
- ... yield 2 # never reached
- ...
- >>> g = f()
- >>> g.next()
- 1
- >>> g.next()
- Traceback (most recent call last):
- File "<stdin>", line 1, in ?
- File "<stdin>", line 3, in f
- StopIteration
- >>> g.next() # once stopped, can't be resumed
- Traceback (most recent call last):
- File "<stdin>", line 1, in ?
- StopIteration
-
- "raise StopIteration" stops the generator too:
-
- >>> def f():
- ... yield 1
- ... raise StopIteration
- ... yield 2 # never reached
- ...
- >>> g = f()
- >>> g.next()
- 1
- >>> g.next()
- Traceback (most recent call last):
- File "<stdin>", line 1, in ?
- StopIteration
- >>> g.next()
- Traceback (most recent call last):
- File "<stdin>", line 1, in ?
- StopIteration
-
- However, they are not exactly equivalent:
-
- >>> def g1():
- ... try:
- ... return
- ... except:
- ... yield 1
- ...
- >>> list(g1())
- []
-
- >>> def g2():
- ... try:
- ... raise StopIteration
- ... except:
- ... yield 42
- >>> print list(g2())
- [42]
-
- This may be surprising at first:
-
- >>> def g3():
- ... try:
- ... return
- ... finally:
- ... yield 1
- ...
- >>> list(g3())
- [1]
-
- Let's create an alternate range() function implemented as a generator:
-
- >>> def yrange(n):
- ... for i in range(n):
- ... yield i
- ...
- >>> list(yrange(5))
- [0, 1, 2, 3, 4]
-
- Generators always return to the most recent caller:
-
- >>> def creator():
- ... r = yrange(5)
- ... print "creator", r.next()
- ... return r
- ...
- >>> def caller():
- ... r = creator()
- ... for i in r:
- ... print "caller", i
- ...
- >>> caller()
- creator 0
- caller 1
- caller 2
- caller 3
- caller 4
-
- Generators can call other generators:
-
- >>> def zrange(n):
- ... for i in yrange(n):
- ... yield i
- ...
- >>> list(zrange(5))
- [0, 1, 2, 3, 4]
-
- """
-
- # The examples from PEP 255.
-
- pep_tests = """
-
- Specification: Yield
-
- Restriction: A generator cannot be resumed while it is actively
- running:
-
- >>> def g():
- ... i = me.next()
- ... yield i
- >>> me = g()
- >>> me.next()
- Traceback (most recent call last):
- ...
- File "<string>", line 2, in g
- ValueError: generator already executing
-
- Specification: Return
-
- Note that return isn't always equivalent to raising StopIteration: the
- difference lies in how enclosing try/except constructs are treated.
- For example,
-
- >>> def f1():
- ... try:
- ... return
- ... except:
- ... yield 1
- >>> print list(f1())
- []
-
- because, as in any function, return simply exits, but
-
- >>> def f2():
- ... try:
- ... raise StopIteration
- ... except:
- ... yield 42
- >>> print list(f2())
- [42]
-
- because StopIteration is captured by a bare "except", as is any
- exception.
-
- Specification: Generators and Exception Propagation
-
- >>> def f():
- ... return 1//0
- >>> def g():
- ... yield f() # the zero division exception propagates
- ... yield 42 # and we'll never get here
- >>> k = g()
- >>> k.next()
- Traceback (most recent call last):
- File "<stdin>", line 1, in ?
- File "<stdin>", line 2, in g
- File "<stdin>", line 2, in f
- ZeroDivisionError: integer division or modulo by zero
- >>> k.next() # and the generator cannot be resumed
- Traceback (most recent call last):
- File "<stdin>", line 1, in ?
- StopIteration
- >>>
-
- Specification: Try/Except/Finally
-
- >>> def f():
- ... try:
- ... yield 1
- ... try:
- ... yield 2
- ... 1//0
- ... yield 3 # never get here
- ... except ZeroDivisionError:
- ... yield 4
- ... yield 5
- ... raise
- ... except:
- ... yield 6
- ... yield 7 # the "raise" above stops this
- ... except:
- ... yield 8
- ... yield 9
- ... try:
- ... x = 12
- ... finally:
- ... yield 10
- ... yield 11
- >>> print list(f())
- [1, 2, 4, 5, 8, 9, 10, 11]
- >>>
-
- Guido's binary tree example.
-
- >>> # A binary tree class.
- >>> class Tree:
- ...
- ... def __init__(self, label, left=None, right=None):
- ... self.label = label
- ... self.left = left
- ... self.right = right
- ...
- ... def __repr__(self, level=0, indent=" "):
- ... s = level*indent + `self.label`
- ... if self.left:
- ... s = s + "\\n" + self.left.__repr__(level+1, indent)
- ... if self.right:
- ... s = s + "\\n" + self.right.__repr__(level+1, indent)
- ... return s
- ...
- ... def __iter__(self):
- ... return inorder(self)
-
- >>> # Create a Tree from a list.
- >>> def tree(list):
- ... n = len(list)
- ... if n == 0:
- ... return []
- ... i = n // 2
- ... return Tree(list[i], tree(list[:i]), tree(list[i+1:]))
-
- >>> # Show it off: create a tree.
- >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
-
- >>> # A recursive generator that generates Tree leaves in in-order.
- >>> def inorder(t):
- ... if t:
- ... for x in inorder(t.left):
- ... yield x
- ... yield t.label
- ... for x in inorder(t.right):
- ... yield x
-
- >>> # Show it off: create a tree.
- ... t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
- ... # Print the nodes of the tree in in-order.
- ... for x in t:
- ... print x,
- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
-
- >>> # A non-recursive generator.
- >>> def inorder(node):
- ... stack = []
- ... while node:
- ... while node.left:
- ... stack.append(node)
- ... node = node.left
- ... yield node.label
- ... while not node.right:
- ... try:
- ... node = stack.pop()
- ... except IndexError:
- ... return
- ... yield node.label
- ... node = node.right
-
- >>> # Exercise the non-recursive generator.
- >>> for x in t:
- ... print x,
- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
-
- """
-
- # Examples from Iterator-List and Python-Dev and c.l.py.
-
- email_tests = """
-
- The difference between yielding None and returning it.
-
- >>> def g():
- ... for i in range(3):
- ... yield None
- ... yield None
- ... return
- >>> list(g())
- [None, None, None, None]
-
- Ensure that explicitly raising StopIteration acts like any other exception
- in try/except, not like a return.
-
- >>> def g():
- ... yield 1
- ... try:
- ... raise StopIteration
- ... except:
- ... yield 2
- ... yield 3
- >>> list(g())
- [1, 2, 3]
-
- Next one was posted to c.l.py.
-
- >>> def gcomb(x, k):
- ... "Generate all combinations of k elements from list x."
- ...
- ... if k > len(x):
- ... return
- ... if k == 0:
- ... yield []
- ... else:
- ... first, rest = x[0], x[1:]
- ... # A combination does or doesn't contain first.
- ... # If it does, the remainder is a k-1 comb of rest.
- ... for c in gcomb(rest, k-1):
- ... c.insert(0, first)
- ... yield c
- ... # If it doesn't contain first, it's a k comb of rest.
- ... for c in gcomb(rest, k):
- ... yield c
-
- >>> seq = range(1, 5)
- >>> for k in range(len(seq) + 2):
- ... print "%d-combs of %s:" % (k, seq)
- ... for c in gcomb(seq, k):
- ... print " ", c
- 0-combs of [1, 2, 3, 4]:
- []
- 1-combs of [1, 2, 3, 4]:
- [1]
- [2]
- [3]
- [4]
- 2-combs of [1, 2, 3, 4]:
- [1, 2]
- [1, 3]
- [1, 4]
- [2, 3]
- [2, 4]
- [3, 4]
- 3-combs of [1, 2, 3, 4]:
- [1, 2, 3]
- [1, 2, 4]
- [1, 3, 4]
- [2, 3, 4]
- 4-combs of [1, 2, 3, 4]:
- [1, 2, 3, 4]
- 5-combs of [1, 2, 3, 4]:
-
- From the Iterators list, about the types of these things.
-
- >>> def g():
- ... yield 1
- ...
- >>> type(g)
- <type 'function'>
- >>> i = g()
- >>> type(i)
- <type 'generator'>
- >>> [s for s in dir(i) if not s.startswith('_')]
- ['gi_frame', 'gi_running', 'next']
- >>> print i.next.__doc__
- x.next() -> the next value, or raise StopIteration
- >>> iter(i) is i
- 1
- >>> import types
- >>> isinstance(i, types.GeneratorType)
- 1
-
- And more, added later.
-
- >>> i.gi_running
- 0
- >>> type(i.gi_frame)
- <type 'frame'>
- >>> i.gi_running = 42
- Traceback (most recent call last):
- ...
- TypeError: readonly attribute
- >>> def g():
- ... yield me.gi_running
- >>> me = g()
- >>> me.gi_running
- 0
- >>> me.next()
- 1
- >>> me.gi_running
- 0
-
- A clever union-find implementation from c.l.py, due to David Eppstein.
- Sent: Friday, June 29, 2001 12:16 PM
- To: python-list@python.org
- Subject: Re: PEP 255: Simple Generators
-
- >>> class disjointSet:
- ... def __init__(self, name):
- ... self.name = name
- ... self.parent = None
- ... self.generator = self.generate()
- ...
- ... def generate(self):
- ... while not self.parent:
- ... yield self
- ... for x in self.parent.generator:
- ... yield x
- ...
- ... def find(self):
- ... return self.generator.next()
- ...
- ... def union(self, parent):
- ... if self.parent:
- ... raise ValueError("Sorry, I'm not a root!")
- ... self.parent = parent
- ...
- ... def __str__(self):
- ... return self.name
-
- >>> names = "ABCDEFGHIJKLM"
- >>> sets = [disjointSet(name) for name in names]
- >>> roots = sets[:]
-
- >>> import random
- >>> random.seed(42)
- >>> while 1:
- ... for s in sets:
- ... print "%s->%s" % (s, s.find()),
- ... print
- ... if len(roots) > 1:
- ... s1 = random.choice(roots)
- ... roots.remove(s1)
- ... s2 = random.choice(roots)
- ... s1.union(s2)
- ... print "merged", s1, "into", s2
- ... else:
- ... break
- A->A B->B C->C D->D E->E F->F G->G H->H I->I J->J K->K L->L M->M
- merged D into G
- A->A B->B C->C D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
- merged C into F
- A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M
- merged L into A
- A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->A M->M
- merged H into E
- A->A B->B C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
- merged B into E
- A->A B->E C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M
- merged J into G
- A->A B->E C->F D->G E->E F->F G->G H->E I->I J->G K->K L->A M->M
- merged E into G
- A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->M
- merged M into G
- A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->G
- merged I into K
- A->A B->G C->F D->G E->G F->F G->G H->G I->K J->G K->K L->A M->G
- merged K into A
- A->A B->G C->F D->G E->G F->F G->G H->G I->A J->G K->A L->A M->G
- merged F into A
- A->A B->G C->A D->G E->G F->A G->G H->G I->A J->G K->A L->A M->G
- merged A into G
- A->G B->G C->G D->G E->G F->G G->G H->G I->G J->G K->G L->G M->G
- """
-
- # Fun tests (for sufficiently warped notions of "fun").
-
- fun_tests = """
-
- Build up to a recursive Sieve of Eratosthenes generator.
-
- >>> def firstn(g, n):
- ... return [g.next() for i in range(n)]
-
- >>> def intsfrom(i):
- ... while 1:
- ... yield i
- ... i += 1
-
- >>> firstn(intsfrom(5), 7)
- [5, 6, 7, 8, 9, 10, 11]
-
- >>> def exclude_multiples(n, ints):
- ... for i in ints:
- ... if i % n:
- ... yield i
-
- >>> firstn(exclude_multiples(3, intsfrom(1)), 6)
- [1, 2, 4, 5, 7, 8]
-
- >>> def sieve(ints):
- ... prime = ints.next()
- ... yield prime
- ... not_divisible_by_prime = exclude_multiples(prime, ints)
- ... for p in sieve(not_divisible_by_prime):
- ... yield p
-
- >>> primes = sieve(intsfrom(2))
- >>> firstn(primes, 20)
- [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
-
-
- Another famous problem: generate all integers of the form
- 2**i * 3**j * 5**k
- in increasing order, where i,j,k >= 0. Trickier than it may look at first!
- Try writing it without generators, and correctly, and without generating
- 3 internal results for each result output.
-
- >>> def times(n, g):
- ... for i in g:
- ... yield n * i
- >>> firstn(times(10, intsfrom(1)), 10)
- [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
-
- >>> def merge(g, h):
- ... ng = g.next()
- ... nh = h.next()
- ... while 1:
- ... if ng < nh:
- ... yield ng
- ... ng = g.next()
- ... elif ng > nh:
- ... yield nh
- ... nh = h.next()
- ... else:
- ... yield ng
- ... ng = g.next()
- ... nh = h.next()
-
- The following works, but is doing a whale of a lot of redundant work --
- it's not clear how to get the internal uses of m235 to share a single
- generator. Note that me_times2 (etc) each need to see every element in the
- result sequence. So this is an example where lazy lists are more natural
- (you can look at the head of a lazy list any number of times).
-
- >>> def m235():
- ... yield 1
- ... me_times2 = times(2, m235())
- ... me_times3 = times(3, m235())
- ... me_times5 = times(5, m235())
- ... for i in merge(merge(me_times2,
- ... me_times3),
- ... me_times5):
- ... yield i
-
- Don't print "too many" of these -- the implementation above is extremely
- inefficient: each call of m235() leads to 3 recursive calls, and in
- turn each of those 3 more, and so on, and so on, until we've descended
- enough levels to satisfy the print stmts. Very odd: when I printed 5
- lines of results below, this managed to screw up Win98's malloc in "the
- usual" way, i.e. the heap grew over 4Mb so Win98 started fragmenting
- address space, and it *looked* like a very slow leak.
-
- >>> result = m235()
- >>> for i in range(3):
- ... print firstn(result, 15)
- [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
- [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
- [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
-
- Heh. Here's one way to get a shared list, complete with an excruciating
- namespace renaming trick. The *pretty* part is that the times() and merge()
- functions can be reused as-is, because they only assume their stream
- arguments are iterable -- a LazyList is the same as a generator to times().
-
- >>> class LazyList:
- ... def __init__(self, g):
- ... self.sofar = []
- ... self.fetch = g.next
- ...
- ... def __getitem__(self, i):
- ... sofar, fetch = self.sofar, self.fetch
- ... while i >= len(sofar):
- ... sofar.append(fetch())
- ... return sofar[i]
-
- >>> def m235():
- ... yield 1
- ... # Gack: m235 below actually refers to a LazyList.
- ... me_times2 = times(2, m235)
- ... me_times3 = times(3, m235)
- ... me_times5 = times(5, m235)
- ... for i in merge(merge(me_times2,
- ... me_times3),
- ... me_times5):
- ... yield i
-
- Print as many of these as you like -- *this* implementation is memory-
- efficient.
-
- >>> m235 = LazyList(m235())
- >>> for i in range(5):
- ... print [m235[j] for j in range(15*i, 15*(i+1))]
- [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
- [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
- [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
- [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
- [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]
-
-
- Ye olde Fibonacci generator, LazyList style.
-
- >>> def fibgen(a, b):
- ...
- ... def sum(g, h):
- ... while 1:
- ... yield g.next() + h.next()
- ...
- ... def tail(g):
- ... g.next() # throw first away
- ... for x in g:
- ... yield x
- ...
- ... yield a
- ... yield b
- ... for s in sum(iter(fib),
- ... tail(iter(fib))):
- ... yield s
-
- >>> fib = LazyList(fibgen(1, 2))
- >>> firstn(iter(fib), 17)
- [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]
- """
-
- # syntax_tests mostly provokes SyntaxErrors. Also fiddling with #if 0
- # hackery.
-
- syntax_tests = """
-
- >>> def f():
- ... return 22
- ... yield 1
- Traceback (most recent call last):
- ...
- SyntaxError: 'return' with argument inside generator (<string>, line 2)
-
- >>> def f():
- ... yield 1
- ... return 22
- Traceback (most recent call last):
- ...
- SyntaxError: 'return' with argument inside generator (<string>, line 3)
-
- "return None" is not the same as "return" in a generator:
-
- >>> def f():
- ... yield 1
- ... return None
- Traceback (most recent call last):
- ...
- SyntaxError: 'return' with argument inside generator (<string>, line 3)
-
- This one is fine:
-
- >>> def f():
- ... yield 1
- ... return
-
- >>> def f():
- ... try:
- ... yield 1
- ... finally:
- ... pass
- Traceback (most recent call last):
- ...
- SyntaxError: 'yield' not allowed in a 'try' block with a 'finally' clause (<string>, line 3)
-
- >>> def f():
- ... try:
- ... try:
- ... 1//0
- ... except ZeroDivisionError:
- ... yield 666 # bad because *outer* try has finally
- ... except:
- ... pass
- ... finally:
- ... pass
- Traceback (most recent call last):
- ...
- SyntaxError: 'yield' not allowed in a 'try' block with a 'finally' clause (<string>, line 6)
-
- But this is fine:
-
- >>> def f():
- ... try:
- ... try:
- ... yield 12
- ... 1//0
- ... except ZeroDivisionError:
- ... yield 666
- ... except:
- ... try:
- ... x = 12
- ... finally:
- ... yield 12
- ... except:
- ... return
- >>> list(f())
- [12, 666]
-
- >>> def f():
- ... yield
- Traceback (most recent call last):
- SyntaxError: invalid syntax
-
- >>> def f():
- ... if 0:
- ... yield
- Traceback (most recent call last):
- SyntaxError: invalid syntax
-
- >>> def f():
- ... if 0:
- ... yield 1
- >>> type(f())
- <type 'generator'>
-
- >>> def f():
- ... if "":
- ... yield None
- >>> type(f())
- <type 'generator'>
-
- >>> def f():
- ... return
- ... try:
- ... if x==4:
- ... pass
- ... elif 0:
- ... try:
- ... 1//0
- ... except SyntaxError:
- ... pass
- ... else:
- ... if 0:
- ... while 12:
- ... x += 1
- ... yield 2 # don't blink
- ... f(a, b, c, d, e)
- ... else:
- ... pass
- ... except:
- ... x = 1
- ... return
- >>> type(f())
- <type 'generator'>
-
- >>> def f():
- ... if 0:
- ... def g():
- ... yield 1
- ...
- >>> type(f())
- <type 'NoneType'>
-
- >>> def f():
- ... if 0:
- ... class C:
- ... def __init__(self):
- ... yield 1
- ... def f(self):
- ... yield 2
- >>> type(f())
- <type 'NoneType'>
-
- >>> def f():
- ... if 0:
- ... return
- ... if 0:
- ... yield 2
- >>> type(f())
- <type 'generator'>
-
-
- >>> def f():
- ... if 0:
- ... lambda x: x # shouldn't trigger here
- ... return # or here
- ... def f(i):
- ... return 2*i # or here
- ... if 0:
- ... return 3 # but *this* sucks (line 8)
- ... if 0:
- ... yield 2 # because it's a generator
- Traceback (most recent call last):
- SyntaxError: 'return' with argument inside generator (<string>, line 8)
- """
-
- # conjoin is a simple backtracking generator, named in honor of Icon's
- # "conjunction" control structure. Pass a list of no-argument functions
- # that return iterable objects. Easiest to explain by example: assume the
- # function list [x, y, z] is passed. Then conjoin acts like:
- #
- # def g():
- # values = [None] * 3
- # for values[0] in x():
- # for values[1] in y():
- # for values[2] in z():
- # yield values
- #
- # So some 3-lists of values *may* be generated, each time we successfully
- # get into the innermost loop. If an iterator fails (is exhausted) before
- # then, it "backtracks" to get the next value from the nearest enclosing
- # iterator (the one "to the left"), and starts all over again at the next
- # slot (pumps a fresh iterator). Of course this is most useful when the
- # iterators have side-effects, so that which values *can* be generated at
- # each slot depend on the values iterated at previous slots.
-
- def conjoin(gs):
-
- values = [None] * len(gs)
-
- def gen(i, values=values):
- if i >= len(gs):
- yield values
- else:
- for values[i] in gs[i]():
- for x in gen(i+1):
- yield x
-
- for x in gen(0):
- yield x
-
- # That works fine, but recursing a level and checking i against len(gs) for
- # each item produced is inefficient. By doing manual loop unrolling across
- # generator boundaries, it's possible to eliminate most of that overhead.
- # This isn't worth the bother *in general* for generators, but conjoin() is
- # a core building block for some CPU-intensive generator applications.
-
- def conjoin(gs):
-
- n = len(gs)
- values = [None] * n
-
- # Do one loop nest at time recursively, until the # of loop nests
- # remaining is divisible by 3.
-
- def gen(i, values=values):
- if i >= n:
- yield values
-
- elif (n-i) % 3:
- ip1 = i+1
- for values[i] in gs[i]():
- for x in gen(ip1):
- yield x
-
- else:
- for x in _gen3(i):
- yield x
-
- # Do three loop nests at a time, recursing only if at least three more
- # remain. Don't call directly: this is an internal optimization for
- # gen's use.
-
- def _gen3(i, values=values):
- assert i < n and (n-i) % 3 == 0
- ip1, ip2, ip3 = i+1, i+2, i+3
- g, g1, g2 = gs[i : ip3]
-
- if ip3 >= n:
- # These are the last three, so we can yield values directly.
- for values[i] in g():
- for values[ip1] in g1():
- for values[ip2] in g2():
- yield values
-
- else:
- # At least 6 loop nests remain; peel off 3 and recurse for the
- # rest.
- for values[i] in g():
- for values[ip1] in g1():
- for values[ip2] in g2():
- for x in _gen3(ip3):
- yield x
-
- for x in gen(0):
- yield x
-
- # And one more approach: For backtracking apps like the Knight's Tour
- # solver below, the number of backtracking levels can be enormous (one
- # level per square, for the Knight's Tour, so that e.g. a 100x100 board
- # needs 10,000 levels). In such cases Python is likely to run out of
- # stack space due to recursion. So here's a recursion-free version of
- # conjoin too.
- # NOTE WELL: This allows large problems to be solved with only trivial
- # demands on stack space. Without explicitly resumable generators, this is
- # much harder to achieve. OTOH, this is much slower (up to a factor of 2)
- # than the fancy unrolled recursive conjoin.
-
- def flat_conjoin(gs): # rename to conjoin to run tests with this instead
- n = len(gs)
- values = [None] * n
- iters = [None] * n
- _StopIteration = StopIteration # make local because caught a *lot*
- i = 0
- while 1:
- # Descend.
- try:
- while i < n:
- it = iters[i] = gs[i]().next
- values[i] = it()
- i += 1
- except _StopIteration:
- pass
- else:
- assert i == n
- yield values
-
- # Backtrack until an older iterator can be resumed.
- i -= 1
- while i >= 0:
- try:
- values[i] = iters[i]()
- # Success! Start fresh at next level.
- i += 1
- break
- except _StopIteration:
- # Continue backtracking.
- i -= 1
- else:
- assert i < 0
- break
-
- # A conjoin-based N-Queens solver.
-
- class Queens:
- def __init__(self, n):
- self.n = n
- rangen = range(n)
-
- # Assign a unique int to each column and diagonal.
- # columns: n of those, range(n).
- # NW-SE diagonals: 2n-1 of these, i-j unique and invariant along
- # each, smallest i-j is 0-(n-1) = 1-n, so add n-1 to shift to 0-
- # based.
- # NE-SW diagonals: 2n-1 of these, i+j unique and invariant along
- # each, smallest i+j is 0, largest is 2n-2.
-
- # For each square, compute a bit vector of the columns and
- # diagonals it covers, and for each row compute a function that
- # generates the possiblities for the columns in that row.
- self.rowgenerators = []
- for i in rangen:
- rowuses = [(1L << j) | # column ordinal
- (1L << (n + i-j + n-1)) | # NW-SE ordinal
- (1L << (n + 2*n-1 + i+j)) # NE-SW ordinal
- for j in rangen]
-
- def rowgen(rowuses=rowuses):
- for j in rangen:
- uses = rowuses[j]
- if uses & self.used == 0:
- self.used |= uses
- yield j
- self.used &= ~uses
-
- self.rowgenerators.append(rowgen)
-
- # Generate solutions.
- def solve(self):
- self.used = 0
- for row2col in conjoin(self.rowgenerators):
- yield row2col
-
- def printsolution(self, row2col):
- n = self.n
- assert n == len(row2col)
- sep = "+" + "-+" * n
- print sep
- for i in range(n):
- squares = [" " for j in range(n)]
- squares[row2col[i]] = "Q"
- print "|" + "|".join(squares) + "|"
- print sep
-
- # A conjoin-based Knight's Tour solver. This is pretty sophisticated
- # (e.g., when used with flat_conjoin above, and passing hard=1 to the
- # constructor, a 200x200 Knight's Tour was found quickly -- note that we're
- # creating 10s of thousands of generators then!), and is lengthy.
-
- class Knights:
- def __init__(self, m, n, hard=0):
- self.m, self.n = m, n
-
- # solve() will set up succs[i] to be a list of square #i's
- # successors.
- succs = self.succs = []
-
- # Remove i0 from each of its successor's successor lists, i.e.
- # successors can't go back to i0 again. Return 0 if we can
- # detect this makes a solution impossible, else return 1.
-
- def remove_from_successors(i0, len=len):
- # If we remove all exits from a free square, we're dead:
- # even if we move to it next, we can't leave it again.
- # If we create a square with one exit, we must visit it next;
- # else somebody else will have to visit it, and since there's
- # only one adjacent, there won't be a way to leave it again.
- # Finelly, if we create more than one free square with a
- # single exit, we can only move to one of them next, leaving
- # the other one a dead end.
- ne0 = ne1 = 0
- for i in succs[i0]:
- s = succs[i]
- s.remove(i0)
- e = len(s)
- if e == 0:
- ne0 += 1
- elif e == 1:
- ne1 += 1
- return ne0 == 0 and ne1 < 2
-
- # Put i0 back in each of its successor's successor lists.
-
- def add_to_successors(i0):
- for i in succs[i0]:
- succs[i].append(i0)
-
- # Generate the first move.
- def first():
- if m < 1 or n < 1:
- return
-
- # Since we're looking for a cycle, it doesn't matter where we
- # start. Starting in a corner makes the 2nd move easy.
- corner = self.coords2index(0, 0)
- remove_from_successors(corner)
- self.lastij = corner
- yield corner
- add_to_successors(corner)
-
- # Generate the second moves.
- def second():
- corner = self.coords2index(0, 0)
- assert self.lastij == corner # i.e., we started in the corner
- if m < 3 or n < 3:
- return
- assert len(succs[corner]) == 2
- assert self.coords2index(1, 2) in succs[corner]
- assert self.coords2index(2, 1) in succs[corner]
- # Only two choices. Whichever we pick, the other must be the
- # square picked on move m*n, as it's the only way to get back
- # to (0, 0). Save its index in self.final so that moves before
- # the last know it must be kept free.
- for i, j in (1, 2), (2, 1):
- this = self.coords2index(i, j)
- final = self.coords2index(3-i, 3-j)
- self.final = final
-
- remove_from_successors(this)
- succs[final].append(corner)
- self.lastij = this
- yield this
- succs[final].remove(corner)
- add_to_successors(this)
-
- # Generate moves 3 thru m*n-1.
- def advance(len=len):
- # If some successor has only one exit, must take it.
- # Else favor successors with fewer exits.
- candidates = []
- for i in succs[self.lastij]:
- e = len(succs[i])
- assert e > 0, "else remove_from_successors() pruning flawed"
- if e == 1:
- candidates = [(e, i)]
- break
- candidates.append((e, i))
- else:
- candidates.sort()
-
- for e, i in candidates:
- if i != self.final:
- if remove_from_successors(i):
- self.lastij = i
- yield i
- add_to_successors(i)
-
- # Generate moves 3 thru m*n-1. Alternative version using a
- # stronger (but more expensive) heuristic to order successors.
- # Since the # of backtracking levels is m*n, a poor move early on
- # can take eons to undo. Smallest square board for which this
- # matters a lot is 52x52.
- def advance_hard(vmid=(m-1)/2.0, hmid=(n-1)/2.0, len=len):
- # If some successor has only one exit, must take it.
- # Else favor successors with fewer exits.
- # Break ties via max distance from board centerpoint (favor
- # corners and edges whenever possible).
- candidates = []
- for i in succs[self.lastij]:
- e = len(succs[i])
- assert e > 0, "else remove_from_successors() pruning flawed"
- if e == 1:
- candidates = [(e, 0, i)]
- break
- i1, j1 = self.index2coords(i)
- d = (i1 - vmid)**2 + (j1 - hmid)**2
- candidates.append((e, -d, i))
- else:
- candidates.sort()
-
- for e, d, i in candidates:
- if i != self.final:
- if remove_from_successors(i):
- self.lastij = i
- yield i
- add_to_successors(i)
-
- # Generate the last move.
- def last():
- assert self.final in succs[self.lastij]
- yield self.final
-
- if m*n < 4:
- self.squaregenerators = [first]
- else:
- self.squaregenerators = [first, second] + \
- [hard and advance_hard or advance] * (m*n - 3) + \
- [last]
-
- def coords2index(self, i, j):
- assert 0 <= i < self.m
- assert 0 <= j < self.n
- return i * self.n + j
-
- def index2coords(self, index):
- assert 0 <= index < self.m * self.n
- return divmod(index, self.n)
-
- def _init_board(self):
- succs = self.succs
- del succs[:]
- m, n = self.m, self.n
- c2i = self.coords2index
-
- offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2),
- (-1, -2), (-2, -1), (-2, 1), (-1, 2)]
- rangen = range(n)
- for i in range(m):
- for j in rangen:
- s = [c2i(i+io, j+jo) for io, jo in offsets
- if 0 <= i+io < m and
- 0 <= j+jo < n]
- succs.append(s)
-
- # Generate solutions.
- def solve(self):
- self._init_board()
- for x in conjoin(self.squaregenerators):
- yield x
-
- def printsolution(self, x):
- m, n = self.m, self.n
- assert len(x) == m*n
- w = len(str(m*n))
- format = "%" + str(w) + "d"
-
- squares = [[None] * n for i in range(m)]
- k = 1
- for i in x:
- i1, j1 = self.index2coords(i)
- squares[i1][j1] = format % k
- k += 1
-
- sep = "+" + ("-" * w + "+") * n
- print sep
- for i in range(m):
- row = squares[i]
- print "|" + "|".join(row) + "|"
- print sep
-
- conjoin_tests = """
-
- Generate the 3-bit binary numbers in order. This illustrates dumbest-
- possible use of conjoin, just to generate the full cross-product.
-
- >>> for c in conjoin([lambda: iter((0, 1))] * 3):
- ... print c
- [0, 0, 0]
- [0, 0, 1]
- [0, 1, 0]
- [0, 1, 1]
- [1, 0, 0]
- [1, 0, 1]
- [1, 1, 0]
- [1, 1, 1]
-
- For efficiency in typical backtracking apps, conjoin() yields the same list
- object each time. So if you want to save away a full account of its
- generated sequence, you need to copy its results.
-
- >>> def gencopy(iterator):
- ... for x in iterator:
- ... yield x[:]
-
- >>> for n in range(10):
- ... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n)))
- ... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n
- 0 1 1 1
- 1 2 1 1
- 2 4 1 1
- 3 8 1 1
- 4 16 1 1
- 5 32 1 1
- 6 64 1 1
- 7 128 1 1
- 8 256 1 1
- 9 512 1 1
-
- And run an 8-queens solver.
-
- >>> q = Queens(8)
- >>> LIMIT = 2
- >>> count = 0
- >>> for row2col in q.solve():
- ... count += 1
- ... if count <= LIMIT:
- ... print "Solution", count
- ... q.printsolution(row2col)
- Solution 1
- +-+-+-+-+-+-+-+-+
- |Q| | | | | | | |
- +-+-+-+-+-+-+-+-+
- | | | | |Q| | | |
- +-+-+-+-+-+-+-+-+
- | | | | | | | |Q|
- +-+-+-+-+-+-+-+-+
- | | | | | |Q| | |
- +-+-+-+-+-+-+-+-+
- | | |Q| | | | | |
- +-+-+-+-+-+-+-+-+
- | | | | | | |Q| |
- +-+-+-+-+-+-+-+-+
- | |Q| | | | | | |
- +-+-+-+-+-+-+-+-+
- | | | |Q| | | | |
- +-+-+-+-+-+-+-+-+
- Solution 2
- +-+-+-+-+-+-+-+-+
- |Q| | | | | | | |
- +-+-+-+-+-+-+-+-+
- | | | | | |Q| | |
- +-+-+-+-+-+-+-+-+
- | | | | | | | |Q|
- +-+-+-+-+-+-+-+-+
- | | |Q| | | | | |
- +-+-+-+-+-+-+-+-+
- | | | | | | |Q| |
- +-+-+-+-+-+-+-+-+
- | | | |Q| | | | |
- +-+-+-+-+-+-+-+-+
- | |Q| | | | | | |
- +-+-+-+-+-+-+-+-+
- | | | | |Q| | | |
- +-+-+-+-+-+-+-+-+
-
- >>> print count, "solutions in all."
- 92 solutions in all.
-
- And run a Knight's Tour on a 10x10 board. Note that there are about
- 20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion.
-
- >>> k = Knights(10, 10)
- >>> LIMIT = 2
- >>> count = 0
- >>> for x in k.solve():
- ... count += 1
- ... if count <= LIMIT:
- ... print "Solution", count
- ... k.printsolution(x)
- ... else:
- ... break
- Solution 1
- +---+---+---+---+---+---+---+---+---+---+
- | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
- +---+---+---+---+---+---+---+---+---+---+
- | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
- +---+---+---+---+---+---+---+---+---+---+
- | 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
- +---+---+---+---+---+---+---+---+---+---+
- | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
- +---+---+---+---+---+---+---+---+---+---+
- | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
- +---+---+---+---+---+---+---+---+---+---+
- | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
- +---+---+---+---+---+---+---+---+---+---+
- | 87| 98| 91| 80| 77| 84| 53| 46| 65| 44|
- +---+---+---+---+---+---+---+---+---+---+
- | 90| 23| 88| 95| 70| 79| 68| 83| 14| 17|
- +---+---+---+---+---+---+---+---+---+---+
- | 97| 92| 21| 78| 81| 94| 19| 16| 45| 66|
- +---+---+---+---+---+---+---+---+---+---+
- | 22| 89| 96| 93| 20| 69| 82| 67| 18| 15|
- +---+---+---+---+---+---+---+---+---+---+
- Solution 2
- +---+---+---+---+---+---+---+---+---+---+
- | 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
- +---+---+---+---+---+---+---+---+---+---+
- | 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
- +---+---+---+---+---+---+---+---+---+---+
- | 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
- +---+---+---+---+---+---+---+---+---+---+
- | 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
- +---+---+---+---+---+---+---+---+---+---+
- | 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
- +---+---+---+---+---+---+---+---+---+---+
- | 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
- +---+---+---+---+---+---+---+---+---+---+
- | 87| 98| 89| 80| 77| 84| 53| 46| 65| 44|
- +---+---+---+---+---+---+---+---+---+---+
- | 90| 23| 92| 95| 70| 79| 68| 83| 14| 17|
- +---+---+---+---+---+---+---+---+---+---+
- | 97| 88| 21| 78| 81| 94| 19| 16| 45| 66|
- +---+---+---+---+---+---+---+---+---+---+
- | 22| 91| 96| 93| 20| 69| 82| 67| 18| 15|
- +---+---+---+---+---+---+---+---+---+---+
- """
-
- __test__ = {"tut": tutorial_tests,
- "pep": pep_tests,
- "email": email_tests,
- "fun": fun_tests,
- "syntax": syntax_tests,
- "conjoin": conjoin_tests}
-
- # Magic test name that regrtest.py invokes *after* importing this module.
- # This worms around a bootstrap problem.
- # Note that doctest and regrtest both look in sys.argv for a "-v" argument,
- # so this works as expected in both ways of running regrtest.
- def test_main(verbose=None):
- import doctest, test_support, test_generators
- if 0: # change to 1 to run forever (to check for leaks)
- while 1:
- doctest.master = None
- test_support.run_doctest(test_generators, verbose)
- print ".",
- else:
- test_support.run_doctest(test_generators, verbose)
-
- # This part isn't needed for regrtest, but for running the test directly.
- if __name__ == "__main__":
- test_main(1)
-